Math 543/653: Stochastic Process

HW #5

Instructor: Songfeng (Andy) Zheng

Problem 1. A Markov Chain X_0, X_1, X_2, \cdots state space $\{0, 1, 2\}$, and has the transition probability matrix

	0.1	0.1	0.8	
P =	0.2	0.2	0.6	.
	0.3	0.3	0.4	

In the long run, what fraction of time does the process spend in state 1?

Problem 2. Consider a Markov chain with state space $\{0, 1, 2, 3\}$. Suppose the transition probability matrix is

	0.1	0.5	0	0.4	
D_	0	0	1	0	
$\Gamma = $	0	0	0	1	
	1	0	0	0	

Determine the limiting distribution for the process.

Problem 3. Consider a Markov chain with state space $\{0, 1, 2, 3, 4, 5\}$, and the transition probability matrix is

	α_1	α_2	α_3	α_4	α_5	α_6
	1	0	0	0	0	0
D	0	1	0	0	0	0
P =	0	0	1	0	0	0
	0	0	0	1	0	0
	0	0	0	0	1	0

where $\alpha_i > 0$, and $\sum \alpha_i = 1$. Determine the limiting probability of being in state 0.

Problem 4. For a finite state regular Markov chain, determine the following limits in terms of the transition probabilities $P = ||P_{ij}||$ and the limiting distribution $\pi = (\pi_0, \dots, \pi_N)$:

- a. $\lim_{n \to \infty} P(X_{n+1} = j | X_0 = i)$.
- b. $\lim_{n \to \infty} P(X_n = k, X_{n+1} = j | X_0 = i)$.
- c. $\lim_{n \to \infty} P(X_{n-1} = k, X_n = j | X_0 = i)$.

Problem 5. Consider a Markov chain with state space $\{0, 1, \dots, N\}$, and the transition probability matrix is

$$P = \begin{vmatrix} p_0 & p_1 & p_2 & \cdots & p_N \\ p_N & p_0 & p_1 & \cdots & p_{N-1} \\ p_{N-1} & p_N & p_0 & \cdots & p_{N-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_1 & p_2 & p_3 & \cdots & p_0 \end{vmatrix}$$

where $1 > p_0 > 0$, and $p_0 + p_1 + \cdots + p_N = 1$. Determine the limiting distribution for the process.

Problem 6. Let *P* be the transition probability matrix of a finite state regular Markov chain, and let Π be the matrix whose rows are the limiting distribution π . Define $Q = P - \Pi$.

- a. prove $P^n = \Pi + Q^n$.
- b. When

$$P = \left\| \begin{array}{ccc} 1/2 & 1/2 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 1/2 & 1/2 \end{array} \right|,$$

please find an explicit expression for Q^n , and then for P^n .