
Moment Generating Functions

Definition: The moment generating function
(MGF) of X, written as ψ(t), is

ψ(t) = E[etX].

When the expectation is not well-defined for
some t = t0, then we do not talk about ψ(t0).

If X is a continuous random variable with pdf
f(x), then

ψ(t) =
∫ ∞

−∞
etxf(x)dx.

If X is a discrete random variable with proba-
bility function f , then

ψ(t) =
∑
x
etxf(x).

Remark: When t = 0, MGF is always well
defined and equals 1. ψ(0) = 1, because

ψ(0) = E[e0X] = E[1] = 1.
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Ex1

Let X ∼ Ber(p), which means X is either 1 or

0, and P (X = 1) = p, P (X = 0) = 1 − p. The

moment generating function (MGF) of X is

ψ(t) = E[etX]

= et·1P (X = 1)+ et·0P (X = 0)

= etp+ e0(1− p)

= 1− p+ pet

The above equation holds for all −∞ < t <∞.
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Ex2

Let X ∼ Bin(n, p), which means X takes values
from 0,1,2, . . . , n, and P (X = k) =

(
n
k

)
pk(1 −

p)n−k. The moment generating function (MGF)
of X is

ψ(t) = E[etX]

=
n∑

k=0

et·kP (X = k)

=
n∑

k=0

et·k
(n
k

)
pk(1− p)n−k

=
n∑

k=0

(n
k

)
(et)kpk(1− p)n−k

=
n∑

k=0

(n
k

)
(etp)k(1− p)n−k

= (etp+1− p)n

where in the last step we applied the Binomial
theorem.

The above equation holds for all −∞ < t <∞.
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Ex3

Let X has the pdf f(x) = e−xI(x > 0).

ψ(t) = E[etX]

=
∫ ∞

0
etxe−xdx

=
∫ ∞

0
e(t−1)xdx

If t ≥ 1, then e(t−1)x ≥ 1 for all x ≥ 0. Thus∫ ∞

0
e(t−1)xdx = ∞.

If t < 1,

ψ(t) =
∫ ∞

0
e(t−1)xdx

=
1

t− 1
e(t−1)x|∞0

= 0−
1

t− 1

=
1

1− t
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Ex4

Let X ∼ N(0,1). Find ψ(t).

ψ(t) = E[etX]

=
∫ ∞

−∞
etx

1√
2π
e−

x2
2 dx

=
∫ ∞

−∞

1√
2π
e−

x2−2tx
2 dx

=
∫ ∞

−∞

1√
2π
e−

(x−t)2−t2
2 dx

= e
1
2t

2
[
∫ ∞

−∞

1√
2π
e−

(x−t)2
2 dx]

= e
1
2t

2
[
∫ ∞

−∞

1√
2π
e−

s2
2 ds] [s = x− t]

= e
1
2t

2
· 1

= e
1
2t

2
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Compute Moments by MGF

The k-th moment of X is defined as E[Xk] for
k = 1,2,3,4, . . . whenever the expectation is
well defined.

When the MGF of X exists for all t within a
small open interval around 0 ((−δ, δ), for some
δ > 0), then E[Xk] exists for all k ≥ 1 and

E[Xk] = ψ(k)(0).

ψ(k)(0) is the k-th derivative of ψ(t) at t = 0.

Explanation: By the Taylor’s expansion of the
exponential function we have

etX = 1+ tX +
1

2!
(tX)2 +

1

3!
(tX)3 + · · ·

ψ(t) = E[etX]

= E[1 + tX +
1

2!
(tX)2 +

1

3!
(tX)3 + · · · ]

= 1+ tE[X] +
1

2!
t2E[X2] +

1

3!
t3E[X3] + · · ·
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The Taylor’s expansion of ψ(t) gives us

ψ(t) = ψ(0) + tψ(1)(0)t+
1

2!
t2ψ(2)(0)

+
1

3!
t3ψ(3)(0) + · · ·

Compare the two series we see

ψ(k)(0) = E[Xk], k = 1,2,3, . . . .

Two special cases are of particular interest

ψ′(0) = E[X]; ψ′′(0) = E[X2].

where ψ′(0) = ψ(1)(0) and ψ′′(0) = ψ(2)(0).

Therefore

E[X] = ψ′(0).

V ar(X) = ψ′′(0)− [ψ′(0)]2.
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Ex1

Let X ∼ Bin(n, p). Compute EX and V ar(X).

We have computed the MGF of X

ψ(t) = (1− p+ pet)n

ψ′(t) = n(1− p+ pet)n−1pet

ψ′′(t) =
d
(
n(1− p+ pet)n−1pet

)
dt

= n(n− 1)(1− p+ pet)n−2petpet

+n(1− p+ pet)n−1pet

EX = ψ′(0) = n(1− p+ pe0)n−1pe0 = np.

ψ′′(0) = n(n− 1)(1− p+ pe0)n−2pe0pe0

+n(1− p+ pe0)n−1pe0

= n(n− 1)p2 + np

V ar(X) = ψ′′(0)− [ψ′(0)]2

= n(n− 1)p2 + np− (np)2

= −np2 + np = np(1− p).
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Ex2

Let X has the pdf f(x) = e−xI(x > 0).

We have computed

ψ(t) =
1

1− t
for t < 1.

ψ′(t) = 1
(1−t)2

ψ′′(t) = 2
(1−t)3

ψ′′′(t) = 6
(1−t)4

EX = ψ′(0) = 1

E[X2] = ψ′′(0) = 2

E[X3] = ψ′′′(0) = 6

V ar(X) = E[X2]− (EX)2 = 2− 12 = 1.
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A useful theorem

Theorem: Suppose X1, X2, . . . , Xn are inde-

pendent random variables and ψXi(t) is the

same MGF of Xi. Let

Y = a1X1 + a2X2 + · · ·+ anXn+ b.

Then the MGF of Y is

ψY (t) = etb
n∏
i=1

ψXi(ait).

Proof:

ψY (t) = E[etY ]

= E[eta1X1+ta2X2+···+tanXn+b]

= etbE[eta1X1eta2X2 · · · etanXn]
by independence assumption

= etbE[eta1X1]E[eta2X2] · · ·E[etanXn]

= etbψX1
(ta1)ψX2

(ta2) · · ·ψXi(tan)
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Ex1

If Xis 1 ≤ i ≤ n are iid random variables and

Y = X1+X2+···+Xn√
n

. Find ψY (t).

Solution: We use the theorem. Note that a1 =

· · · = an = 1/
√
n and b = 0 so

ψY (t) =
n∏
i=1

ψXi(t/
√
n).

Furthermore, because Xis have the same dis-

tribution, ψX1
= ψX2

= · · · = ψXn, then

ψY (t) = ψX1
(t/

√
n)n.
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Ex2

Let Y = σX+µ with σ > 0. Find ψY (t). Write

down the explicit expression if assume X is a

standard normal RV.

Solution: By the theorem we know

ψY (t) = etµψX(σt).

If X ∼ N(0,1) then ψX(t) = e
1
2t

2
. Hence

ψY (t) = etµe
1
2(σt)

2
= etµ+

σ2
2 t

2
.
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Use MGFs to determine the distribution

First, if two random variables X and Y have

the same distribution, that is, they have the

same probability function or the same proba-

bility density function, then X and Y have the

same MGF. This can be seen from the defini-

tion of MGF.

On the other hand, if X and Y have the same

MGF, then they must follow the same distri-

bution.

We will use this property to figure out the dis-

tribution of some random variable by compar-

ing its MGF with the MGFs of existing known

distributions.
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Ex1

Let X1, X2, . . . , Xn are iid Ber(p). Let Y =

X1+X2+ · · ·+Xn. Find the distribution of Y .

The MGF of Xi is 1 − p + pet. Y = a1X1 +

a2X2 + · · ·+ anXn with ai = 1

ψY (t) =
n∏
i=1

ψ(t) = ψ(t)n = (1− p+ pet)n

Note that (1−p+pet)n is the MGF of Bin(n, p).

Thus we know Y ∼ Bin(n, p).

From this example we see that Bin(n, p) can be

viewed as sum of n iid Ber(p) random variables.

15



Ex2

Suppose X1 ∼ Bin(n1, p) and X2 ∼ Bin(n2, p).

Let Y = X1 +X2. Find the distribution of Y .

ψY (t) = ψX1
(t)ψX2

(t)

= (1− p+ pet)n1 · (1− p+ pet)n2

= (1− p+ pet)n1+n2

Note that (1 − p + pet)n1+n2 is the MGF of

Bin(n1 + n2, p). Thus we know Y ∼ Bin(n1 +

n2, p).
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Central Limit Theorem

Motivation Consider the sample mean again

and n = 1000. Assume V ar(X) = 1. So far,

we have Chebyshev inequality to help us get

Pr(|X̄ − µ| ≤ 0.1) ≥ 1−
σ2

n · (0.01)
= 0.90

The lower bound can be crude. For example,

if the distribution is N(µ,1), then Chebyshev

inequality tell us

Pr(|X̄ − µ| ≤ 0.1) ≥ 1−
1

1000 · (0.01)
= 0.90

However, we know X̄ ∼ N(µ, 1
1000), hence

√
1000(X̄ − µ) ∼ N(0,1) and

Pr(|X̄ − µ| ≤ 0.1)

= Pr(|
√
1000(X̄ − µ)| ≤

√
1000 · 0.1)

= Pr(−
√
10 ≤ N(0,1) ≤

√
10)

= Φ(
√
10)−Φ(−

√
10) = 0.998.
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Motivation, contd’

What if the distribution is not normal? For

instance, X1, . . . , X1000 are iid Ber(p), can we

calculate the probability? In principle, we can

but it is not as easy as the normal case.

What if the distribution is totally unknown?

It is not normal, not Bernoulli, not Exponen-

tial, not ....? Then we cannot calculate the

EXACT value of Pr(|X̄ − µ| ≤ 0.1).

BUT we can calculate a good approximate

value of Pr(|X̄ − µ| ≤ 0.1) and it turns out

that the approximate value is 0.998.
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Central Limit Theorem: Let X1, . . . , Xn be
iid random variables with common mean µ and
common variance σ2. Then for each real num-
ber z,

lim
n→∞Pr(

√
n(X̄ − µ)

σ
≤ z) = Pr(N(0,1) ≤ z) = Φ(z)

where

Φ(z) =
∫ z

−∞

1√
2π
e−

t2
2 dt.

Or we say the random variable
√
n(X̄−µ)
σ con-

verges to N(0,1) in distribution. Write
√
n(X̄ − µ)

σ
→d N(0,1).

or
√
n(X̄ − µ) →d N(0, σ2).

Basically, Central Limit Theorem (CLT) says
that the distribution of an average will tend to
be Normal as the sample size increases, as long
as the distribution from which the average is
taken is not pathological in the sense that it
has a finite mean and finite variance.
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CLT will be used to in stat5102 to construct

confidence intervals, to calculate p-values in

hypothesis testing etc.

Examples of CLT

Ex1. If X1, . . . , Xn are iid Ber(p). µ = p and

σ2 = p(1− p).
√
n(X̄ − p)√
p(1− p)

→d N(0,1).

Ex2. If X1, . . . , Xn are iid Unif(0, θ). µ = θ
2,

σ2 = θ2

12

√
n(X̄ − θ

2)√
θ2

12

→d N(0,1).
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Explain the CLT

Basic idea: We already know that if X and

Y have the same MGF, then they have the

same distribution. Hence it is not too difficult

to imagine that if two random variables have

very ”similar” MGFs then their distributions

are very ”similar” too. Hence we show the

MGF of Zn =
√
n(X̄−µ)
σ is very close to the

MGF of N(0,1).

The MGF of Zn is

ψZn(t) = E[etZn]

The MGF of N(0,1) is e
t2
2 . So we need to

argue

ψZn(t) ≈ e
t2
2 .

Or

log(ψZn(t)) ≈
t2

2
.
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Explain the CLT, contd’

Note that

tZn = t

√
n(X̄ − µ)

σ

=
t
√
n

σ

1

n

n∑
i=1

Xi −
t
√
nµ

σ

=
n∑
i=1

t
√
nσ

(Xi − µ)

ψZn(t) = E[etZn] = E[
n∏
i=1

e
t√
nσ

(Xi−µ)]

(independence) =
n∏
i=1

E[e
t√
nσ

(Xi−µ)]

(definition) =
n∏
i=1

ψ(Xi−µ)(
t

√
nσ

)

ψ(Xi−µ) is the MGF of (Xi − µ).
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Explain the CLT, contd’

log(ψZn(t)) =
n∑
i=1

log(ψ(Xi−µ)(
t

√
nσ

))

= n log(ψ(X1−µ)(
t

√
nσ

))

We used the assumption that Xis have the
same distribution. When n is large t√

nσ
is close

to zero. Use Taylor’s expansion of ψ(X1−µ)(
t√
nσ

)
at zero

ψ(X1−µ)(
t

√
nσ

) = ψ(X1−µ)(0) + ψ′
(X1−µ)(0)

t
√
nσ

+
1

2
ψ′′
(X1−µ)(0)(

t
√
nσ

)2 +Rn

Rn is a small reminder term. We know the
following properties of MGF

ψ(X1−µ)(0) = 1 ψ′
(X1−µ)(0) = E[(X1−µ)] = 0

ψ′′
(X1−µ)(0) = E[(X1 − µ)2] = σ2
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Explain the CLT, contd’

ψ(X1−µ)(
t

√
nσ

) = 1+
1

2
(σ2)

t2

nσ2
+Rn

= 1+
t2

2n
+Rn

Rn is a small term compared with t2

2n.

n log(ψ(X1−µ)(
t

√
nσ

))

= n log(1 +
t2

2n
+Rn)

≈ n(
t2

2n
+higher order terms)

≈
t2

2
Thus we can claim that when n→ ∞

ψZn(t) → e
t2
2 .

for each t.
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