Bernoulli Distribution and Bernoulli trials

We say X follows a Bernoulli distribution with
parameter p if X take only O and 1 and the
probabilities are P(X = 1) = p and P(X =
0) =1-—p. We write X ~ Ber(p). We have
studied the basic properties of Ber(p). For
example, EX = p, Var(X) = p(1 — p) and its
MGF is ¥ (t) = 1 — p + pe’.

n Bernoulli trials: n independent Ber(p) ran-
dom variables form n Bernoulli trails.

For each Bernoulli trial, if X = 1 then we say
we have a success, otherwise we have a failure.
So p=P(X = 1) is also called the probability
of success.



Binomial Distribution

Definition: We say X follows a Binomial dis-
tribution with parameters n and p if

P(X =k) = (:>pk(1 _p)"* k=0,1,...,n

We write X ~ Bin(n,p).

We have studied the basic properties of Bin(n,p).
For example, EX = np, Var(X) = np(1 — p)
and the MGF is ¢ (t) = (1 — p + peH)™.

The model Suppose we have n Bernoulli trails
with probability of success p. Let Y be the
number of success in the n Bernoulli trails.
Then Y ~ Bin(n,p).

Why? let X; be the ith Ber(p) rv in the n
Bernoulli trails. Then we observe

Y =X+ X2+ + X,



Geometric Distribution

Definition: We say X follows a Geometric dis-
tribution with parameter of success p if

P(X:k>:(1_p)kpa k:071727'°°7

We write X ~ Geo(p). For convenience we also
let g=1—p. P(X =k) = ¢*p.

T he model Suppose we keep doing the Bernoulli
trails until we have a success. Let X be the
number of trials before the success. Then X ~
Geo(p).

MGF of Geo(p)

66 = BleX] = 3 ehgkp=p 3 (o)t
k=0 k=0

p

1~ ofq for t <log(1l/q)

P(t) =



Mean and Variance of Geo(p)

If X ~ Geo(p) then

Ex =4 Var(X) = %
p p

Explanation:

¢(1)(t) — (1 — etq)zqet
— M)y =__P — 4
EX = ¢‘\/(0) (1_q)2q .
p
w2 (1) = i etq)Qqet 4 2(1 - etq)3q€t . get
2y — @0y = P > P 2
E(X*) =4*</(0) (1_q>2q+ FPEL
E(X2)=g+2—qQ
p  p?

Var(X) = BE(X2) — (Ex)2 =L

p2



Poisson Distribution

Definition: We say X follows a Poisson dis-
tribution with parameter \ if
—A)\K
P(X =k) =2 k=012,

We write X ~ Poi(\).

MGF of Poi()\): Let X ~ Poi(\) then its MGF
is (t) = eMe' 1),

—AAk
V() = E(efX) = Z etk
=0 k!
<et/\>k

— —AZ

_ t t_
— ¢ )\ee)\ze)\(e 1).

Note that we have used the following series

o0 ak

k!

e =

k=0
at the step (*) we let a = e ).



Mean and Variance of Poi()\): Let X ~
Poi()\) then

EX =X Var(X) =\
Because
PO (1) = MDD pel = AAMEDH (D) = »

P (1) = AMEDH (Ot 1) P (0) = A(A+1)
T hus
EX =41(0) =

Var(X) = ¢(2)(0) — (v1(0))? = x

An interesting property: If X;, 1 <:<n are
independent Poisson rvs and X; ~ Poi(\;) for
1<:1<n. ThenY =X714+Xo+4+ ...+ X, ~
Poi(311 Aj). Why?

r(® = IT vx,() = [] D = -
1l |

1= 1=1
Which is the MGF of Poi(3"_1);). SO Y ~



Normal Distribution

Definition: We write X ~ N(u,0?2) if the pdf
of X is

1 _(@-pw)?
fxlu,0°) = ——=e 202 .

@ and o2 are the parameters of the normal
distribution.

A basic property: If X ~ N(u,02), let Z =
X = =—E. Then Z ~ N(0,1). Conversely, if Z ~
N(0,1), X = 0Z + p ~ N(p,02).

Explanation: Z = g(X) = X—p g(x) = %

(o2
its inverse function is z = ¢~ 1(2) = 02z + 1.

fz(2) fx(g~ NI (@]

1 _(oztu—pw)?
= e 202 - O
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Three immediate applications:

1. Mean and variance of N(u,c?):

EX]=Ep+ocZ]l =p+oE[Z] = p+ 00 = p.

Var[X] = Var[p+ocZ] = c?Var[Z] = 6°1 = o2

2. MGF of N(u,02): By the basic property,
X =0Z+ p with Z ~ N(0,1). Thus

02 2
Wy (t) = etht 2t

3. CDF of X ~ N(u,o2):

P(X <ux)

[
=




Linear combinations of independent
normals

Theorem 1: Suppose X1,...,X, are n inde-
pendent normal random variables. Let X; ~
N(pi,02), i =1,...,n. The distribution of Y =
> i1 0;X; + b, where a;'s are some constants,
IS @ normal with

n n
mean = Z a;ji; +b , variance = Z aZ-QJZ-Q.

1=1 1=1

Typical examples: X1 and X» are independent
normals, and ¥ = X1 — Xo or Y = X1 + Xo.

Explanation: We compute the MGF of Y.

Wy (1) E[et(a1X1+---+aan-l-b)]

P B[t X1 ... o@ntXn]

eV B[e®1tX1] ... E[e*!Xn] [py independence]
ePx (art) - x, (ant) [by definition]
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Linear combinations of independent
normals, contd’

by (a;t) = SHiait+502 (a;t)?
1

Yy () e, (art) - x, (ant)
n 1 2 2
— etb H e,uiaz't—l-jai (a;t)
=1
—  etbediiz1 piat+502(a;t)?

— o> im piagt+5[3 1y o2a?]t?

1 2,2
then ¥y (t) = eMviT29vt",

The above is the MGF of N(uy,o%). Therefore
we know Y ~ N(uy,o2).
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Examples of theorem 1

Suppose X ~ N(4,1), Y ~ N(5,4) and Z ~
N(2,2). They are independent. Find the dis-
tribution of the following (a). X 4+Y 4+ Z, (b).
X-Y,(c)2X-Y - Z.

Solution: First, we know that the distributions
are normal, because (a)—(c) are linear combi-
nation of independent normals. We only need
to find out the mean and variance.

() p=4+5+2=11,02=14+44+2=7.
X4+Y+Z~N(11,7).

(b) py=4—-5=-1,02=14+4=5.
X —-Y ~ N(-1,5).

() py=2%4—-5-1=1, 02 = 22x1+44+2 = 10.
2X —Y — Z ~ N(1,10).
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Bivariate Normal Distribution

We say a pair of random variables (X, Y") follow
a bivariate normal distribution with parameters
(u1,0%, 12,03, p), if their joint pdf is given by

1 1

exp{—
2m\/1 — p2c109 2(1 - p?)

(@ —51)2 BTy b2y (- /;2)2]}
0'1 01 0k 0'2

where —1 < p < 1.

flz,y) =

When p = 0, then the joint pdf is

1 1 (x—p1)? | (y—pun)?
flz,y) = 5 exp{—— 5 + > I}
(x—pp)? (y—po)?
1 - 2:21 1 N y2:§
— e 1 e 2

\/ 2770% \/ 2770%

which means that X, Y are independent nor-
mal variables and X ~ N(u1,0%), Y ~ N(up,0%).
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Construct Bivariate Normal from Two
Independent Normals

Let Z; and Z> be two independent standard
Normal random variables. Then the joint pdf
of (Zl,ZQ) IS f(zl,ZQ) = %GXD[—#]. Now
construct two new random variables (X,Y) by
the following linear transformation

X =01Z1+p1 Y =o02[pZ1+1 = p2Zo)+ po.

Let's find the joint pdf of (X,Y). Note that
the inverse transformation is
Y —po X —p
7= X-p)for Z2= [ Eop= /Y1 —p°

The Jacobian is J = 1 .
\/1—p20102

can find the joint pdf of (X,Y) is exactly the
joint pdf of a bivariate normal with parame-
ters (u1,0%, pu2,05,p). [Do the calculations by

yourself!]

Thus, we
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Linear Combinations of Bivariate Normal

Let (X,Y) follow bivaraite normal distribution
with parameters (u1, 0%, up, 05, p). Consider Z =
aX +bY +c. Then Z ~ N(uz,02) where

Pz = ap1+bus+c; ag = a20%+b20§—|—2abp0102.

Explanation: Consider (X*,Y*) by

X*=01Z1+tm1  Y*=o020pZ1+V1 — p*Zo]+po.

where Zq1,Z> are iid N(0,1). Let Z* = aX* +
bY* 4+ c¢. Since (X* Y*) follows the same bi-
variate normal distribution of (X,Y) we know
Z* and Z have the same distribution. We can

write Z* as

Z* = a(o1Z1+p1)+b(o2pZ1+02\ 1 — p*Zo+u)+c

Z* = (ao1+bop) Z1+(boo\/ 1 — p?) Zo~+(aps +bus+c)

By Theorem 1 on page 12, Z* ~ N(uz,02).
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Marginal Distributions and Correlation

Let (X,Y) follow bivaraite normal distribution
with parameters (u1,0%, uo,05,p). Then X ~
N(u1,0%) and Y ~ N(up,03). Moreover, the
correlation between X and Y is p.

Explanation: Consider X =1-X+4+0-Y +0
and Y =0-X+4+1-Y + 0. Then use the linear
combination result.

Cov(X,Y) = Cov(X*,Y™)

Cov(01Z1 + p1,02[pZ1 + 1 — p°Za] + p2)
o10op.(check this by yourself).

Cov(X,Y) oq109p
pr— pr— IO

Corr(X,Y) = —
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Conditional Distributions

Let (X,Y) follow bivaraite normal distribution
with parameters (u1,0%,u2,03,p). Then the
conditional distribution of Y given X = x is
normal with mean us + po>(¥=£1) and variance

o1
2\ 2
(1 —p°)os.

Explanation: The conditional pdf is computed

by f(y|X = z) = f@;?(g’y). We know fy (z) =
(z—pp)?

2
e 201

X is N(p1,0%). Simplifying the ratio we can
find that f(y|X = x) is the pdf of normal with
mean up + poa(*541) and variance (1 — p?)o3.

because the marginal distribution of

Question: what is the conditional pdf of X
given Y = y? Answer: It is normal with mean
p1 + po1(¥;12) and variance (1 - p?)o%.
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Gamma Distribution

Definition We say X follows a Gamma distri-
bution with parameters («, \), if the pdf of X
IS

)\Oé
f(xla, A) = I_(a)azo‘_le_Am, x>0

where I («) is the Gamma function defined by

M) = /OO e %y
=, ,

Write X ~ Gam(a,\). a > 0 is the shape pa-
rameter, A > 0 is the scale parameter.
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MGF Gam(a, \)

Suppose X ~ Gam(a, \), then

wx<t>=( ! ) <A

t
1=3

Yx (1)

00
/O et:cxoz—le—)\:cdx

— \°

o 1

0 M)
A [ 0 (A — )™
A—t)>Jo T§'(«)
)\Oé

G—pa

()

Note that inside [] is the integral of the pdf of
Gam(a, A — t)

xa—le—()\—t)xdx

:Eoz—le—()\—t)xdm]
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Mean and Variance of Gam(a, \)

Suppose X ~ Gam(a, \), then

B(X) = % Var(X) = %

Explanation:
W) = (—a)(1-tya-1_ 1y = ¥ _Ty-a-1
(1) = () (1= (D) = (1)
Thus

EX = ¢yM(0) = %

Similarly,

Dy et .t a0

p@ ) = =1 - )
thus

2y — (2 () — 2T 1

E(X<) =¢'</(0) T
Then

_ 2\ >_oaa+1l ao, o
Var(X) = E(X°)—(EX) =31 ()\) =12
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Sum of independent Gamma RVSs

Theorem 4: Suppose Xi,...,Xp are n inde-
pendent Gamma random variables. Let X; ~
Gam(a;,\), 1 = 1,...,n. The distribution of
Y =31 1 X;is Gam (X1 oy, A).

Explanation: check the MGF of Y.

by = [] ®x.() = I] ( . )
1=1

=1\1-%
1 Z?:l Qg
wY(t) — 1 t
A

which is the MGF of Gam(}_; a;,A). Thus
Y =37 1 X;is Gam (271 aj, A).
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Exponential Distribution

Definition: We say X follows an exponential
distribution with parameter A, if X ~ Gam/(1,)).
We write X ~ Exzp()).

f(z) =Xe M >0

When A = 1, the distribution is called the stan-
dard exponential distribution.

Mean, Variance and MGF of Exzp())

If X ~ Exzp()\), then we know X ~ Gam(1,)),
thus

o 1 o 1
EX:X:X VCL'I"(X)Z)\QZ)\2
The MGF of X is
1 1
WO = () =y
DY DY
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Chi-square Distribution

Definition: We say X follows a Chi-square
distribution with degrees of freedom &k, if X ~
Gam(z, 2) We write X ~ Xk:

1 k
51—

fle) = ok/2F (k/2)"

Mean, Variance and MGF of 3

Suppose X ~ Xk: then we know X ~ Gam(z, 2)
Thus

Var(X)z%z%sz.

k/2 k
1 1
v = (1 - 1/2) - ( 1-— 215) '

23



Sum of independent Chi-squares

Theorem 5: Suppose X; ~ x7 i = 1,2,...,n
are independent Chi-square random variables.
et

Y = X1+ Xo+ -+ Xn.

Then Y ~ XQZn -
1=1™"

Explanation: We write X; ~ IN'(k;/2,1/2). Then
Y is the sum of independent Gamma RVs with
a common scale parameter A = 0.5. So Theo-
rem 4 tells us that

Y ~ r(znj ki, 1/2).
=1

Then by the definition of Chi-square we know

2
Y~ XS ki

24



Distribution Mean Variance MGF

Ber(p) p p(l—p) 1—p+pe
Bin(n,p) np np(l—p) (1—p-+ pe)"
Poi(\) A A A1)
2 2 t+t202
N(u,0%) p o et T2
1 (8
Gam(a, \) S % (@)
Exp()\) X " it




Negative Binomial Distribution

Definition: Let Xq,..., X, be riid Geo(p) ran-
dom variables. Then Y = }7'_, X, is called a
negative binomial random variable and its dis-
tribution is called the negative binomial distri-
bution.

By definition,

)
EY = Y EX; =rEX; =11

i=1 p
By independence, we have

Var(Y) = i Var(X;) = rVar(Xy) = rL

2
=1 p

by (8) = f[wxim:le(t)r:( P ) |
=1

= 1 — elq
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Lognormal Distribution

Definition If log(Y") follows a normal distribu-
tion with mean p and variance o2, Then we say
Y follows a lognormal distribution with param-
eters (u,02). In other words, if X ~ N(u,c2)
then e follows a lognormal distribution with
parameters (u,c2).

Let Y be a lognormal rv with parameters (u, 02).
Then X =10g(Y) ~ N(u,c2).

BlY] = BleX] = gy (1) = bt
BlY?] = E[*¥] = yx(2) = 212

Var(Y) = E[Y?] — (EY)? = ¢2rt0%[co% _ 1],
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Beta Distribution

Definition We say X has a beta distribution
with parameters a and 8 (a > 0,8 > 0) if the
pdf of X is

(a4 5)
f(z|la, B) =

()l (B8)
Beta distributions are often used to model rvs
that take values between O and 1.

*1(1-2)1 o<z < 1.

Mean and Variance Beta Distributions

If X has a beta distribution with parameters «
and g, then

Var(X) =

(a+pB)2(a+p+1)
The computations use the properties of ()
functions. If you are interested, read page 305-
306 and Theorem 5.9.2 on page 296.
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