Math 543/653: Stochastic Process

HW #7

Instructor: Songfeng (Andy) Zheng

Problem 1. Find the covariance functions for the following stochastic processes, where B(t) is a standard Brownian motion.

(a)
$$U(t) = e^{-t}B(e^{2t})$$
 for $t \ge 0$.

- (b) V(t) = (1-t)B(t/(1-t)) for 0 < t < 1.
- (c) W(t) = tB(1/t), with W(0) = 0.

Problem 2. Consider a standard Brownian motion $\{B(t), t \ge 0\}$ at times 0 < u < u + v < u + v + w where u, v, w > 0.

- (a) What is the probability distribution of B(u) + B(u+v)?
- (b) What is the probability distribution of B(u) + B(u+v) + B(u+v+w)?

Problem 3. Calculate $E[e^{\lambda B(t)}]$ for an arbitrary constant λ and standard Brownian motion B(t).

Problem 4. Consider standard Brownian motion B(t) with B(0) = 0, let $M_t = \max\{B(u); 0 \le u \le t\}$.

- (a) Evaluate $P(M_4 \leq 2)$.
- (b) Find the number c such that $P(M_9 > c) = 0.1$.

Problem 5. (a) Let τ_0 be the largest zero of a standard Brownian motion not exceeding a > 0, i.e. $\tau_0 = \max\{u \ge 0; B(u) = 0 \text{ and } u \le a\}$, prove that

$$P(\tau_0 < t) = \frac{2}{\pi} \arcsin \sqrt{t/a}$$

a) Let τ_1 be the smallest zero of a standard Brownian motion exceeding b > 0, i.e. $\tau_0 = \min\{u \ge 0; B(u) = 0 \text{ and } u \ge b\}$, prove that

$$P(\tau_1 < t) = \frac{2}{\pi} \arccos \sqrt{b/t}$$

Problem 6. (a) Find the conditional probability that a standard Brownian motion is not zero in the interval (t, t+b] given that it is not zero in the interval (t, t+a], where 0 < a < b and t > 0.

(a) Find the conditional probability that a standard Brownian motion is not zero in the interval (0, b] given that it is not zero in the interval (0, a], where 0 < a < b. [Hint: Let $t \to 0$ in the result of (a).]