
Bernoulli Distribution and Bernoulli trials

We say X follows a Bernoulli distribution with

parameter p if X take only 0 and 1 and the

probabilities are P (X = 1) = p and P (X =

0) = 1 − p. We write X ∼ Ber(p). We have

studied the basic properties of Ber(p). For

example, EX = p, V ar(X) = p(1 − p) and its

MGF is ψ(t) = 1− p+ pet.

n Bernoulli trials: n independent Ber(p) ran-

dom variables form n Bernoulli trails.

For each Bernoulli trial, if X = 1 then we say

we have a success, otherwise we have a failure.

So p = P (X = 1) is also called the probability

of success.
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Binomial Distribution

Definition: We say X follows a Binomial dis-

tribution with parameters n and p if

P (X = k) =
(n
k

)
pk(1− p)n−k, k = 0,1, . . . , n

We write X ∼ Bin(n, p).

We have studied the basic properties of Bin(n, p).

For example, EX = np, V ar(X) = np(1 − p)

and the MGF is ψ(t) = (1− p+ pet)n.

The model Suppose we have n Bernoulli trails

with probability of success p. Let Y be the

number of success in the n Bernoulli trails.

Then Y ∼ Bin(n, p).

Why? let Xi be the ith Ber(p) rv in the n

Bernoulli trails. Then we observe

Y = X1 +X2 + · · ·+Xn
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Geometric Distribution

Definition: We say X follows a Geometric dis-

tribution with parameter of success p if

P (X = k) = (1− p)kp, k = 0,1,2, . . . ,

We write X ∼ Geo(p). For convenience we also

let q = 1− p. P (X = k) = qkp.

The model Suppose we keep doing the Bernoulli

trails until we have a success. Let X be the

number of trials before the success. Then X ∼
Geo(p).

MGF of Geo(p)

ψ(t) = E[etX] =
∞∑
k=0

etkqkp = p
∞∑
k=0

(etq)k

ψ(t) =
p

1− etq
for t < log(1/q)
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Mean and Variance of Geo(p)

If X ∼ Geo(p) then

EX =
q

p
V ar(X) =

q

p2
.

Explanation:

ψ(1)(t) =
p

(1− etq)2
qet

EX = ψ(1)(0) =
p

(1− q)2
q =

q

p

ψ(2)(t) =
p

(1− etq)2
qet + 2

p

(1− etq)3
qet · qet

E(X2) = ψ(2)(0) =
p

(1− q)2
q + 2

p

(1− q)3
q2

E(X2) =
q

p
+

2q2

p2

V ar(X) = E(X2)− (EX)2 =
q

p2
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Poisson Distribution

Definition: We say X follows a Poisson dis-
tribution with parameter λ if

P (X = k) =
e−λλk

k!
, k = 0,1,2, . . . ,

We write X ∼ Poi(λ).

MGF of Poi(λ): Let X ∼ Poi(λ) then its MGF
is ψ(t) = eλ(et−1).

ψ(t) = E(etX) =
∞∑
k=0

etk
e−λλk

k!

= e−λ
∞∑
k=0

(etλ)k

k!
(∗)

= e−λee
tλ = eλ(et−1).

Note that we have used the following series

ea =
∞∑
k=0

ak

k!

at the step (*) we let a = etλ.
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Mean and Variance of Poi(λ): Let X ∼
Poi(λ) then

EX = λ V ar(X) = λ.

Because

ψ(1)(t) = eλ(et−1)λet = λeλ(et−1)+t ψ(1)(0) = λ

ψ(2)(t) = λeλ(et−1)+t(λet+1) ψ(2)(0) = λ(λ+1)

Thus

EX = ψ(1)(0) = λ

V ar(X) = ψ(2)(0)− (ψ(1)(0))2 = λ

An interesting property: If Xi, 1 ≤ i ≤ n are
independent Poisson rvs and Xi ∼ Poi(λi) for
1 ≤ i ≤ n. Then Y = X1 + X2 + . . . + Xn ∼
Poi(

∑n
i=1 λi). Why?

ψY (t) =
n∏
i=1

ψXi(t) =
n∏
i=1

eλi(e
t−1) = e(

∑n
i=1 λi)(et−1)

Which is the MGF of Poi(
∑n
i=1 λi). So Y ∼

Poi(
∑n
i=1 λi).
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Normal Distribution

Definition: We write X ∼ N(µ, σ2) if the pdf
of X is

f(x|µ, σ2) =
1√

2πσ2
e
−(x−µ)2

2σ2 .

µ and σ2 are the parameters of the normal
distribution.

A basic property: If X ∼ N(µ, σ2), let Z =
X−µ
σ . Then Z ∼ N(0,1). Conversely, if Z ∼

N(0,1), X = σZ + µ ∼ N(µ, σ2).

Explanation: Z = g(X) = X−µ
σ . g(x) = x−µ

σ ,
its inverse function is x = g−1(z) = σz + µ.

fZ(z) = fX(g−1(z))|[g−1(z)]′|

=
1√

2πσ2
e
−(σz+µ−µ)2

2σ2 · σ

=
1√
2π
e−

z2
2
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Three immediate applications:

1. Mean and variance of N(µ, σ2):

E[X] = E[µ+ σZ] = µ+ σE[Z] = µ+ σ0 = µ.

V ar[X] = V ar[µ+σZ] = σ2V ar[Z] = σ21 = σ2.

2. MGF of N(µ, σ2): By the basic property,

X = σZ + µ with Z ∼ N(0,1). Thus

ψX(t) = etµ+σ2
2 t

2

3. CDF of X ∼ N(µ, σ2):

P (X ≤ x) = P (
X − µ
σ
≤
x− µ
σ

)

= P (N(0,1) ≤
x− µ
σ

)

=
∫ x−µ

σ

−∞

1√
2π
e−

s2
2 ds.
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Linear combinations of independent

normals

Theorem 1: Suppose X1, . . . , Xn are n inde-

pendent normal random variables. Let Xi ∼
N(µi, σ

2
i ), i = 1, . . . , n. The distribution of Y =∑n

i=1 aiXi + b, where ai’s are some constants,

is a normal with

mean =
n∑
i=1

aiµi + b , variance =
n∑
i=1

a2
i σ

2
i .

Typical examples: X1 and X2 are independent

normals, and Y = X1 −X2 or Y = X1 +X2.

Explanation: We compute the MGF of Y .

ψY (t) = E[et(a1X1+···+anXn+b)]

= etbE[ea1tX1 · · · eantXn]

= etbE[ea1tX1] · · ·E[eantXn] [by independence]

= etbψX1
(a1t) · · ·ψXn(ant) [by definition]
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Linear combinations of independent

normals, contd’

ψXi(ait) = eµiait+
1
2σ

2
i (ait)

2

ψY (t) = etbψX1
(a1t) · · ·ψXn(ant)

= etb
n∏
i=1

eµiait+
1
2σ

2
i (ait)

2

= etbe
∑n
i=1 µiait+

1
2σ

2
i (ait)

2

= e[b+
∑n
i=1 µiai]t+

1
2[
∑n
i=1 σ

2
i a

2
i ]t2

Write

µY =
n∑
i=1

µiai + b σ2
Y =

n∑
i=1

σ2
i a

2
i .

then ψY (t) = eµY t+
1
2σ

2
Y t

2
.

The above is the MGF of N(µY , σ
2
Y ). Therefore

we know Y ∼ N(µY , σ
2
Y ).
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Examples of theorem 1

Suppose X ∼ N(4,1), Y ∼ N(5,4) and Z ∼
N(2,2). They are independent. Find the dis-

tribution of the following (a). X + Y +Z, (b).

X − Y , (c) 2X − Y − Z.

Solution: First, we know that the distributions

are normal, because (a)–(c) are linear combi-

nation of independent normals. We only need

to find out the mean and variance.

(a) µ = 4 + 5 + 2 = 11, σ2 = 1 + 4 + 2 = 7.

X + Y + Z ∼ N(11,7).

(b) µ = 4− 5 = −1, σ2 = 1 + 4 = 5.

X − Y ∼ N(−1,5).

(c) µ = 2∗4−5−1 = 1, σ2 = 22∗1+4+2 = 10.

2X − Y − Z ∼ N(1,10).
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Bivariate Normal Distribution

We say a pair of random variables (X,Y ) follow

a bivariate normal distribution with parameters

(µ1, σ
2
1, µ2, σ

2
2, ρ), if their joint pdf is given by

f(x, y) =
1

2π
√

1− ρ2σ1σ2

exp{−
1

2(1− ρ2)

[
(x− µ1)2

σ2
1

− 2ρ(
x− µ1

σ1
)(
y − µ2

σ2
) +

(y − µ2)2

σ2
2

]}

where −1 < ρ < 1.

When ρ = 0, then the joint pdf is

f(x, y) =
1

2πσ1σ2
exp{−

1

2
[
(x− µ1)2

σ2
1

+
(y − µ2)2

σ2
2

]}

=
1√

2πσ2
1

e
−(x−µ1)2

2σ2
1

1√
2πσ2

2

e
−(y−µ2)2

2σ2
2

which means that X, Y are independent nor-

mal variables and X ∼ N(µ1, σ
2
1), Y ∼ N(µ2, σ

2
2).
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Construct Bivariate Normal from Two

Independent Normals

Let Z1 and Z2 be two independent standard

Normal random variables. Then the joint pdf

of (Z1, Z2) is f(z1, z2) = 1
2π exp[−z

2
1+z2

2
2 ]. Now

construct two new random variables (X,Y ) by

the following linear transformation

X = σ1Z1+µ1 Y = σ2[ρZ1+
√

1− ρ2Z2]+µ2.

Let’s find the joint pdf of (X,Y ). Note that

the inverse transformation is

Z1 = (X−µ1)/σ1 Z2 = [
Y − µ2

σ2
−ρ

X − µ1

σ1
]/
√

1− ρ2

The Jacobian is J = 1√
1−ρ2σ1σ2

. Thus, we

can find the joint pdf of (X,Y ) is exactly the

joint pdf of a bivariate normal with parame-

ters (µ1, σ
2
1, µ2, σ

2
2, ρ). [Do the calculations by

yourself!]
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Linear Combinations of Bivariate Normal

Let (X,Y ) follow bivaraite normal distribution

with parameters (µ1, σ
2
1, µ2, σ

2
2, ρ). Consider Z =

aX + bY + c. Then Z ∼ N(µz, σ2
z ) where

µz = aµ1+bµ2+c ; σ2
z = a2σ2

1+b2σ2
2+2abρσ1σ2.

Explanation: Consider (X∗, Y ∗) by

X∗ = σ1Z1+µ1 Y ∗ = σ2[ρZ1+
√

1− ρ2Z2]+µ2.

where Z1, Z2 are iid N(0,1). Let Z∗ = aX∗+

bY ∗ + c. Since (X∗, Y ∗) follows the same bi-

variate normal distribution of (X,Y ) we know

Z∗ and Z have the same distribution. We can

write Z∗ as

Z∗ = a(σ1Z1+µ1)+b(σ2ρZ1+σ2

√
1− ρ2Z2+µ2)+c

Z∗ = (aσ1+bσ2ρ)Z1+(bσ2

√
1− ρ2)Z2+(aµ1+bµ2+c)

By Theorem 1 on page 12, Z∗ ∼ N(µz, σ2
z ).
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Marginal Distributions and Correlation

Let (X,Y ) follow bivaraite normal distribution

with parameters (µ1, σ
2
1, µ2, σ

2
2, ρ). Then X ∼

N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2). Moreover, the

correlation between X and Y is ρ.

Explanation: Consider X = 1 · X + 0 · Y + 0

and Y = 0 ·X + 1 · Y + 0. Then use the linear

combination result.

Cov(X,Y ) = Cov(X∗, Y ∗)

= Cov(σ1Z1 + µ1, σ2[ρZ1 +
√

1− ρ2Z2] + µ2)

= σ1σ2ρ.(check this by yourself).

Corr(X,Y ) =
Cov(X,Y )√

σ2
1σ

2
2

=
σ1σ2ρ

σ1σ2
= ρ.
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Conditional Distributions

Let (X,Y ) follow bivaraite normal distribution

with parameters (µ1, σ
2
1, µ2, σ

2
2, ρ). Then the

conditional distribution of Y given X = x is

normal with mean µ2 +ρσ2(x−µ1
σ1

) and variance

(1− ρ2)σ2
2.

Explanation: The conditional pdf is computed

by f(y|X = x) =
f(X,Y )(x,y)

fX(x) . We know fX(x) =

e
−(x−µ1)2

2σ2
1√

2πσ2
1

because the marginal distribution of

X is N(µ1, σ
2
1). Simplifying the ratio we can

find that f(y|X = x) is the pdf of normal with

mean µ2 + ρσ2(x−µ1
σ1

) and variance (1− ρ2)σ2
2.

Question: what is the conditional pdf of X

given Y = y? Answer: It is normal with mean

µ1 + ρσ1(y−µ2
σ2

) and variance (1− ρ2)σ2
1.
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Gamma Distribution

Definition We say X follows a Gamma distri-

bution with parameters (α, λ), if the pdf of X

is

f(x|α, λ) =
λα

Γ(α)
xα−1e−λx, x > 0

where Γ(α) is the Gamma function defined by

Γ(α) =
∫ ∞

0
xα−1e−xdx.

Write X ∼ Gam(α, λ). α > 0 is the shape pa-

rameter, λ > 0 is the scale parameter.
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MGF Gam(α, λ)

Suppose X ∼ Gam(α, λ), then

ψX(t) =

 1

1− t
λ

α t < λ

ψX(t) =
∫ ∞

0
etxxα−1e−λxdx

= λα
∫ ∞

0

1

Γ(α)
xα−1e−(λ−t)xdx

=
λα

(λ− t)α
[
∫ ∞

0

(λ− t)α

Γ(α)
xα−1e−(λ−t)xdx]

=
λα

(λ− t)α
· 1

=

 1

1− t
λ

α

Note that inside [] is the integral of the pdf of

Gam(α, λ− t)
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Mean and Variance of Gam(α, λ)

Suppose X ∼ Gam(α, λ), then

E(X) =
α

λ
V ar(X) =

α

λ2

Explanation:

ψ(1)(t) = (−α)(1−
t

λ
)−α−1(−

1

λ
) =

α

λ
(1−

t

λ
)−α−1

Thus

EX = ψ(1)(0) =
α

λ
.

Similarly,

ψ(2)(t) =
α

λ

α+ 1

λ
(1−

t

λ
)−α−2

thus

E(X2) = ψ(2)(0) =
α

λ

α+ 1

λ
.

Then

V ar(X) = E(X2)−(EX)2 =
α

λ

α+ 1

λ
−(
α

λ
)2 =

α

λ2
.
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Sum of independent Gamma RVs

Theorem 4: Suppose X1, . . . , Xn are n inde-

pendent Gamma random variables. Let Xi ∼
Gam(αi, λ), i = 1, . . . , n. The distribution of

Y =
∑n
i=1Xi is Gam(

∑n
i=1αi, λ).

Explanation: check the MGF of Y .

ψY (t) =
n∏
i=1

ΦXi(t) =
n∏
i=1

 1

1− t
λ

αi

ψY (t) =

 1

1− t
λ


∑n
i=1 αi

which is the MGF of Gam(
∑n
i=1αi, λ). Thus

Y =
∑n
i=1Xi is Gam(

∑n
i=1αi, λ).
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Exponential Distribution

Definition: We say X follows an exponential

distribution with parameter λ, if X ∼ Gam(1, λ).

We write X ∼ Exp(λ).

f(x) = λe−λx, x > 0

When λ = 1, the distribution is called the stan-

dard exponential distribution.

Mean, Variance and MGF of Exp(λ)

If X ∼ Exp(λ), then we know X ∼ Gam(1, λ),

thus

EX =
α

λ
=

1

λ
V ar(X) =

α

λ2
=

1

λ2

The MGF of X is

ψ(t) = (
1

1− t
λ

)α =
1

1− t
λ
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Chi-square Distribution

Definition: We say X follows a Chi-square

distribution with degrees of freedom k, if X ∼
Gam(k2,

1
2). We write X ∼ χ2

k.

f(x) =
1

2k/2Γ(k/2)
x
k
2−1e−

x
2, x > 0.

Mean, Variance and MGF of χ2
k

Suppose X ∼ χ2
k then we know X ∼ Gam(k2,

1
2).

Thus

E(X) =
α

λ
=
k/2

1/2
= k

V ar(X) =
α

λ2
=
k/2

1/4
= 2k.

ψX(t) =

 1

1− t
1/2

k/2

=

(
1√

1− 2t

)k
.
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Sum of independent Chi-squares

Theorem 5: Suppose Xi ∼ χ2
ki
i = 1,2, . . . , n

are independent Chi-square random variables.

Let

Y = X1 +X2 + · · ·+Xn.

Then Y ∼ χ2∑n
i=1 ki

.

Explanation: We write Xi ∼ Γ(ki/2,1/2). Then

Y is the sum of independent Gamma RVs with

a common scale parameter λ = 0.5. So Theo-

rem 4 tells us that

Y ∼ Γ(
n∑
i=1

ki,1/2).

Then by the definition of Chi-square we know

Y ∼ χ2∑n
i=1 ki

.
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Distribution Mean Variance MGF
Ber(p) p p(1− p) 1− p+ pet

Bin(n, p) np np(1− p) (1− p+ pet)n

Poi(λ) λ λ eλ(et−1)

N(µ, σ2) µ σ2 eµt+
t2σ2

2

Gam(α, λ) α
λ

α
λ2

(
1

1− t
λ

)α

Exp(λ) 1
λ

1
λ2

1
1− t

λ

χ2
k k 2k

(
1√

1−2t

)k
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Negative Binomial Distribution

Definition: Let X1, . . . , Xr be r iid Geo(p) ran-

dom variables. Then Y =
∑r
i=1Xi is called a

negative binomial random variable and its dis-

tribution is called the negative binomial distri-

bution.

By definition,

EY =
r∑

i=1

EXi = rEX1 = r
q

p

By independence, we have

V ar(Y ) =
r∑

i=1

V ar(Xi) = rV ar(X1) = r
q

p2

ψY (t) =
r∏

i=1

ψXi(t) = [ψX1
(t)]r =

(
p

1− etq

)r
.
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Lognormal Distribution

Definition If log(Y ) follows a normal distribu-

tion with mean µ and variance σ2, Then we say

Y follows a lognormal distribution with param-

eters (µ, σ2). In other words, if X ∼ N(µ, σ2)

then eX follows a lognormal distribution with

parameters (µ, σ2).

Let Y be a lognormal rv with parameters (µ, σ2).

Then X = log(Y ) ∼ N(µ, σ2).

E[Y ] = E[eX] = ψX(1) = eµ+σ2
2

E[Y 2] = E[e2X] = ψX(2) = e2µ+2σ2

V ar(Y ) = E[Y 2]− (EY )2 = e2µ+σ2
[eσ

2
− 1].
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Beta Distribution

Definition We say X has a beta distribution
with parameters α and β (α > 0, β > 0) if the
pdf of X is

f(x|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1−x)β−1, 0 < x < 1.

Beta distributions are often used to model rvs
that take values between 0 and 1.

Mean and Variance Beta Distributions

If X has a beta distribution with parameters α
and β, then

EX =
α

α+ β

V ar(X) =
αβ

(α+ β)2(α+ β + 1)

The computations use the properties of Γ(·)
functions. If you are interested, read page 305-
306 and Theorem 5.9.2 on page 296.
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