


An Introduction to
Stochastic Modeling
Fourth Edition

Mark A. Pinsky
Department of Mathematics
Northwestern University
Evanston, Illinois

Samuel Karlin
Department of Mathematics
Stanford University
Stanford, California

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Academic Press is an imprint of Elsevier



Academic Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

c© 2011 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and
using any information, methods, compounds, or experiments described herein. In using such information
or methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products’ liability, negligence or
otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the
material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-381416-6

For information on all Academic Press publications,
visit our website: www.elsevierdirect.com

Typeset by: diacriTech, India

Printed in the United States of America
10 11 12 13 8 7 6 5 4 3 2 1



Preface to the Fourth Edition

Since the publication of the third edition in 1998, some new developments have
occurred. Samuel Karlin died in 2007, leaving a gap at the authorship level and the
new designation of authors.

In the fourth edition, we have added two new chapters: Chapter 10 on random evo-
lution and Chapter 11 on characteristic functions. Random Evolution denotes a set
of stochastic models, which describe continuous motion with piecewise linear sample
functions. Explicit formulas are available in the simplest cases. In the general case, one
has a central limit theorem, which is pursued more generally in Chapter 11, “Char-
acteristic Functions and Their Applications.” Here the necessary tools from Fourier
Analysis are developed and applied when necessary. Many theorems are proved in
full detail, while other proofs are sketched—in the spirit of the earlier Chapters 1–9.
Complete proofs may be found by consulting the intermediate textbooks listed in the
section on further reading. Instructors who have taught from the third edition may
be reassured that Chapters 1–9 of the new edition are identical to the corresponding
chapters of the new book.

We express our thanks to Michael Perlman of the University of Washington and
Russell Lyons of Indiana University for sharing their lists of errata from the third edi-
tion. We would also like to thank Craig Evans for useful advice on partial differential
equations.

Biographical Note

Samuel Karlin earned his undergraduate degree from the Illinois Institute of Technol-
ogy and his doctorate from Princeton University in 1947 at age 22. He served on the
faculty of Caltech from 1948–1956 before joining the faculty of Stanford University,
where he spent the remainder of his career. Karlin made fundamental contributions to
mathematical economics, bioinformatics, game theory, evolutionary theory, biomolec-
ular sequence analysis, mathematical population genetics, and total positivity.

Karlin authored 10 books and more than 450 articles. He was a member of the
American Academy of Arts and Sciences and the National Academy of Sciences.
In 1989, he received the National Medal of Science for his broad and remarkable
researches in mathematical analysis, probability theory, and mathematical statistics
and in the application of these ideas to mathematical economics, mechanics, and genet-
ics. He died on December 18, 2007.

Mark A. Pinsky
Department of Mathematics

Northwestern University
Evanston, IL 60208-2730



Preface to the Third Edition

The purposes, level, and style of this new edition conform to the tenets set forth in the
original preface. We continue with our objective of introducing some theory and appli-
cations of stochastic processes to students having a solid foundation in calculus and
in calculus-level probability, but who are not conversant with the “epsilon–delta” def-
initions of mathematical analysis. We hope to entice students toward the deeper study
of mathematics that is prerequisite to further work in stochastic processes by showing
the myriad and interesting ways in which stochastic models can help us understand the
real world.

We have removed some topics and added others. We added a small section on
martingales that includes an example suggesting the martingale concept as appropriate
for modeling the prices of assets traded in a perfect market. A new chapter introduces
the Brownian motion process and includes several applications of it and its variants
in financial modeling. In this chapter the Black–Scholes formula for option pricing
is evaluated and compared with some reported prices of options. A Poisson process
whose intensity is itself a stochastic process is described in another new section.

Some treatments have been updated. The law of rare events is presented via an
inequality that measures the accuracy of a Poisson approximation for the distribution
of the sum of independent, not necessarily identically distributed, Bernoulli random
variables. We have added the shot noise model and related it to a random sum.

The text contains more than 250 exercises and 350 problems. Exercises are elemen-
tary drills intended to promote active learning and to develop familiarity with concepts
through use. They often simply involve the substitution of numbers into given formu-
las or reasoning one or two steps away from a definition. They are the kinds of simple
questions that we, as instructors, hope that students would pose and answer for them-
selves as they read a text. Answers to the exercises are given at the end of the book so
that students may gauge their understanding as they go along.

Problems are more difficult. Some involve extensive algebraic or calculus ma-
nipulation. Many are “word problems” wherein the student is asked, in effect, to model
some described scenario. As in formulating a model, the first step in the solution of a
word problem is often a sentence of the form “Let x = . . . .” A manual containing the
solutions to the problems is available from the publisher.

A reasonable strategy on the part of the teacher might be to hold students respon-
sible for all of the exercises, but to require submitted solutions only to selected prob-
lems. Every student should attempt a representative selection of the problems in order
to develop his or her ability to carry out stochastic modeling in his or her area of
interest.
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A small number of problems are labeled “Computer Challenges.” These call for
more than pencil and paper for their analyses, and either simulation, numerical explo-
ration, or symbol manipulation may prove helpful. Computer Challenges are meant
to be open-ended, intended to explore what constitutes an answer in today’s world of
computing power. They might be appropriate as part of an honors requirement.

Because our focus is on stochastic modeling, in some instances, we have omitted a
proof and contented ourselves with a precise statement of a result and examples of its
application. All such omitted proofs may be found in A First Course in Stochastic Pro-
cesses, by the present authors. In this more advanced text, the ambitious student will
also find additional material on martingales, Brownian motion, and renewal processes,
and presentations of several other classes of stochastic processes.



Preface to the First Edition

Stochastic processes are ways of quantifying the dynamic relationships of sequences
of random events. Stochastic models play an important role in elucidating many areas
of the natural and engineering sciences. They can be used to analyze the variability
inherent in biological and medical processes, to deal with uncertainties affecting man-
agerial decisions and with the complexities of psychological and social interactions,
and to provide new perspectives, methodology, models, and intuition to aid in other
mathematical and statistical studies.

This book is intended as a beginning text in stochastic processes for students famil-
iar with elementary probability calculus. Its aim is to bridge the gap between basic
probability know-how and an intermediate-level course in stochastic processes—for
example, A First Course in Stochastic Processes, by the present authors.

The objectives of this book are as follows: (1) to introduce students to the standard
concepts and methods of stochastic modeling; (2) to illustrate the rich diversity of
applications of stochastic processes in the sciences; and (3) to provide exercises in the
application of simple stochastic analysis to appropriate problems.

The chapters are organized around several prototype classes of stochastic pro-
cesses featuring Markov chains in discrete and continuous time, Poisson processes
and renewal theory, the evolution of branching events, and queueing models. After
the concluding Chapter 9, we provide a list of books that incorporate more advanced
discussions of several of the models set forth in this text.



To the Instructor

If possible, we recommend having students skim the first two chapters, referring as
necessary to the probability review material, and starting the course with Chapter 3, on
Markov chains. A one-quarter course adapted to the junior–senior level could consist
of a cursory (1-week) review of Chapters 1 and 2, followed in order by Chapters 3
through 6. For interested students, Chapters 7, 8, and 9 discuss other currently active
areas of stochastic modeling. Starred sections contain material of a more advanced or
specialized nature.
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1 Introduction

1.1 Stochastic Modeling

A quantitative description of a natural phenomenon is called a mathematical model of
that phenomenon. Examples abound, from the simple equation S= 1

2 gt2 describing the
distance S traveled in time t by a falling object starting at rest to a complex computer
program that simulates a biological population or a large industrial system.

In the final analysis, a model is judged using a single, quite pragmatic, factor, the
model’s usefulness. Some models are useful as detailed quantitative prescriptions of
behavior, e.g., an inventory model that is used to determine the optimal number of units
to stock. Another model in a different context may provide only general qualitative
information about the relationships among and relative importance of several factors
influencing an event. Such a model is useful in an equally important but quite different
way. Examples of diverse types of stochastic models are spread throughout this book.

Such often mentioned attributes, such as realism, elegance, validity, and repro-
ducibility, are important in evaluating a model only insofar as they bear on that model’s
ultimate usefulness. For instance, it is both unrealistic and quite inelegant to view the
sprawling city of Los Angeles as a geometrical point, a mathematical object of no size
or dimension. Yet, it is quite useful to do exactly that when using spherical geometry to
derive a minimum-distance great circle air route from New York City, another “point.”

There is no such thing as the best model for a given phenomenon. The pragmatic
criterion of usefulness often allows the existence of two or more models for the same
event, but serving distinct purposes. Consider light. The wave form model, in which
light is viewed as a continuous flow, is entirely adequate for designing eyeglass and
telescope lenses. In contrast, for understanding the impact of light on the retina of
the eye, the photon model, which views light as tiny discrete bundles of energy, is
preferred. Neither model supersedes the other; both are relevant and useful.

The word “stochastic” derives from a Greek word (στoχάζεσθαι: to aim, to
guess) and means “random” or “chance.” The antonym is “sure,” “deterministic,” or
“certain.” A deterministic model predicts a single outcome from a given set of cir-
cumstances. A stochastic model predicts a set of possible outcomes weighted by their
likelihoods or probabilities. A coin flipped into the air will surely return to earth some-
where. Whether it lands heads or tails is random. For a “fair” coin, we consider these
alternatives equally likely and assign to each the probability 1

2 .
However, phenomena are not in and of themselves inherently stochastic or deter-

ministic. Rather, to model a phenomenon as stochastic or deterministic is the choice of
the observer. The choice depends on the observer’s purpose; the criterion for judging
the choice is usefulness. Most often the proper choice is quite clear, but controversial

An Introduction to Stochastic Modeling. DOI: 10.1016/B978-0-12-381416-6.00001-0
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situations do arise. If the coin once fallen is quickly covered by a book so that the
outcome “heads” or “tails” remains unknown, two participants may still usefully
employ probability concepts to evaluate what is a fair bet between them; i.e., they
may usefully view the coin as random, even though most people would consider the
outcome now to be fixed or deterministic. As a less mundane example of the con-
verse situation, changes in the level of a large population are often usefully modeled
deterministically, in spite of the general agreement among observers that many chance
events contribute to their fluctuations.

Scientific modeling has three components: (1) a natural phenomenon under study,
(2) a logical system for deducing implications about the phenomenon, and (3) a con-
nection linking the elements of the natural system under study to the logical system
used to model it. If we think of these three components in terms of the great-circle
air route problem, the natural system is the earth with airports at Los Angeles and
New York; the logical system is the mathematical subject of spherical geometry; and
the two are connected by viewing the airports in the physical system as points in the
logical system.

The modern approach to stochastic modeling is in a similar spirit. Nature does not
dictate a unique definition of “probability,” in the same way that there is no nature-
imposed definition of “point” in geometry. “Probability” and “point” are terms in pure
mathematics, defined only through the properties invested in them by their respective
sets of axioms. (See Section 1.2.8 for a review of axiomatic probability theory.) There
are, however, three general principles that are often useful in relating or connecting the
abstract elements of mathematical probability theory to a real or natural phenomenon
that is to be modeled. These are (1) the principle of equally likely outcomes, (2) the
principle of long run relative frequency, and (3) the principle of odds making or subjec-
tive probabilities. Historically, these three concepts arose out of largely unsuccessful
attempts to define probability in terms of physical experiences. Today, they are rel-
evant as guidelines for the assignment of probability values in a model, and for the
interpretation of the conclusions of a model in terms of the phenomenon under study.

We illustrate the distinctions between these principles with a long experiment. We
will pretend that we are part of a group of people who decide to toss a coin and observe
the event that the coin will fall heads up. This event is denoted by H, and the event of
tails, by T .

Initially, everyone in the group agrees that Pr{H} = 1
2 . When asked why, people

give two reasons: Upon checking the coin construction, they believe that the two pos-
sible outcomes, heads and tails, are equally likely; and extrapolating from past experi-
ence, they also believe that if the coin is tossed many times, the fraction of times that
heads is observed will be close to one-half.

The equally likely interpretation of probability surfaced in the works of Laplace in
1812, where the attempt was made to define the probability of an event A as the ratio of
the total number of ways that A could occur to the total number of possible outcomes of
the experiment. The equally likely approach is often used today to assign probabilities
that reflect some notion of a total lack of knowledge about the outcome of a chance
phenomenon. The principle requires judicious application if it is to be useful, however.
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In our coin tossing experiment, for instance, merely introducing the possibility that the
coin could land on its edge (E) instantly results in Pr{H} = Pr{T} = Pr{E} = 1

3 .
The next principle, the long run relative frequency interpretation of probability, is a

basic building block in modern stochastic modeling, made precise and justified within
the axiomatic structure by the law of large numbers. This law asserts that the relative
fraction of times, in which an event occurs in a sequence of independent similar exper-
iments, approaches, in the limit, the probability of the occurrence of the event on any
single trial.

The principle is not relevant in all situations, however. When the surgeon tells a
patient that he has an 80–20 chance of survival, the surgeon means, most likely, that
80% of similar patients facing similar surgery will survive it. The patient at hand is
not concerned with the long run, but in vivid contrast, he is vitally concerned only in
the outcome of his, the next, trial.

Returning to the group experiment, we will suppose next that the coin is flipped
into the air and, upon landing, is quickly covered so that no one can see the outcome.
What is Pr{H} now? Several in the group argue that the outcome of the coin is no
longer random, that Pr{H} is either 0 or 1, and that although we do not know which it
is, probability theory does not apply.

Others articulate a different view, that the distinction between “random” and “lack
of knowledge” is fuzzy, at best, and that a person with a sufficiently large computer
and sufficient information about such factors as the energy, velocity, and direction used
in tossing the coin could have predicted the outcome, heads or tails, with certainty
before the toss. Therefore, even before the coin was flipped, the problem was a lack of
knowledge and not some inherent randomness in the experiment.

In a related approach, several people in the group are willing to bet with each other,
at even odds, on the outcome of the toss. That is, they are willing to use the calculus of
probability to determine what is a fair bet, without considering whether the event under
study is random or not. The usefulness criterion for judging a model has appeared.

While the rest of the mob were debating “random” versus “lack of knowledge,” one
member, Karen, looked at the coin. Her probability for heads is now different from
that of everyone else. Keeping the coin covered, she announces the outcome “Tails,”
whereupon everyone mentally assigns the value Pr{H} = 0. But then her companion,
Mary, speaks up and says that Karen has a history of prevarication.

The last scenario explains why there are horse races; different people assign differ-
ent probabilities to the same event. For this reason, probabilities used in odds making
are often called subjective probabilities. Then, odds making forms the third principle
for assigning probability values in models and for interpreting them in the real world.

The modern approach to stochastic modeling is to divorce the definition of probabil-
ity from any particular type of application. Probability theory is an axiomatic structure
(see Section 1.2.8), a part of pure mathematics. Its use in modeling stochastic phenom-
ena is part of the broader realm of science and parallels the use of other branches of
mathematics in modeling deterministic phenomena.

To be useful, a stochastic model must reflect all those aspects of the phenomenon
under study that are relevant to the question at hand. In addition, the model must
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be amenable to calculation and must allow the deduction of important predictions or
implications about the phenomenon.

1.1.1 Stochastic Processes

A stochastic process is a family of random variables Xt, where t is a parameter running
over a suitable index set T . (Where convenient, we will write X(t) instead of Xt.) In a
common situation, the index t corresponds to discrete units of time, and the index set is
T = {0,1,2, . . .}. In this case, Xt might represent the outcomes at successive tosses of
a coin, repeated responses of a subject in a learning experiment, or successive obser-
vations of some characteristics of a certain population. Stochastic processes for which
T = [0,∞) are particularly important in applications. Here t often represents time, but
different situations also frequently arise. For example, t may represent distance from
an arbitrary origin, and Xt may indicate the number of defects in the interval (0, t]
along a thread, or the number of cars in the interval (0, t] along a highway.

Stochastic processes are distinguished by their state space, or by the range of pos-
sible values for the random variables Xt, by their index set T , and by the dependence
relations among the random variables Xt. The most widely used classes of stochas-
tic processes are systematically and thoroughly presented for study in the following
chapters, along with the mathematical techniques for calculation and analysis that are
most useful with these processes. The use of these processes as models is taught by
example. Sample applications from many and diverse areas of interest are an integral
part of the exposition.

1.2 Probability Review∗

This section summarizes the necessary background material and establishes the book’s
terminology and notation. It also illustrates the level of the exposition in the following
chapters. Readers who find the major part of this section’s material to be familiar and
easily understood should have no difficulty with what follows. Others might wish to
review their probability background before continuing.

In this section, statements frequently are made without proof. The reader desiring
justification should consult any elementary probability text as the need arises.

1.2.1 Events and Probabilities

The reader is assumed to be familiar with the intuitive concept of an event. (Events are
defined rigorously in Section 1.2.8, which reviews the axiomatic structure of probabil-
ity theory.)

Let A and B be events. The event that at least one of A or B occurs is called
the union of A and B and is written A∪B; the event that both occur is called the

∗ Many readers will prefer to omit this review and move directly to Chapter 3, on Markov chains. They can
then refer to the background material that is summarized in the remainder of this chapter and in Chapter 2
only as needed.
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intersection of A and B and is written A∩B, or simply AB. This notation extends to
finite and countable sequences of events. Given events A1,A2, . . . , the event that at
least one occurs is written A1 ∪A2 ∪ ·· · =

⋃
∞

i=1 Ai, the event that all occur is written
A1 ∩A2 ∩ ·· · =

⋂
∞

i=1 Ai.
The probability of an event A is written Pr{A}. The certain event, denoted by �,

always occurs, and Pr{�} = 1. The impossible event, denoted by Ø, never occurs, and
Pr{Ø} = 0. It is always the case that 0≤ Pr{A} ≤ 1 for any event A.

Events A and B are said to be disjoint if A∩B= Ø, i.e., if A and B both cannot occur.
For disjoint events A and B, we have the addition law Pr{A∪B} = Pr{A}+Pr{B}.
A stronger form of the addition law is as follows: Let A1,A2, . . . be events with Ai

and Aj disjoint whenever i 6= j. Then, Pr
{⋃
∞

i=1 Ai
}
=6∞i=1 Pr{Ai}. The addition law

leads directly to the law of total probability: Let A1,A2, . . . be disjoint events for which
�= A1 ∪A2 ∪·· · . Equivalently, exactly one of the events A1,A2, . . . will occur. The
law of total probability asserts that Pr{B} =6∞i=1 Pr{B∩Ai} for any event B. The law
enables the calculation of the probability of an event B from the sometimes more easily
determined probabilities Pr{B∩Ai}, where i= 1,2, . . . . Judicious choice of the events
Ai is prerequisite to the profitable application of the law.

Events A and B are said to be independent if Pr{A∩B} = Pr{A}×Pr{B}. Events
A1,A2, . . . are independent if

Pr
{
Ai1 ∩Ai2 ∩ ·· · ∩Ain

}
= Pr

{
Ai1

}
Pr
{
Ai2

}
· · ·Pr

{
Ain

}
for every finite set of distinct indices i1, i2, . . . , in.

1.2.2 Random Variables

An old-fashioned but very useful and highly intuitive definition describes a random
variable as a variable that takes on its values by chance. In Section 1.2.8, we sketch
the modern axiomatic structure for probability theory and random variables. The older
definition just given serves quite adequately, however, in virtually all instances of
stochastic modeling. Indeed, this older definition was the only approach available for
well over a century of meaningful progress in probability theory and stochastic pro-
cesses.

Most of the time we adhere to the convention of using capital letters such as X,Y,Z
to denote random variables, and lowercase letters such as x,y,z for real numbers. The
expression {X ≤ x} is the event that the random variable X assumes a value that is less
than or equal to the real number x. This event may or may not occur, depending on the
outcome of the experiment or phenomenon that determines the value for the random
variable X. The probability that the event occurs is written Pr{X ≤ x}. Allowing x to
vary, this probability defines a function

F(x)= Pr{X ≤ x}, −∞< x<+∞,

called the distribution function of the random variable X. Where several random vari-
ables appear in the same context, we may choose to distinguish their distribution
functions with subscripts, writing, e.g., FX(ξ)= Pr{X ≤ ξ} and FY(ξ)= Pr{Y ≤ ξ},
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defining the distribution functions of the random variables X and Y , respectively, as
functions of the real variable ξ .

The distribution function contains all the information available about a ran-
dom variable before its value is determined by experiment. We have, for instance,
Pr{X > a} = 1−F(a),Pr{a< X ≤ b} = F(b)−F(a), and Pr{X = x} = F(x)− limε↓0
F(x− ε)= F(x)−F(x−).

A random variable X is called discrete if there is a finite or denumerable set of
distinct values x1,x2, . . . such that ai = Pr{X = xi}> 0 for i= 1,2, . . . and 6iai = 1.
The function

p(xi)= pX(xi)= ai for i= 1,2, . . . (1.1)

is called the probability mass function for the random variable X and is related to the
distribution function via

p(xi)= F(xi)−F(xi−) and F(x)=
∑
xi≤x

p(xi).

The distribution function for a discrete random variable is a step function, which
increases only in jumps, the size of the jump at xi being p(xi).

If Pr{X = x} = 0 for every value of x, then the random variable X is called con-
tinuous and its distribution function F(x) is a continuous function of x. If there is a
nonnegative function f (x)= fX(x) defined for −∞< x<∞ such that

Pr{a< X ≤ b} =

b∫
a

f (x)dx for−∞< a< b<∞, (1.2)

then f (x) is called the probability density function for the random variable X. If X has
a probability density function f (x), then X is continuous and

F(x)=

x∫
−∞

f (ξ)dξ, −∞< x<∞.

If F(x) is differentiable in x, then X has a probability density function given by

f (x)=
d

dx
F(x)= F′(x), −∞< x<∞. (1.3)

In differential form, (1.3) leads to the informal statement

Pr{x< X ≤ x+ dx} = F(x+ dx)−F(x)= dF(x)= f (x)dx. (1.4)

We consider (1.4) to be a shorthand version of the more precise statement

Pr{x< X ≤ x+1x} = f (x)1x+ o(1x), 1x ↓ 0, (1.5)

where o(1x) is a generic remainder term of order less than 1x as 1x ↓ 0. That is,
o(1x) represents any term for which lim1x↓0 o(1x)/1x= 0. By the fundamental
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theorem of calculus, equation (1.5) is valid whenever the probability density function
is continuous at x.

While examples are known of continuous random variables that do not possess
probability density functions, they do not arise in stochastic models of common natural
phenomena.

1.2.3 Moments and Expected Values

If X is a discrete random variable, then its mth moment is given by

E[Xm]=
∑

i

xm
i Pr{X = xi} (1.6)

[where the xi are specified in (1.1)], provided that the infinite sum converges abso-
lutely. Where the infinite sum diverges, the moment is said not to exist. If X is a con-
tinuous random variable with probability density function f (x), then its mth moment is
given by

E[Xm]=

+∞∫
−∞

xmf (x)dx, (1.7)

provided that this integral converges absolutely.
The first moment, corresponding to m= 1, is commonly called the mean or expected

value of X and written mX or µX . The mth central moment of X is defined as the mth
moment of the random variable X−µX , provided that µX exists. The first central
moment is zero. The second central moment is called the variance of X and written σ 2

x
or Var[X]. We have the equivalent formulas Var[X]= E

[
(X−µ)2

]
= E

[
X2
]
−µ2.

The median of a random variable X is any value ν with the property that

Pr{X ≥ ν} ≥
1

2
and Pr{X ≤ ν} ≥

1

2
.

If X is a random variable and g is a function, then Y = g(X) is also a random variable.
If X is a discrete random variable with possible values x1,x2, . . . , then the expectation
of g(X) is given by

E[g(X)]=
∞∑

i=1

g(xi)Pr{X = xi}, (1.8)

provided that the sum converges absolutely. If X is continuous and has the probability
density function fX , then the expected value of g(X) is evaluated from

E[g(X)]=
∫

g(x)fX(x)dx. (1.9)

The general formula, covering both the discrete and continuous cases, is

E[g(X)]=
∫

g(x)dFX(x), (1.10)
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where FX is the distribution function of the random variable X. Technically speak-
ing, the integral in (1.10) is a Lebesgue–Stieltjes integral. We do not require knowl-
edge of such integrals in this text, but interpret (1.10) to signify (1.8) when X is
a discrete random variable, and to represent (1.9) when X possesses a probability
density fX .

Let FY(y)= Pr{Y ≤ y} denote the distribution function for Y = g(X). When X is a
discrete random variable, then

E[Y]=
∑

j

yj Pr{Y = yj}

=

∑
i

g(xi)Pr{X = xi}

if yi = g(xi) and provided that the second sum converges absolutely. In general,

E[Y]=
∫

ydFY(y)
(1.11)

=

∫
g(x)dFX(x).

If X is a discrete random variable, then so is Y = g(X). It may be, however, that X
is a continuous random variable, while Y is discrete (the reader should provide an
example). Even so, one may compute E[Y] from either form in (1.11) with the same
result.

1.2.4 Joint Distribution Functions

Given a pair (X,Y) of random variables, their joint distribution function is the function
FXY of two real variables given by

FXY(x,y)= F(x,y)= Pr{X ≤ x and Y ≤ y}.

Usually, the subscripts X,Y will be omitted, unless ambiguity is possible. A joint dis-
tribution function FXY is said to possess a (joint) probability density if there exists a
function fXY of two real variables for which

FXY(x,y)=

X∫
−∞

y∫
−∞

fXY(ξ,η)dηdξ for all x,y.

The function FX(x)= limy→∞F(x,y) is a distribution function, called the marginal
distribution function of X. Similarly, FY(y)= limy→∞F(x,y) is the marginal distribu-
tion function of Y . If the distribution function F possesses the joint density function f,
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then the marginal density functions for X and Y are given, respectively, by

fX(x)=

+∞∫
−∞

f (x,y)dy and fY(y)=

+∞∫
−∞

f (x,y)dx.

If X and Y are jointly distributed, then E[X+Y]= E[X]+E[Y], provided only that
all these moments exist.

Independence

If it happens that F(x,y)= FX(x)×FY(y) for every choice of x,y, then the random
variables X and Y are said to be independent. If X and Y are independent and possess
a joint density function f (x,y), then necessarily f (x,y)= fX(x)fY(y) for all x,y.

Given jointly distributed random variables X and Y having means µX and µY and
finite variances, the covariance of X and Y , written σXY or Cov[X, Y], is the prod-
uct moment σXY = E[(X−µX)(Y −µY)]= E[XY]−µXµY , and X and Y are said to
be uncorrelated if their covariance is zero, i.e., σXY = 0. Independent random vari-
ables having finite variances are uncorrelated, but the converse is not true; there are
uncorrelated random variables that are not independent.

Dividing the covariance σXY by the standard deviations σX and σY defines the cor-
relation coefficient ρ = σXY/σXσY for which −1≤ ρ ≤+1.

The joint distribution function of any finite collection X1, . . . ,Xn of random vari-
ables is defined as the function

F(x1, . . . ,xn)= FX1,... ,Xn(x1, . . . ,xn)

= Pr{X1 ≤ x1, . . . ,Xn ≤ xn}.

If F(x1, . . . ,xn)= FX1(x1) · · ·FXn(xn) for all values of x1, . . . ,xn, then the random vari-
ables X1, . . . ,Xn are said to be independent.

A joint distribution function F(x1, . . . ,xn) is said to have a probability density func-
tion f (ξ1, . . . , ξn) if

F(x1, . . . ,xn)=

x1∫
−∞

· · ·

xn∫
−∞

f (ξ1, . . . , ξn)dξn . . .dξ1,

for all values of x1, . . . ,xn.

Expectation

For jointly distributed random variables X1, . . . ,Xn and arbitrary functions h1, . . . ,hm

of n variables each,

E

 m∑
j=1

hj(X1, . . . ,Xn)

= m∑
j=1

E[hj(X1, . . . ,Xn)],

provided only that all these moments exist.
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1.2.5 Sums and Convolutions

If X and Y are independent random variables having distribution functions FX and FY ,
respectively, then the distribution function of their sum Z = X+Y is the convolution
of FX and FY :

FZ(z)=

+∞∫
−∞

FX(z− ξ)dFY(ξ)=

+∞∫
−∞

FY(z− η)dFX(η). (1.12)

If we specialize to the situation where X and Y have the probability densities fX and
fY , respectively, then the density function fZ of the sum Z = X+Y is the convolution
of the densities fX and fY :

fZ(z)=

∞∫
−∞

fX(z− η)fY(η)dη =

+∞∫
−∞

fY(z− ξ)fX(ξ)dξ. (1.13)

Where X and Y are nonnegative random variables, the range of integration is corre-
spondingly reduced to

fZ(z)=

z∫
0

fX(z− η)fY(η)dη =

z∫
0

fY(z− ξ)fX(ξ)dξ for z≥ 0. (1.14)

If X and Y are independent and have respective variances σ 2
X and σ 2

Y , then the
variance of the sum Z=X+Y is the sum of the variances: σ 2

Z = σ
2
X + σ

2
Y . More gen-

erally, if X1, . . . ,Xn are independent random variables having variances σ 2
1 , . . . ,σ

2
n ,

respectively, then the variance of the sum Z = X1+ ·· ·+Xn is σ 2
Z = σ

2
1 + ·· ·+ σ

2
n .

1.2.6 Change of Variable

Suppose that X is a random variable with probability density function fX and that
g is a strictly increasing differentiable function. Then, Y = g(X) defines a ran-
dom variable, and the event {Y ≤ y} is the same as the event {X ≤ g−1(y)}, where
g−1 is the inverse function to g; i.e., y= g(x) if and only if x= g−1(y). Thus,
we obtain the correspondence FY(y)= Pr{Y ≤ y} = Pr{X ≤ g−1(y)} = FX(g−1(y))
between the distribution function of Y and that of X. Recall the differential calculus
formula

dg−1

dy
=

1

g′(x)
=

1

dg/dx
, where y= g(x),

and use this in the chain rule of differentiation to obtain

fY(y)=
dFY(y)

dy
=

dFX(g−1(y))

dy
= fX(x)

1

g′(x)
, where y= g(x).
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The formula

fY(y)=
1

g′(x)
fX(x), where y= g(x), (1.15)

expresses the density function for Y in terms of the density for X when g is strictly
increasing and differentiable.

1.2.7 Conditional Probability

For any events A and B, the conditional probability of A given B is written Pr{A|B}
and defined by

Pr{A|B} =
Pr{A∩B}

Pr{B}
if Pr{B}> 0, (1.16)

and is left undefined if Pr{B} = 0. [When Pr{B} = 0, the right side of (1.16) is the
indeterminate quantity 0

0 .]
In stochastic modeling, conditional probabilities are rarely procured via (1.16) but

instead are dictated as primary data by the circumstances of the application, and then
(1.16) is applied in its equivalent multiplicative form

Pr{A∩B} = Pr{A|B}Pr{B} (1.17)

to compute other probabilities. (An example follows shortly.) Central in this role is the
law of total probability, which results from substituting Pr{A∩Bi} = Pr{A|Bi}Pr{Bi}

into Pr{A} =6∞i=1 Pr{A∩Bi}, where �= B1 ∪B2 ∪ ·· · and Bi ∩Bj = Ø if i 6= j (see
Section 1.2.1), to yield

Pr{A} =
∞∑

i=1

Pr{A|Bi}Pr{Bi}. (1.18)

Example Gold and silver coins are allocated among three urns labeled I, II, III accord-
ing to the following table:

Number of Number of
Urn Gold Coins Silver Coins

I 4 8
II 3 9
III 6 6

An urn is selected at random, all urns being equally likely, and then a coin is selected
at random from that urn. Using the notation I, II, III for the events of selecting urns
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I, II, and III, respectively, and G for the event of selecting a gold coin, then the
problem description provides the following probabilities and conditional probabilities
as data:

Pr{I} =
1

3
, Pr{G|I} =

4

12
,

Pr{II} =
1

3
, Pr{G|II} =

3

12
,

Pr{III} =
1

3
, Pr{G|III} =

6

12
,

and we calculate the probability of selecting a gold coin according to (1.18), via

Pr{G} = Pr{G|I}Pr{I}+Pr{G|II}Pr{II}+Pr{G|III}Pr{III}

=
4

12

(
1

3

)
+

3

12

(
1

3

)
+

6

12

(
1

3

)
=

13

36
.

As seen here, more often than not conditional probabilities are given as data and
are not the end result of calculation.

Discussion of conditional distributions and conditional expectation merits an entire
chapter (Chapter 2).

1.2.8 Review of Axiomatic Probability Theory∗

For the most part, this book studies random variables only through their distributions.
In this spirit, we defined a random variable as a variable that takes on its values by
chance. For some purposes, however, a little more precision and structure are needed.

Recall that the basic elements of probability theory are

1. the sample space, a set � whose elements ω correspond to the possible outcomes of an
experiment;

2. the family of events, a collection ^ of subsets A of �: we say that the event A occurs if the
outcome ω of the experiment is an element of A; and

3. the probability measure, a function P defined on ^ and satisfying
(a)

0= P[Ø]≤ P[A]≤ P[�]= 1 for A ∈^

(Ø= the empty set)

and
(b)

P

[
∞⋃

n=1

An

]
=

∞∑
n=1

P[An], (1.19)

∗ The material included in this review of axiomatic probability theory is not used in the remainder of the
book. It is included in this review chapter only for the sake of completeness.
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if the events A1,A2, . . . are disjoint, i.e., if Ai ∩Aj = Ø when i 6= j. The triple (�,^,P)
is called a probability space.

Example When there are only a denumerable number of possible outcomes, say �=
{ω1,ω2, . . .}, we may take ^ to be the collection of all subsets of �. If p1,p2, . . . are
nonnegative numbers with 6npn = 1, the assignment

P[A]=
∑
ωi∈A

pi

determines a probability measure defined on ^.
It is not always desirable, consistent, or feasible to take the family of events as the

collection of all subsets of �. Indeed, when � is nondenumerably infinite, it may not
be possible to define a probability measure on the collection of all subsets maintaining
the properties of (1.19). In whatever way we prescribe ^ such that (1.19) holds, the
family of events ^ should satisfy

(a) Ø is in ^ and � is in ^;

(b) Ac is in ^ whenever A is in ^, where Ac
= {ω ∈�;ω /∈ A}

is the complement of A; and

(c)
⋃
∞

n=1 An is in ^ whenever An is in ^ for n= 1,2, . . . .

(1.20)

A collection ^ of subsets of a set � satisfying (1.20) is called a σ -algebra. If ^ is
a σ -algebra, then

∞⋂
n=1

An =

(
∞⋃

n=1

Ac
n

)c

is in ^ whenever An is in ^ for n= 1,2, . . . . Manifestly, as a consequence, we find
that finite unions and finite intersections of members of ^ are maintained in ^.

In this framework, a real random variable X is a real-valued function defined on �
fulfilling certain “measurability” conditions given here. The distribution function of
the random variable X is formally given by

Pr{a< X ≤ b} = P[{ω;a< X(ω)≤ b}]. (1.21)

In words, the probability that the random variable X takes a value in (a,b] is calculated
as the probability of the set of outcomes ω for which a< X(ω)≤ b. If relation (1.21) is
to have meaning, X cannot be an arbitrary function on�, but must satisfy the condition
that

{ω;a< X(ω)≤ b} is in ^ for all real a< b,
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since ^ embodies the only sets A for which P[A] is defined. In fact, by exploiting the
properties (1.20) of the σ -algebra ,̂ we find that it is enough to require

{ω;X(ω)≤ x} is in ^ for all real x.

Let A be any σ -algebra of subsets of �. We say that X is measurable with respect to
A , or more briefly A -measurable, if

{ω;X(ω)≤ x} is in A for all real x.

Thus, every real random variable is by definition ^-measurable. There may, in general,
be smaller σ -algebras with respect to which X is also measurable.

The σ -algebra generated by a random variable X is defined to be the smallest σ -
algebra with respect to which X is measurable. It is denoted by (̂X) and consists
exactly of those sets A that are in every σ -algebra A for which X is A -measurable.
For example, if X has only denumerably many possible values x1,x2, . . . , the sets

Ai = {ω;X(ω)= xi}, i= 1,2, . . . ,

form a countable partition of �, i.e.,

�=

∞⋃
i=1

Ai,

and

Ai ∩Aj = Ø if i 6= j,

and then ^(X) includes precisely Ø, �, and every set that is the union of some of
the Ai’s.

Example For the reader completely unfamiliar with this framework, the following
simple example will help illustrate the concepts. The experiment consists in tossing a
nickel and a dime and observing “heads” or “tails.” We take � to be

�= {(H,H), (H,T), (T,H), (T,T)},

where, e.g., (H,T) stands for the outcome “nickel= heads, and dime= tails.” We will
take the collection of all subsets of� as the family of events. Assuming each outcome
in � to be equally likely, we arrive at the probability measure:
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A ∈^ P[A] A ∈^ P[A]

Ø 0 � 1

{(H,H)} 1
4 {(H,T), (T,H), (T,T)} 3

4

{(H,T)} 1
4 {(H,H), (T,H), (T,T)} 3

4

{(T,H)} 1
4 {(H,H), (H,T), (T,T)} 3

4

{(T,T)} 1
4 {(H,H), (H,T), (T,H)} 3

4

{(H,H), (H,T)} 1
2 {(T,H), (T,T)} 1

2

{(H,H), (T,H)} 1
2 {(H,T), (T,T)} 1

2

{(H,H), (T,T)} 1
2 {(H,T), (T,H)} 1

2

The event “nickel is heads” is {(H,H), (H,T)} and has, according to the table, proba-
bility 1

2 , as it should.
Let Xn be 1 if the nickel is heads, and 0 otherwise; let Xd be the corresponding

random variable for the dime; and let Z = Xn+Xd be the total number of heads. As
functions on �, we have

ω ∈� Xn(ω) Xd(ω) Z(ω)

(H,H) 1 1 2
(H,T) 1 0 1
(T,H) 0 1 1
(T,T) 0 0 0

Finally, the σ -algebras generated by Xn and Z are

^(Xn)= Ø,�, {(H,H), (H,T)}, {(T,H), (T,T)},

and

^(Z)= Ø,�, {(H,H)}, {(H,T), (T,H)}, {(T,T)},

{(H,T), (T,H), (T,T)}, {(H,H), (T,T)},

{(H,H), (H,T), (T,H)}.

^(Xn) contains four sets and ^(Z) contains eight. Is Xn measurable with respect to
^(Z), or vice versa?

Every pair X,Y of random variables determines a σ -algebra called the σ -algebra
generated by X,Y . It is the smallest σ -algebra with respect to which both X and
Y are measurable. This σ -algebra comprises exactly those sets A that are in every
σ -algebra A for which X and Y are both A -measurable. If both X and Y assume only
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denumerably many possible values, say x1,x2, . . . and y1,y2, . . . , respectively, then
the sets

Aij =
{
ω;X(ω)= xj,Y(ω)= yj

}
, i, j= 1,2, . . . ,

present a countable partition of �, and ^(X,Y) consists precisely of Ø, �, and every
set that is the union of some of the Aij’s. Observe that X is measurable with respect to
^(X,Y), and thus ^(X)⊂^(X,Y).

More generally, let {X(t); t ∈ T} be any family of random variables. Then, the
σ -algebra generated by {X(t); t ∈ T} is the smallest σ -algebra with respect to which
every random variable X(t), t ∈ T , is measurable. It is denoted by ^{X(t); t ∈ T}.

A special role is played by a distinguished σ -algebra of sets of real numbers. The
σ -algebra of Borel sets is the σ -algebra generated by the identity function f (x)= x,
for x ∈ (−∞,∞). Alternatively, the σ -algebra of Borel sets is the smallest σ -algebra
containing every interval of the form (a,b],−∞≤ a≤ b<+∞. A real-valued func-
tion of a real variable is said to be Borel measurable if it is measurable with respect to
the σ -algebra of Borel sets.

Exercises

1.2.1 Let A and B be arbitrary, not necessarily disjoint, events. Use the law of total
probability to verify the formula

Pr{A} = Pr{AB}+Pr{ABc
},

where Bc is the complementary event to B (i.e., Bc occurs if and only if B does
not occur).

1.2.2 Let A and B be arbitrary, not necessarily disjoint, events. Establish the general
addition law

Pr{A∪B} = Pr{A}+Pr{B}−Pr{AB}.

Hint: Apply the result of Exercise 1.2.1 to evaluate Pr{ABc
} = Pr{A}−

Pr{AB}. Then, apply the addition law to the disjoint events AB and ABc, noting
that A= (AB)∪ (ABc).

1.2.3 (a) Plot the distribution function

F(x)=


0 for x≤ 0,
x3 for 0< x< 1,
1 for x≥ 1.

(b) Determine the corresponding density function f (x) in the three regions (1)
x≤ 0, (2) 0< x< 1, and (3) 1≤ x.

(c) What is the mean of the distribution?
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(d) If X is a random variable following the distribution specified in (a), evalu-

ate Pr
{

1
4 ≤ X ≤ 3

4

}
.

1.2.4 Let Z be a discrete random variable having possible values 0,1,2, and 3 and
probability mass function

p(0)=
1

4
, p(2)=

1

8
,

p(1)=
1

2
, p(3)=

1

8
.

(a) Plot the corresponding distribution function.
(b) Determine the mean E[Z].
(c) Evaluate the variance Var[Z].

1.2.5 Let A,B, and C be arbitrary events. Establish the addition law

Pr{A∪B∪C} =Pr{A}+Pr{B}+Pr{C}−Pr{AB}

−Pr{AC}−Pr{BC}+Pr{ABC}.

1.2.6 Let X and Y be independent random variables having distribution functions FX

and FY , respectively.
(a) Define Z =max{X,Y} to be the larger of the two. Show that FZ(z)=

FX(z)FY(z) for all z.
(b) Define W =min{X,Y} to be the smaller of the two. Show that FW(w)=

1− [1−FX(w)][1−FY(w)] for all w.
1.2.7 Suppose X is a random variable having the probability density function

f (x)=

{
RxR−1 for 0≤ x≤ 1,
0 elsewhere,

where R> 0 is a fixed parameter.
(a) Determine the distribution function FX(x).
(b) Determine the mean E[X].
(c) Determine the variance Var[X].

1.2.8 A random variable V has the distribution function

F(v)=


0 for v< 0,
1− (1− v)A for 0≤ v≤ 1,
1 for v> 1,

where A> 0 is a parameter. Determine the density function, mean, and
variance.

1.2.9 Determine the distribution function, mean, and variance corresponding to the
triangular density.

f (x)=

x for 0≤ x≤ 1,
2− x for 1≤ x≤ 2,
0 elsewhere.
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1.2.10 Let 1A be the indicator random variable associated with an event A, defined to
be one if A occurs, and zero otherwise. Define Ac, the complement of event A,
to be the event that occurs when A does not occur. Show
(a) 1Ac = 1− 1A.
(b) 1A∩B = 1A1B =min{1A,1B}.
(c) 1A∪B =max{1A,1B}.

Problems

1.2.1 Thirteen cards numbered 1, . . . ,13 are shuffled and dealt one at a time. Say a
match occurs on deal k if the kth card revealed is card number k. Let N be the
total number of matches that occur in the thirteen cards. Determine E[N].

Hint: Write N = 1{A1}+ · · · + 1{A13} where Ak is the event that a match
occurs on deal k.

1.2.2 Let N cards carry the distinct numbers x1, . . . ,xn. If two cards are drawn at
random without replacement, show that the correlation coefficient ρ between
the numbers appearing on the two cards is −1/(N− 1).

1.2.3 A population having N distinct elements is sampled with replacement. Because
of repetitions, a random sample of size r may contain fewer than r distinct
elements. Let Sr be the sample size necessary to get r distinct elements. Show
that

E[Sr]= N

(
1

N
+

1

N− 1
+ ·· ·+

1

N− r+ 1

)
.

1.2.4 A fair coin is tossed until the first time that the same side appears twice in
succession. Let N be the number of tosses required.
(a) Determine the probability mass function for N.
(b) Let A be the event that N is even and B be the event that N ≤ 6. Evaluate

Pr{A},Pr{B}, and Pr{AB}.
1.2.5 Two players, A and B, take turns on a gambling machine until one of them

scores a success, the first to do so being the winner. Their probabilities for
success on a single play are p for A and q for B, and successive plays are
independent.
(a) Determine the probability that A wins the contest given that A plays first.
(b) Determine the mean number of plays required, given that A wins.

1.2.6 A pair of dice is tossed. If the two outcomes are equal, the dice are tossed
again, and the process repeated. If the dice are unequal, their sum is recorded.
Determine the probability mass function for the sum.

1.2.7 Let U and W be jointly distributed random variables. Show that U and W are
independent if

Pr{U > u and W > w} = Pr{U > u}Pr{W > w} for all u,w.
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1.2.8 Suppose X is a random variable with finite mean µ and variance σ 2, and Y =
a+ bX for certain constants a,b 6= 0. Determine the mean and variance for Y .

1.2.9 Determine the mean and variance for the probability mass function

p(k)=
2(n− k)

n(n− 1)
for k = 1,2, . . . ,n.

1.2.10 Random variables X and Y are independent and have the probability mass func-
tions

pX(0)=
1

2
, pY(1)=

1

6
,

pX(3)=
1

2
, pY(2)=

1

3
,

pY(3)=
1

2
.

Determine the probability mass function of the sum Z = X+Y .
1.2.11 Random variables U and V are independent and have the probability mass

functions

pU(0)=
1

3
, pV(1)=

1

2
,

pU(1)=
1

3
, pV(2)=

1

2
.

pU(2)=
1

3
,

Determine the probability mass function of the sum W = U+V .
1.2.12 Let U,V , and W be independent random variables with equal variances σ 2.

Define X = U+W and Y = V −W. Find the covariance between X and Y .
1.2.13 Let X and Y be independent random variables each with the uniform probabil-

ity density function

f (x)=

{
1 for 0< x< 1,

0 elsewhere.

Find the joint probability density function of U and V , where U =max{X,Y}
and V =min{X,Y}.

1.3 The Major Discrete Distributions

The most important discrete probability distributions and their relevant properties are
summarized in this section. The exposition is brief, since most readers will be familiar
with this material from an earlier course in probability.
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1.3.1 Bernoulli Distribution

A random variable X following the Bernoulli distribution with parameter p has only
two possible values, 0 and 1, and the probability mass function is p(1)= p and p(0)=
1− p, where 0< p< 1, and the mean and variance are E[X]= p and Var[X]= p(1−
p), respectively.

Bernoulli random variables occur frequently as indicators of events. The indicator
of an event A is the random variable

1(A)= 1A =

{
1 if A occurs,
0 if A does not occur.

(1.22)

Then, 1A is a Bernoulli random variable with parameter p= E[1A]= Pr{A}.
The simple expedient of using indicators often reduces formidable calculations

into trivial ones. For example, let α1,α2, . . . ,αn be arbitrary real numbers and
A1,A2, . . . ,An be events, and consider the problem of showing that

n∑
i=1

n∑
i=1

αjαj Pr{Ai ∩Aj} ≥ 0. (1.23)

Attacked directly, the problem is difficult. But bringing in the indicators 1(Ai) and
observing that

0≤

{
n∑

i=1

αi1(Ai)

}2

=

{
n∑

i=1

αi1(Ai)

}
n∑

j=1

αj1(Aj)


=

n∑
i=1

n∑
j=1

αiαj1(Ai)1(Aj)=

n∑
i=1

n∑
j=1

αiαj1(Ai ∩Aj)

gives, after taking expectations,

0≤ E

{ n∑
i=1

αi1(Ai)

}2
= n∑

i=1

n∑
j=1

αiαjE[1(Ai ∩Aj)]

=

n∑
i=1

n∑
j=1

αiαj Pr{Ai ∩Aj},

and the demonstration of (1.23) is complete.

1.3.2 Binomial Distribution

Consider independent events A1,A2, . . . ,An, all having the same probability p= Pr{Ai}

of occurrence. Let Y count the total number of events among A1, . . . ,An that occur.



Introduction 21

Then, Y has a binomial distribution with parameters n and p. The probability mass
function is

pY(k)= Pr{Y = k}
(1.24)

=
n!

k!(n− k)!
pk(1− p)n−k for k = 0,1, . . . ,n.

Writing Y as a sum of indicators in the form Y = 1(A1)+ ·· ·+ 1(An) makes it easy to
determine the moments

E[Y]= E[1(A1)]+ ·· ·+E[1(An)]= np,

and using independence, we can also determine that

Var[Y]= Var[1(A1)]+ ·· ·+Var[1(An)]= np(1− p).

Briefly, we think of a binomial random variable as counting the number of “suc-
cesses” in n independent trials where there is a constant probability p of success on
any single trial.

1.3.3 Geometric and Negative Binominal Distributions

Let A1,A2, . . . be independent events having a common probability p= Pr{Ai} of
occurrence. Say that trial k is a success (S) or failure (F), depending on whether Ak

occurs or not, and let Z count the number of failures prior to the first success. To be
precise, Z = k if and only if 1(A1)= 0, . . . , 1(Ak)= 0, and 1(Ak+1)= 1. Then, Z has
a geometric distribution with parameter p. The probability mass function is

pZ(k)= p(1− p)k for k = 0,1, . . . , (1.25)

and the first two moments are

E[Z]=
1− p

p
; Var[Z]=

1− p

p2
.

Sometimes the term “geometric distribution” is used in referring to the probability
mass function

pZ′(k)= p(1− p)k−1 for k = 1,2, . . . . (1.26)

This is merely the distribution of the random variable Z′ = 1+Z, the number of
trials until the first success. Hence E[Z′]= 1+E[Z]= 1/p, and Var[Z′]= Var[Z]=
(1− p)/p2.

Now fix an integer r ≥ 1 and let Wr count the number of failures observed before
the rth success in A1,A2, . . . . Then, Wr has a negative binominal distribution with
parameters r and p. The event Wr = k calls for (A) exactly r− 1 successes in the first
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k+ r− 1 trials, followed by (B) a success on trial k+ r. The probability for (A) is
obtained from a binomial distribution, and the probability for (B) is simply p, which
leads to the following probability mass function for Wr:

p(k)= Pr{Wr = k} =
(k+ r− 1)!

(r− 1)!k!
pr(1− p)k, k = 0,1, . . . . (1.27)

Another way of writing Wr is as the sum Wr = Z1+ ·· ·+Zr, where Z1, . . . ,Zr are
independent random variables each having the geometric distribution of (1.25). This
formulation readily yields the moments

E[Wr]=
r(1− p)

p
; Var[Wr]=

r(1− p)

p2
. (1.28)

1.3.4 The Poisson Distribution

If distributions were graded on a scale of one to ten, the Poisson clearly merits a 10. It
plays a role in the class of discrete distributions that parallels in some sense that of the
normal distribution in the continuous class. The Poisson distribution occurs often in
natural phenomena, for powerful and convincing reasons (the law of rare events, see
later in this section). At the same time, the Poisson distribution has many elegant and
surprising mathematical properties that make analysis a pleasure.

The Poisson distribution with parameter λ > 0 has the probability mass function

p(k)=
λke−λ

k!
for k = 0,1, . . . . (1.29)

Using this series expansion

eλ = 1+ λ+
λ2

2!
+
λ3

3!
+ ·· · (1.30)

we see that 6k≥0p(k)= 1. The same series helps calculate the mean via

∞∑
k=0

kp(k)=
∞∑

k=1

k
λke−λ

k!
= λe−λ

∞∑
k=1

λk−1

(k− 1)!
= λ.

The same trick works on the variance, beginning with

∞∑
k=0

k(k− 1)p(k)=
∞∑

k=2

k(k− 1)
λke−λ

k!
= λ2e−λ

∞∑
k=2

λk−2

(k− 2)!
= λ2.

Written in terms of a random variable X having the Poisson distribution with param-
eter λ, we have just calculated E[X]= λ and E[X(X− 1)]= λ2, whence E

[
X2
]
=

E[X(X− 1)]+E[X]= λ2
+ λ and Var[X]= E

[
X2
]
−{E[X]}2 = λ. That is, the mean

and variance are both the same and equal to the parameter λ of the Poisson
distribution.
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The simplest form of the law of rare events asserts that the binomial distribution
with parameters n and p converges to the Poisson with parameter λ if n→∞ and
p→ 0 in such a way that λ= np remains constant. In words, given an indefinitely
large number of independent trials, where success on each trial occurs with the same
arbitrarily small probability, then the total number of successes will follow, approxi-
mately, a Poisson distribution.

The proof is a relatively simple manipulation of limits. We begin by writing the
binomial distribution in the form

Pr{X = k} =
n!

k!(n− k)!
pk(1− p)n−k

= n(n− 1) · · ·(n− k+ 1)
pk(1− p)n

k!(1− p)k

and then substitute p= λ/n to get

Pr{X = k} = n(n− 1) · · ·(n− k+ 1)

(
λ
n

)k (
1− λ

n

)n
k!
(
1− λ

n

)k
= 1

(
1−

1

n

)
· · ·

(
1−

k− 1

n

)
λk
(
1− λ

n

)n
k!
(
1− λ

n

)k .
Now let n→∞ and observe that

1

(
1−

1

n

)
· · ·

(
1−

k− 1

n

)
→ 1 as n→∞;(

1−
λ

n

)n

→ e−λ as n→∞;

and (
1−

λ

n

)k

→ 1 as n→∞;

to obtain the Poisson distribution

Pr{X = k} =
λke−λ

k!
for k = 0,1, . . .

in the limit. Extended forms of the law of rare events are presented in Chapter 5.

Example You Be the Judge In a purse-snatching incident, a woman described her
assailant as being seven feet tall and wearing an orange hat, red shirt, green trousers,
and yellow shoes. A short while later and a few blocks away a person fitting that
description was seen and charged with the crime.

In court, the prosecution argued that the characteristics of the assailant were so rare
as to make the evidence overwhelming that the defendant was the criminal.



24 An Introduction to Stochastic Modeling

The defense argued that the description of the assailant was rare, and that, therefore,
the number of people fitting the description should follow a Poisson distribution. Since
one person fitting the description was found, the best estimate for the parameter is
λ= 1. Finally, they argued that the relevant computation is the conditional probability
that there is at least one other person at large fitting the description given that one was
observed. The defense calculated

Pr{X ≥ 2|X ≥ 1} =
1−Pr{X = 0}−Pr{X = 1}

1−Pr{X = 0}

=
1− e−1

− e−1

1− e−1
= 0.4180,

and since this figure is rather large, they argued that the circumstantial evidence arising
out of the unusual description was too weak to satisfy the “beyond a reasonable doubt”
criterion for guilt in criminal cases.

1.3.5 The Multinomial Distribution

This is a joint distribution of r variables in which only nonnegative integer values
0, . . . ,n are possible. The joint probability mass function is

Pr{X1 = k1, . . . ,Xr = kr}

=


n!

k1! · · ·kr!
pk1

1 · · ·p
kr
r if k1+ ·· ·+ kr = n,

0 otherwise,
(1.31)

where pi > 0 for i= 1, . . . ,r and p1+ ·· ·+ pr = 1.
Some moments are E[Xi]= npi,Var[Xi]= npi(1− pi), and Cov[XiXj]=−npipj.
The multinomial distribution generalizes the binomial. Consider an experiment

having a total of r possible outcomes, and let the corresponding probabilities be
p1, . . . ,pr, respectively. Now perform n independent replications of the experiment
and let Xi record the total number of times that the ith type outcome is observed in the
n trials. Then, X1, . . . ,Xr has the multinomial distribution given in (1.31).

Exercises

1.3.1 Consider tossing a fair coin five times and counting the total number of heads
that appear. What is the probability that this total is three?

1.3.2 A fraction p= 0.05 of the items coming off a production process are defective.
If a random sample of 10 items is taken from the output of the process, what is
the probability that the sample contains exactly one defective item? What is the
probability that the sample contains one or fewer defective items?

1.3.3 A fraction p= 0.05 of the items coming off of a production process are defec-
tive. The output of the process is sampled, one by one, in a random manner.
What is the probability that the first defective item found is the tenth item
sampled?
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1.3.4 A Poisson distributed random variable X has a mean of λ= 2. What is the prob-
ability that X equals 2? What is the probability that X is less than or equal to 2?

1.3.5 The number of bacteria in a prescribed area of a slide containing a sample of
well water has a Poisson distribution with parameter 5. What is the probability
that the slide shows 8 or more bacteria?

1.3.6 The discrete uniform distribution on {1, . . . ,n} corresponds to the probability
mass function

p(k)=


1

n
for k = 1, . . . ,n,

0 elsewhere.

(a) Determine the mean and variance.
(b) Suppose X and Y are independent random variables, each having the dis-

crete uniform distribution on {0, . . . ,n}. Determine the probability mass
function for the sum Z = X+Y .

(c) Under the assumptions of (b), determine the probability mass function for
the minimum U =min{X,Y}.

Problems

1.3.1 Suppose that X has a discrete uniform distribution on the integers 0,1, . . . ,9,
and Y is independent and has the probability distribution Pr{Y = k} = ak

for k = 0,1, . . . . What is the distribution of Z = X+Y (mod 10), their sum
modulo 10?

1.3.2 The mode of a probability mass function p(k) is any value k∗ for which p(k∗)≥
p(k) for all k. Determine the mode(s) for
(a) The Poisson distribution with parameter λ > 0.
(b) The binomial distribution with parameters n and p.

1.3.3 Let X be a Poisson random variable with parameter λ. Determine the probabil-
ity that X is odd.

1.3.4 Let U be a Poisson random variable with mean µ. Determine the expected
value of the random variable V = 1/(1+U).

1.3.5 Let Y = N−X where X has a binomial distribution with parameters N and p.
Evaluate the product moment E[XY] and the covariance Cov[X,Y].

1.3.6 Suppose (X1,X2,X3) has a multinomial distribution with parameters M and
πi > 0 for i= 1,2,3, with π1+π2+π3 = 1.
(a) Determine the marginal distribution for X1.
(b) Find the distribution for N = X1+X2.
(c) What is the conditional probability Pr{X1 = k|N = n} for 0≤ k ≤ n?

1.3.7 Let X and Y be independent Poisson distributed random variables having
means µ and ν, respectively. Evaluate the convolution of their mass functions
to determine the probability distribution of their sum Z = X+Y .

1.3.8 Let X and Y be independent binomial random variables having parameters
(N,p) and (M,p), respectively. Let Z = X+Y .
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(a) Argue that Z has a binomial distribution with parameters (N+M,p) by
writing X and Y as appropriate sums of Bernoulli random variables.

(b) Validate the result in (a) by evaluating the necessary convolution.
1.3.9 Suppose that X and Y are independent random variables with the geometric

distribution

p(k)= (1−π)πk for k = 0,1, . . . .

Perform the appropriate convolution to identify the distribution of Z = X+Y
as a negative binomial.

1.3.10 Determine numerical values to three decimal places for Pr{X = k},k = 0,1,2,
when
(a) X has a binomial distribution with parameters n= 10 and p= 0.1.
(b) X has a binomial distribution with parameters n= 100 and p= 0.01.
(c) X has a Poisson distribution with parameter λ= 1.

1.3.11 Let X and Y be independent random variables sharing the geometric distribu-
tion whose mass function is

p(k)= (1−π)πk for k = 0,1, . . . ,

where 0< π < 1. Let U =min{X,Y},V =max{X,Y}, and W = V −U. Deter-
mine the joint probability mass function for U and W and show that U and W
are independent.

1.3.12 Suppose that the telephone calls coming into a certain switchboard during a
one-minute time interval follow a Poisson distribution with mean λ= 4. If the
switchboard can handle at most 6 calls per minute, what is the probability that
the switchboard will receive more calls than it can handle during a specified
one-minute interval?

1.3.13 Suppose that a sample of 10 is taken from a day’s output of a machine that pro-
duces parts of which 5% are normally defective. If 100% of a day’s production
is inspected whenever the sample of 10 gives 2 or more defective parts, then
what is the probability that 100% of a day’s production will be inspected? What
assumptions did you make?

1.3.14 Suppose that a random variable Z has the geometric distribution

pZ(k)= p(1− p)k for k = 0,1, . . . ,

where p= 0.10.
(a) Evaluate the mean and variance of Z.
(b) What is the probability that Z strictly exceeds 10?

1.3.15 Suppose that X is a Poisson distributed random variable with mean λ= 2.
Determine Pr{X ≤ λ}.

1.3.16 Consider the generalized geometric distribution defined by

pk = b(1− p)k for k = 1,2, . . . ,
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and

p0 = 1−
∞∑

k=1

pk,

where 0< p< 1 and p≤ b≤ p/(1− p).
(a) Evaluate p0 in terms of b and p.
(b) What does the generalized geometric distribution reduce to when b= p?

When b= p/(1− p)?
(c) Show that N = X+Z has the generalized geometric distribution when X

is a Bernoulli random variable for which Pr{X = 1} = α, 0< α < 1, and Z
independently has the usual geometric distribution given in (1.25).

1.4 Important Continuous Distributions

For future reference, this section catalogs several continuous distributions and some
of their properties.

1.4.1 The Normal Distribution

The normal distribution with parameters µ and σ 2 > 0 is given by the familiar bell-
shaped probability density function

φ
(

x;µ,σ 2
)
=

1
√

2πσ
e−(x−µ)

2/2σ 2
, −∞< x<∞. (1.32)

The density function is symmetric about the point µ, and the parameter σ 2 is the
variance of the distribution. The case µ= 0 and σ 2

= 1 is referred to as the stan-
dard normal distribution. If X is normally distributed with mean µ and variance σ 2,
then Z = (X−µ)/σ has a standard normal distribution. By this means, probability
statements about arbitrary normal random variables can be reduced to equivalent
statements about standard normal random variables. The standard normal density and
distribution functions are given respectively by

φ(ξ)=
1
√

2π
e−ξ

2/2,
−∞< ξ <∞, (1.33)

and

8(x)=

x∫
−∞

φ(ξ)dξ, −∞< x<∞. (1.34)

The central limit theorem explains in part the wide prevalence of the normal distri-
bution in nature. A simple form of this aptly named result concerns the partial sums
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Sn = ξ1+ ·· ·+ ξn of independent and identically distributed summands ξ1,ξ2, . . .

having finite means µ= E[ξk] and finite variances σ 2
= Var[ξk]. In this case, the cen-

tral limit theorem asserts that

lim
n→∞

Pr

{
Sn− nµ

σ
√

n
≤ x

}
=8(x) for all x. (1.35)

The precise statement of the theorem’s conclusion is given by equation (1.35).
Intuition is sometimes enhanced by the looser statement that, for large n, the sum
Sn is approximately normally distributed with mean nµ and variance nσ 2.

In practical terms we expect the normal distribution to arise whenever the numerical
outcome of an experiment results from numerous small additive effects, all operating
independently, and where no single or small group of effects is dominant.

The Lognormal Distribution

If the natural logarithm of a nonnegative random variable V is normally distributed,
then V is said to have a lognormal distribution. Conversely, if X is normally distributed
with mean µ and variance σ 2, then V = eX defines a lognormally distributed random
variable. The change-of-variable formula (1.15) applies to give the density function
for V to be

fV(v)=
1

√
2πσv

exp

{
−

1

2

(
lnv−µ

σ

)2
}
, v≥ 0. (1.36)

The mean and variance are, respectively,

E[V]= exp

{
µ+

1

2
σ 2
}
,

(1.37)

Var[V]= exp

{
2

(
µ+

1

2
σ 2
)}[

exp
{
σ 2
}
− 1

]
.

1.4.2 The Exponential Distribution

A nonnegative random variable T is said to have an exponential distribution with
parameter λ > 0 if the probability density function is

fT(t)=

{
λe−λt for t ≥ 0,
0 for t < 0.

(1.38)

The corresponding distribution function is

FT(t)=

{
1− e−λt for t ≥ 0,
0 for t < 0,

(1.39)

and the mean and variance are given, respectively, by

E[T]=
1

λ
and Var[T]=

1

λ2
.
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Note that the parameter is the reciprocal of the mean and not the mean itself.
The exponential distribution is fundamental in the theory of continuous-time

Markov chains (see Chapter 5), due in major part to its memoryless property, as now
explained. Think of T as a lifetime and, given that the unit has survived up to time t,
ask for the conditional distribution of the remaining life T − t. Equivalently, for x> 0
determine the conditional probability Pr{T − t > x|T > t}. Directly applying the defi-
nition of conditional probability (see Section 1.2.7), we obtain

Pr{T − t > x|T > t} =
Pr{T > t+ x,T > t}

Pr{T > t}

=
Pr{T > t+ x}

Pr{T > t}
(because x> 0) (1.40)

=
e−λ(t+x)

e−λt
[from (1.39)]

= e−λx.

There is no memory in the sense that Pr{T − t > x|T > t} = e−λx
= Pr{T > x}, and an

item that has survived for t units of time has a remaining lifetime that is statistically
the same as that for a new item.

To view the memoryless property somewhat differently, we introduce the hazard
rate or failure rate r(s) associated with a nonnegative random variable S having con-
tinuous density g(s) and distribution function G(s) < 1. The failure rate is defined by

r(s)=
g(s)

1−G(s)
for s> 0. (1.41)

We obtain the interpretation by calculating (see Section 1.2.2)

Pr{s< S ≤ s+1s|s< S} =
Pr{s< S ≤ s+1s}

Pr{s< S}

=
g(s)1s

1−G(s)
+ o(1s) [from (1.5)]

= r(s)1s+ o(1s).

An item that has survived to time s will then fail in the interval (s,s+1s] with condi-
tional probability r(s)1s+ o(1s), thus motivating the name “failure rate.”

We can invert (4.10) by integrating

−r(s)=
−g(s)

1−G(s)
=

d[1−G(s)]/ds

1−G(s)
=

d{ln[1−G(s)]}

ds

to obtain

−

t∫
0

r(s)ds= ln[1−G(t)],
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or

G(t)= 1− exp

−
t∫

0

r(s)ds

, t ≥ 0,

which gives the distribution function explicitly in terms of the hazard rate.
The exponential distribution is uniquely the continuous distribution with the con-

stant failure rate r(t)≡ λ. (See Exercise 1.4.8 for the discrete analog.) The failure rate
does not vary in time, another reflection of the memoryless property.

Section 1.5 contains several exercises concerning the exponential distribution.
In addition to providing practice in relevant algebraic and calculus manipulations,
these exercises are designed to enhance the reader’s intuition concerning the expo-
nential law.

1.4.3 The Uniform Distribution

A random variable U is uniformly distributed over the interval [a,b], where a< b, if
it has the probability density function

fU(u)=


1

b− a
for a≤ u≤ b,

0 elsewhere.
(1.42)

The uniform distribution extends the notion of “equally likely” to the continuous case.
The distribution function is

FU(x)=


0 for u≤ a,
x− a

b− a
for a< x≤ b,

1 for x> b,

(1.43)

and the mean and variance are, respectively,

E[U]=
1

2
(a+ b) and Var[U]=

(b− a)2

12
.

The uniform distribution on the unit interval [0,1], for which a= 0 and b= 1, is
most prevalent.

1.4.4 The Gamma Distribution

The gamma distribution with parameters α > 0 and λ > 0 has probability density func-
tion

f (x)=
λ

0(α)
(λx)α−1e−λx for x> 0. (1.44)

Given an integer number α of independent exponentially distributed random variables
Y1, . . . ,Yα having common parameter λ, then their sum Xα = Y1+ ·· ·+Yα has the
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gamma density of (1.44), from which we obtain the moments

E[Xα]=
α

λ
and Var[Xα]=

α

λ2
,

with these moment formulas holding for noninteger α as well.

1.4.5 The Beta Distribution

The beta density with parameters α > 0 and β > 0 is given by

f (x)=


0(α+β)

0(α)0(β)
xα−1(1− x)β−1 for 0< x< 1,

0 elsewhere.
(1.45)

The mean and variance are, respectively,

E[X]=
α

α+β
and Var[X]=

αβ

(α+β)2(α+β + 1)
.

(The gamma and beta functions are defined and briefly discussed in Section 1.6.)

1.4.6 The Joint Normal Distribution

Let σX,σY ,µX,µY , and ρ be real constants subject to σX > 0,σY > 0, and−1< ρ < 1.
For real variables x and y, define

Q(x,y)=
1

1− ρ2

{(
x−µX

σX

)2

− 2ρ

(
x−µX

σX

)(
y−µY

σY

)
+

(
y−µY

σY

)2
}
.

(1.46)

The joint normal (or bivariate normal) distribution for random variables X,Y is defined
by the density function

φX,Y(x,y)=
1

2πσXσY

√
1− ρ2

(1.47)

× exp

{
−

1

2
Q(x,y)

}
, −∞< x,y<∞.

The moments are

E[X]= µX, E[Y]= µY ,

Var[X]= σ 2
X, Var[Y]= σ 2

Y ,

and

Cov[X,Y]= E[(X−µX)(Y −µY)]= ρσXσY .
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The dimensionless parameter ρ is called the correlation coefficient. When ρ is posi-
tive, then positive values of X are (stochastically) associated with positive values of
Y . When ρ is negative, then positive values of X are associated with negative values
of Y . If ρ = 0, then X and Y are independent random variables.

Linear Combinations of Normally Distributed Random Variables

Suppose X and Y have the bivariate normal density (1.47), and let Z = aX+ bY for
arbitrary constants a,b. Then Z is normally distributed with mean

E[Z]= aµX + bµY

and variance

Var[X]= a2σ 2
X + 2abρσXσY + b2σ 2

Y .

A random vector X1, . . . ,Xn, is said to have a multivariate normal distribution, or a
joint normal distribution, if every linear combination α1X1+ ·· ·+αnXn,αi real has a
univariate normal distribution. Obviously, if X1, . . . ,Xn has a joint normal distribution,
then so does the random vector Y1, . . . ,Ym, defined by the linear transformation in
which

Yj = αj1X1+ ·· ·+αjnXn, for j= 1, . . . ,m,

for arbitrary constants αji.

Exercises

1.4.1 The lifetime, in years, of a certain class of light bulbs has an exponential dis-
tribution with parameter λ= 2. What is the probability that a bulb selected at
random from this class will last more than 1.5 years? What is the probability
that a bulb selected at random will last exactly 1.5 years?

1.4.2 The median of a random variable X is any value a for which Pr{X ≤ a} ≥ 1
2 and

Pr{X ≥ a} ≥ 1
2 . Determine the median of an exponentially distributed random

variable with parameter λ. Compare the median to the mean.
1.4.3 The lengths, in inches, of cotton fibers used in a certain mill are exponentially

distributed random variables with parameter λ. It is decided to convert all mea-
surements in this mill to the metric system. Describe the probability distribution
of the length, in centimeters, of cotton fibers in this mill.

1.4.4 Twelve independent random variables, each uniformly distributed over the inter-
val (0,1], are added, and 6 is subtracted from the total. Determine the mean and
variance of the resulting random variable.

1.4.5 Let X and Y have the joint normal distribution described in equation (1.47).
What value of α minimizes the variance of Z = αX+ (1−α)Y? Simplify your
result when X and Y are independent.
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1.4.6 Suppose that U has a uniform distribution on the interval [0,1]. Derive the den-
sity function for the random variables
(a) Y =− ln(1−U).
(b) Wn = Un for n≥ 1.

Hint: Refer to Section 1.2.6.
1.4.7 Given independent exponentially distributed random variables S and T with

common parameter λ, determine the probability density function of the sum
R= S+T and identify its type by name.

1.4.8 Let Z be a random variable with the geometric probability mass function

p(k)= (1−π)πk, k = 0,1, . . . ,

where 0< π < 1.
(a) Show that Z has a constant failure rate in the sense that Pr{Z = k|Z ≥ k} =

1−π for k = 0,1, . . . .
(b) Suppose Z′ is a discrete random variable whose possible values are 0,1, . . . ,

and for which Pr{Z′ = k|Z′ ≥ k} = 1−π for k = 0,1, . . . . Show that the
probability mass function for Z′ is p(k).

Problems

1.4.1 Evaluate the moment E
[
eλZ
]
, where λ is an arbitrary real number and Z is a

random variable following a standard normal distribution, by integrating

E[eλZ]

+∞∫
−∞

eλz 1
√

2π
e−z2/2dz.

Hint: Complete the square − l
2 z2
+ λz=− 1

2

[
(z− λ)2− λ2

]
and use the fact

that

+∞∫
−∞

1
√

2π
e−(z−λ)

2/2dz= 1.

1.4.2 Let W be an exponentially distributed random variable with parameter θ and
mean µ= 1/θ .
(a) Determine Pr{W > µ}.
(b) What is the mode of the distribution?

1.4.3 Let X and Y be independent random variables uniformly distributed over the

interval
[
θ − 1

2 ,θ +
1
2

]
for some fixed θ . Show that W = X−Y has a distribu-

tion that is independent of θ with density function

fw(w)=

1+w for − 1≤ w< 0,
1−w for 0≤ w≤ 1,
0 for |w|> 1.
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1.4.4 Suppose that the diameters of bearings are independent normally distributed
random variables with mean µB = 1.005 inch and variance σ 2

B = (0.003)2

inch2. The diameters of shafts are independent normally distributed random
variables having mean µS = 0.995 inch and variance σ 2

S = (0.004)2 inch2.

Bearing

B

Shaft

S

Let S be the diameter of a shaft taken at random and let B be the diameter of a
bearing.
(a) What is the probability Pr{S> B} of interference?
(b) What is the probability of one or fewer interferences in 20 random shaft-

bearing pairs?

Hint: The clearance, defined by C = B− S, is normally distributed (why?),
and interference occurs only if C < 0.

1.4.5 If X follows an exponential distribution with parameter α = 2, and indepen-
dently, Y follows an exponential distribution with parameter β = 3, what is the
probability that X < Y?

1.5 Some Elementary Exercises

We have collected in this section a number of exercises that go beyond what is usually
covered in a first course in probability.

1.5.1 Tail Probabilities

In mathematics, what is a “trick” upon first encounter becomes a basic tool when
familiarity through use is established. In dealing with nonnegative random variables,
we can often simplify the analysis by the trick of approaching the problem through the
upper tail probabilities of the form Pr{X > x}. Consider the following example.

A jar has n chips numbered 1,2, . . . ,n. A person draws a chip, returns it, draws
another, returns it, and so on, until a chip is drawn that has been drawn before. Let X
be the number of drawings. Find the probability distribution for X.

It is easier to compute Pr{X > k} first. Then, Pr{X > 1} = 1, since at least two draws
are always required. The event {X > 2} occurs when distinct numbers appear on the
first two draws, whence Pr{X > 2} = (n/n)[(n− 1)/n]. Continuing in this manner, we



Introduction 35

obtain

Pr{X > k} = 1

(
1−

1

n

)(
1−

2

n

)
· · ·

(
1−

k− 1

n

)
,

for k = 1, . . . ,n− 1. (1.48)

Finally,

Pr{X = k} = Pr{X > k− 1}−Pr{X > k}

=

[(
1−

1

n

)
· · ·

(
1−

k− 2

n

)]
−

[(
1−

1

n

)
· · ·

(
1−

k− 2

n

)(
1−

k− 1

n

)]
=

(
1−

1

n

)
· · ·

(
1−

k− 2

n

)[
1−

(
1−

k− 1

n

)]
=

k− 1

n

(
1−

1

n

)
· · ·

(
1−

k− 2

n

)
,

for k = 2, . . . ,n+ 1.

Now try deriving Pr{X = k} directly, for comparison with the “trick” approach.
The usefulness of the upper tail probabilities is enhanced by the formula

E[X]=
∞∑

k=0

Pr{X > k} =
∞∑

k=1

Pr{X ≥ k}, (1.49)

valid for nonnegative integer-valued random variables X. To establish (1.49), abbre-
viate the notation by using p(k)= Pr{X = k}, and rearrange the terms in E[X]=
6k−≥0kp(k) as follows:

E[X]= 0p(0)+ 1p(1)+ 2p(2)+ 3p(3)+ ·· ·

= p(1)+ p(2)+ p(3)+ p(4)+ ·· ·

+ p(2)+ p(3)+ p(4)+ ·· ·

+ p(3)+ p(4)+ ·· ·

+ p(4)+ ·· ·

...

= Pr{X ≥ 1}+Pr{X ≥ 2}+Pr{X ≥ 3}+ · · ·

=

∞∑
k=1

Pr{X ≥ k},

thus establishing (1.49).
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For the chip drawing problem, the mean number of draws required is

E[X]= Pr{X > 0}+Pr{X > 1}+ · · · +Pr{X > n},

since Pr{X > k} = 0 for k > n. Substituting (1.48) into (1.49) leads directly to

E[X]= 2+

(
1−

1

n

)
+

(
1−

1

n

)(
1−

2

n

)
+ ·· ·

+

(
1−

1

n

)(
1−

2

n

)
· · ·

(
1−

n− 1

n

)
.

Now let X be a nonnegative continuous random variable with density f (x) and distri-
bution function F(x). The analog to (1.49) is

E[X]=

∞∫
0

[1−F(z)]dz, (1.50)

obtained by interchanging an order of integration as follows:

E[X]=

∞∫
0

xf (x)dx=

∞∫
0

 x∫
0

dz

 f (x)dx

=

∞∫
0

 ∞∫
z

f (x)dx

dz=

∞∫
0

[1−F(z)]dz.

Interchanging the order of integration where the limits are variables often proves
difficult for many students. The trick of using indicator functions to make the limits of
integration constant may simplify matters. In the preceding interchange, let

1z(x) := 1 if 0≤ z< x and 1z(x) := 0 otherwise.

and then

∞∫
0

 x∫
0

dz

f (x)dx=

∞∫
0

 ∞∫
0

1z(x)f (x)dz

dx

=

∞∫
0

 ∞∫
0

1z(x)f (x)dx

dz=

∞∫
0

 ∞∫
z

f (x)dx

dz.

As an application of (1.50), let Xc =min{c,X} for some positive constant c. For
example, suppose X is the failure time of a certain piece of equipment. A planned
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replacement policy is put in use that calls for replacement of the equipment upon its
failure or upon its reaching age c, whichever occurs first. Then,

Xc =min{c,X} =

{
X if X ≤ c,
c if X > c

is the time for replacement.
Now

Pr{Xc > z} =

{
1−F(z) if 0≤ z< c,
0 if c≤ z,

whence we obtain

E[Xc]=

c∫
0

[1−F(z)]dz,

which is decidedly shorter than

E[Xc]=

c∫
0

xf (x)dx+ c[1−F(c)].

Observe that Xc is a random variable whose distribution is partly continuous and
partly discrete, thus establishing by example that such distributions do occur in prac-
tical applications.

1.5.2 The Exponential Distribution

This exercise is designed to foster intuition about the exponential distribution, as well
as to provide practice in algebraic and calculus manipulations relevant to stochastic
modeling.

Let X0 and X1 be independent exponentially distributed random variables with
respective parameters λ0 and λ1, so that

Pr{Xi > t} = e−λit for t ≥ 0, i= 0,1.

Let

N =

{
0 if X0 ≤ X1,

1 if X1 ≤ X0;

U =min{X0,X1} = XN;

M = 1−N;

V =max{X0,X1} = XM;



38 An Introduction to Stochastic Modeling

and

W = V −U = |X0−X1|.

In this context, we derive the following:

(a) Pr{N = 0 and U > t} = e−(λ0+λ1)t
(

λ0

λ0+ λ1

)
.

The event {N = 0 and U > t} is exactly the event {t < X0 ≤ X1}, whence

Pr{N = 0,U > t} = Pr{t < X0 < X1}

=

∫∫
r<x0<xl

λ0e−λ0x0λ1e−λ1x1 dx1dx0

=

∞∫
t

 ∞∫
x0

λ1e−λ1X1 dx1

λ0e−λ0x0 dx0

=

∞∫
t

e−λ1X0λ0e−λ0X0 dx0

=
λ0

λ0+ λ1

∞∫
t

(λ0+ λ1)e
−(λ0+λ1)x0 dx0

=
λ0

λ0+ λ1
e−(λ0+λ1)t.

(b) Pr{N = 0} =
λ0

λ0+ λ1
and Pr{N = 1} =

λ1

λ0+ λ1
.

We use the result in (a) as follows:

Pr{N = 0} = Pr{N = 0,U > 0} =
λ0

λ0+ λ1
from (a).

Obviously, Pr{N = 1} = 1−Pr{N = 0} = λ1/(λ0+ λ1).
(c) Pr{U > t} = e−(λ0+λ1)t, t ≥ 0.

Upon adding the result in (a),

Pr{N = 0 and U > t} = e−(λ0+λ1)t λ0

λ0+ λ1
,

to the corresponding quantity associated with N = 1,

Pr{N = 1 and U > t} = e−(λ0+λ1)t λ1

λ0+ λ1
,

we obtain the desired result via

Pr{U > t} = Pr{N = 0,U > t}+Pr{N = 1,U > t}

= e−(λ0+λ1)t
(

λ0

λ0+ λ1
+

λ1

λ0+ λ1

)
= e−(λ0+λ1)t.
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At this point observe that U and N are independent random variables. This follows
because (a), (b), and (c) together give

Pr{N = 0 and U > t} = Pr{N = 0}×Pr{U > t}.

Think about this remarkable result for a moment. Suppose X0 and X1 represent lifetimes,
and λ0 = 0.001, while λ1 = 1. The mean lifetimes are E[X0]= 1000 and E[X1]= 1. Sup-
pose we observe that the time of the first death is rather small, say, U =min{X0,X1} =

1
2 .

In spite of vast disparity between the mean lifetimes, the observation that U = 1
2 provides

no information about which of the two units, 0 or 1, was first to die! This apparent para-
dox is yet another, more subtle, manifestation of the memoryless property unique to the
exponential density.

We continue with the exercise.
(d) Pr{W > t|N = 0} = e−λ1t, t ≥ 0.

The event {W > t and N = 0} for t ≥ 0 corresponds exactly to the event {t < X1−X0}.
Thus,

Pr{W > t and N = 0} = Pr{X1−X0 > t}

=

∫∫
x1−x0>t

λ0e−λ0x0λ1e−λ1x1 dx0dx1

=

∞∫
0

 ∞∫
x0+t

λ1e−λ1x1 dx1

λ0e−λ0x0 dx0

=

∞∫
0

e−λ1(x0+t)λ0e−λ0x0 dx0

=
λ0

λ0+ λ1
e−λ1t

∞∫
0

(λ0+ λ1)e
−(λ0+λ1)x0 dx0

=
λ0

λ0+ λ1
e−λ1t

= Pr{N = 0}e−λ1t [from (b)].

Then, using the basic definition of conditional probability (Section 1.2.7), we obtain

Pr{W > t|N = 0} =
Pr{W > t,N = 0}

Pr{N = 0}
= e−λ1t, t ≥ 0,

as desired.
Of course a parallel formula holds conditional on N = 1:

Pr{W > t|N = 1} = e−λ0t, t ≥ 0,

and using the law of total probability we obtain the distribution of W in the form

Pr{W > t} = Pr{W > t,N = 0}+Pr{W > t,N = 1}

=
λ0

λ0+ λ1
e−λ1t

+
λ1

λ0+ λ1
e−λ0t, t ≥ 0,
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(e) U and W = V −U are independent random variables.
To establish this final consequence of the memoryless property, it suffices to show that

Pr{U > u and W > w} = Pr{U > u}Pr{W > w} for all u≥ 0,w≥ 0.

Determining first

Pr{N = 0,U > u,W > w} = Pr{u< X0 < X1−w}

=

∫∫
u<x0<x1−w

λ0e−λ0x0λ1e−λ1x1 dx0dx1

=

∞∫
u

 ∞∫
x0+w

λ1e−λ1x1 dx1

λ0e−λ0x0 dx0

=

∞∫
u

e−λ1(x0+w)λ0e−λ0x0 dx0

=

(
λ0

λ0+ λ1

)
e−λ1w

∞∫
u

(λ0+ λ1)e
−(λ0+λ1)x0 dx0

=

(
λ0

λ0+ λ1

)
e−λ1we−(λ0+λ1)u,

and then, by symmetry,

Pr{N = 1,U > u,W > w} =

(
λ1

λ0+ λ1

)
e−λ0we−(λ0+λ1)u,

and finally adding the two expressions, we obtain

Pr{U > u,W > w} =

[(
λ0

λ0+ λ1

)
e−λ1w

+

(
λ1

λ0+ λ1

)
e−λ0w

]
e−(λ0+λ1)u

= Pr{W > w}Pr{U > u}, u,w≥ 0.

The calculation is complete.

Exercises

1.5.1 Let X have a binomial distribution with parameters n= 4 and p= 1
4 . Compute

the probabilities Pr{X ≥ k} for k = 1,2,3,4, and sum these to verify that the
mean of the distribution is 1.

1.5.2 A jar has four chips colored red, green, blue, and yellow. A person draws a
chip, observes its color, and returns it. Chips are now drawn repeatedly, with-
out replacement, until the first chip drawn is selected again. What is the mean
number of draws required?

1.5.3 Let X be an exponentially distributed random variable with parameter λ. Deter-
mine the mean of X
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(a) by integrating by parts in the definition in equation (1.7) with m= 1;
(b) by integrating the upper tail probabilities in accordance with equation

(1.50).
Which method do you find easier?

1.5.4 A system has two components: A and B. The operating times until failure of the
two components are independent and exponentially distributed random vari-
ables with parameter 2 for component A, and 3 for B. The system fails at the
first component failure.
(a) What is the mean time to failure for component A? For component B?
(b) What is the mean time to system failure?
(c) What is the probability that it is component A that causes system failure?
(d) Suppose that it is component A that fails first. What is the mean remaining

operating life of component B?
1.5.5 Consider a post office with two clerks. John, Paul, and Naomi enter simulta-

neously. John and Paul go directly to the clerks, while Naomi must wait until
either John or Paul is finished before she begins service.
(a) If all of the service times are independent exponentially distributed random

variables with the same mean 1/λ, what is the probability that Naomi is still
in the post office after the other two have left?

(b) How does your answer change if the two clerks have different service rates,
say λ1 = 3 and λ2 = 47?

(c) The mean time that Naomi spends in the post office is less than that for John
or Paul provided that max{λ1,λ2}> cmin{λ1,λ2} for a certain constant c.
What is the value of this constant?

Problems

1.5.1 Let X1,X2, . . . be independent and identically distributed random variables hav-
ing the cumulative distribution function F(x)= Pr{X ≤ x}. For a fixed number
ξ , let N be the first index k for which Xk > ξ . That is, N = 1 if X1 > ξ ;N = 2 if
X1 ≤ ξ and X2 > ξ ; etc. Determine the probability mass function for N.

1.5.2 Let X1,X2, . . . ,Xn be independent random variables, all exponentially dis-
tributed with the same parameter λ. Determine the distribution function for the
minimum Z =min{X1, . . . ,Xn}.

1.5.3 Suppose that X is a discrete random variable having the geometric distribution
whose probability mass function is

p(k)= p(1− p)k for k = 0,1, . . . .

(a) Determine the upper tail probabilities Pr{X > k} for k = 0,1, . . . .
(b) Evaluate the mean via E[X]=6k≥0 Pr{X > k}.

1.5.4 Let V be a continuous random variable taking both positive and negative values
and whose mean exists. Derive the formula

E[V]=

∞∫
0

[1−FV(v)]dv−

0∫
−∞

FV(v)dv.
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1.5.5 Show that

E[W2]=

∞∫
0

2y[1−FW(y)]dy

for a nonnegative random variable W.
1.5.6 Determine the upper tail probabilities Pr{V > t} and mean E[V] for a random

variable V having the exponential density

fV(v)=

{
0 for v< 0,
λe−λv for v≥ 0,

where λ is a fixed positive parameter.
1.5.7 Let X1,X2, . . . , Xn be independent random variables that are exponentially dis-

tributed with respective parameters λ1,λ2, . . . , λn. Identify the distribution of
the minimum V =min{X1,X2, . . . ,Xn}.

Hint: For any real number v, the event {V > v} is equivalent to {X1 > v,X2 >

v, . . . ,Xn > v}.
1.5.8 Let U1,U2, . . . ,Un be independent uniformly distributed random variables on

the unit interval [0,1]. Define the minimum Vn =min{U1,U2, . . . ,Un}.
(a) Show that Pr{Vn > v} = (1− v)n for 0≤ v≤ 1.
(b) Let Wn = nVn. Show that Pr{Wn > w} = [1− (w/n)]n for 0≤ w≤ n, and

thus

lim
n→∞

Pr{Wn > w} = e−w for w≥ 0.

1.5.9 A flashlight requires two good batteries in order to shine. Suppose, for the sake
of this academic exercise, that the lifetimes of batteries in use are indepen-
dent random variables that are exponentially distributed with parameter λ= 1.
Reserve batteries do not deteriorate. You begin with five fresh batteries. On
average, how long can you shine your light?

1.6 Useful Functions, Integrals, and Sums

Collected here for later reference are some calculations and formulas that are espe-
cially pertinent in probability modeling.

We begin with several exponential integrals, the first and simplest being∫
e−xdx=−e−x. (1.51)

When we use integration by parts, the second integral that we introduce reduces to the
first in the manner∫

xe−xdx=−xe−x
+

∫
e−xdx=−e−x(1+ x). (1.52)
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Then, (1.51) and (1.52) are the special cases of α = 1 and α = 2, respectively, in
the general formula, valid for any real number α for which the integrals are defined,
given by∫

xα−1e−xdx=−xα−1e−x
+ (α− 1)

∫
xα−2e−xdx. (1.53)

Fixing the limits of integration leads to the gamma function, defined by

0(α)=

∞∫
0

xα−1e−xdx, for α > 0. (1.54)

From (1.53), it follows that

0(α)= (α− 1)0(α− 1), (1.55)

and therefore, for any integers k,

0(k)= (k− 1)(k− 2) · · ·2 ·0(1). (1.56)

An easy consequence of (1.51) is the evaluation 0(1)= 1, which with (1.55) shows
that the gamma function at integral arguments is a generalization of the factorial func-
tion, and

0(k)= (k− 1)! for k = 1,2, . . . . (1.57)

A more difficult integration shows that

0

(
1

2

)
=
√
π, (1.58)

which with (1.56) provides

0

(
n+

1

2

)
=

1× 3× 5× ·· ·× (2n− 1)

2n

√
π, for n= 0,1, . . . . (1.59)

Stirling’s formula is the following important asymptotic evaluation of the factorial
function:

n!= nne−n(2πn)1/2er(n)/12n, (1.60)

in which

1−
1

12n+ 1
< r(n) < 1. (1.61)
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We sometimes write this in the looser form

n!∼ nne−n(2πn)1/2 as n→∞, (1.62)

the symbol “∼” signifying that the ratio of the two sides in (1.62) approaches 1 as
n→∞. For the binomial coefficient

( n
k

)
= n!/[k!(n− k)! ], we then obtain

(
n
k

)
∼
(n− k)k

k!
as n→∞, (1.63)

as a consequence of (1.62) and the exponential limit

e−k
= lim

n→∞

(
1−

k

n

)n

.

The integral

B(m,n)=

1∫
0

xm−1(1− x)n−1dx, (1.64)

which converges when m and n are positive, defines the beta function, related to the
gamma function by

B(m,n)=
0(m)0(n)

0(m+ n)
for m> 0,n> 0. (1.65)

For nonnegative integral values m and n,

B(m+ 1,n+ 1)=

1∫
0

xm(1− x)ndx=
m!n!

(m+ n+ 1)!
. (1.66)

For n= 1,2, . . . , the binomial theorem provides the evaluation

(1− x)n =
n∑

k=0

(−1)k
(

n
k

)
xk, for −∞< x<∞. (1.67)

The formula may be generalized for nonintegral n by appropriately generalizing the
binomial coefficient, defining for any real number α,

(
α

k

)
=

{
α(α− 1) · · ·(α− k+ 1)

k!
for k = 1,2, . . . ,

1 for k = 0.
(1.68)
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As a special case, for any positive integer n,(
−n
k

)
= (−1)k

n(n+ 1) · · ·(n+ k− 1)

k!
(1.69)

= (−1)k
(

n+ k− 1
k

)
.

The general binomial theorem, valid for all real α, is

(1− x)α =
∞∑

k=0

(−1)k
(
α

k

)
xk for− 1< x< 1. (1.70)

When α =−n for a positive integer n, we obtain a group of formulas useful in dealing
with geometric series. For a positive integer n, in view of (1.69) and (1.70), we have

(1− x)−n
=

∞∑
k=0

(
n+ k− 1

k

)
xk for |x|< 1. (1.71)

The familiar formula

∞∑
k=0

xk
= 1+ x+ x2

+ ·· · =
1

1− x
for |x|< 1 (1.72)

for the sum of a geometric series results from (1.71) with n= 1. The cases n= 2 and
n= 3 yield the formulas

∞∑
k=0

(k+ 1)xk
= 1+ 2x+ 3x2

+ ·· ·

=
1

(1− x)2
for |x|< 1, (1.73)

∞∑
k=0

(k+ 2)(k+ 1)xk
=

2

(1− x)3
for |x|< 1. (1.74)

Sums of Numbers

The following sums of powers of integers have simple expressions:

1+ 2+ ·· ·+ n=
n(n+ 1)

2
,

1+ 22
+ ·· ·+ n2

=
n(n+ 1)(2n+ 1)

6
,

1+ 23
+ ·· ·+ n3

=
n2(n+ 1)2

4
.



2 Conditional Probability
and Conditional Expectation

2.1 The Discrete Case

The conditional probability Pr{A|B} of the event A given the event B is defined by

Pr{A|B} =
Pr{A and B}

Pr{B}
if Pr{B}> 0, (2.1)

and is not defined, or is assigned an arbitrary value, when Pr{B} = 0. Let X and Y be
random variables that can attain only countably many different values, say 0,1,2, . . . .
The conditional probability mass function pX|Y(x|y) of X given Y = y is defined by

pX|Y(x|y)=
Pr{X = x and Y = y}

Pr{Y = y}
if Pr{Y = y}> 0,

and is not defined, or is assigned an arbitrary value, whenever Pr{Y = y} = 0. In
terms of the joint and marginal probability mass functions pXY(x,y) and pY(y)=
6xpXY(x,y), respectively, the definition is

pX|Y(x|y)=
pXY(x,y)

pY(y)
if pY(y) > 0; x,y= 0,1, . . . . (2.2)

Observe that pX|Y(x|y) is a probability mass function in x for each fixed y, i.e.,
pX|Y(x|y)≥ 0 and 6ξpX|Y(ξ |y)= 1, for all x,y.

The law of total probability takes the form

Pr{X = x} =
∞∑

y=0

pX|Y(x|y)pY(y). (2.3)

Notice in (2.3) that the points y where pX|Y(x|y) is not defined are exactly those values
for which pY(y)= 0, and hence, do not affect the computation. The lack of a com-
plete prescription for the conditional probability mass function, a nuisance in some
instances, is always consistent with subsequent calculations.

Example Let X have a binomial distribution with parameters p and N, where N has a
binomial distribution with parameters q and M. What is the marginal distribution of X?

An Introduction to Stochastic Modeling. DOI: 10.1016/B978-0-12-381416-6.00002-2
c© 2011 Elsevier Inc. All rights reserved.
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We are given the conditional probability mass function

pX|N(k|n)=

(
n
k

)
pk(1− p)n−k, k = 0,1, . . . ,n,

and the marginal distribution

pN(n)=

(
M
n

)
qn(1− q)M−n, n= 0,1, . . . ,M.

We apply the law of total probability in the form of (2.3) to obtain

Pr{X = k} =
M∑

n=0

pX|N(k|n)pN(n)

=

M∑
n=k

n!

k!(n− k)!
pk(1− p)n−k M!

n!(M− n)!
qn(1− q)M−n

=
M!

k!
pk(1− q)M

(
q

1− q

)k M∑
n=k

1

(n− k)!(M− n)!
(1− p)n−k

×

(
q

1− q

)n−k

=
M!

k!(M− k)!
(pq)k(1− q)M−k

[
1+

q(1− p)

1− q

]M−k

=
M!

k!(M− k)!
(pq)k(1− pq)M−k, k = 0,1, . . . ,M.

In words, X has a binomial distribution with parameters M and pq.

Example Suppose X has a binomial distribution with parameters p and N, where N
has a Poisson distribution with mean λ. What is the marginal distribution for X?

Proceeding as in the previous example but now using

pN(n)=
λne−λ

n!
, n= 0,1, . . . ,

we obtain

Pr{X = k} =
∞∑

n=0

pX|N(k|n)pN(n)

=

∞∑
n=k

n!

k!(n− k)!
pk(1− p)n−k λ

ne−λ

n!
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=
λke−λpk

k!

∞∑
n=k

[λ(1− p)]n−k

(n− k)!

=
(λp)ke−λ

k!
eλ(1−p)

=
(λp)ke−λp

k!
for k = 0,1, . . . .

In words, X has a Poisson distribution with mean λp.

Example Suppose X has a negative binomial distribution with parameters p and N,
where N has the geometric distribution

pN(n)= (1−β)β
n−1 for n= 1,2, . . . .

What is the marginal distribution for X?
We are given the conditional probability mass function

pX|N(k|n)=

(
n+ k− 1

k

)
pn(1− p)k, k = 0,1, . . . .

Using the law of total probability, we obtain

Pr{X = k} =
∞∑

n=0

pX|N(k|n)pN(n)

=

∞∑
n=1

(n+ k− 1)!

k!(n− 1)!
pn(1− p)k(1−β)βn−1

= (1−β)(1− p)kp
∞∑

n=1

(
n+ k− 1

k

)
(βp)n−1

= (1−β)(1− p)kp(1−βp)−k−1

=

(
p−βp

1−βp

)(
1− p

1−βp

)k

for k = 0,1, . . . .

We recognize the marginal distribution of X as being of geometric form.
Let g be a function for which the expectation of g(X) is finite. We define the condi-

tional expected value of g(X) given Y = y by the formula

E[g(X)|Y = y]=
∑

x

g(x)pX|Y(x|y) if pY(y) > 0, (2.4)
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and the conditional mean is not defined at values y for which pY(y)= 0. The law of
total probability for conditional expectation reads

E[g(X)]=
∑

y

E[g(X)|Y = y]pY(y). (2.5)

The conditional expected value E[g(X)|Y = y] is a function of the real variable y. If
we evaluate this function at the random variable Y , we obtain a random variable that
we denote by E[g(X)|Y]. The law of total probability in (2.5) now may be written in
the form

E[g(X)]= E{E[g(X)|Y]}. (2.6)

Since the conditional expectation of g(X) given Y = y is the expectation with
respect to the conditional probability mass function pX|Y(x|y), conditional expecta-
tions behave in many ways like ordinary expectations. The following list summarizes
some properties of conditional expectations. In this list, with or without affixes, X and
Y are jointly distributed random variables; c is a real number; g is a function for which
E[|g(X)|]<∞;h is a bounded function; and v is a function of two variables for which
E[|v(X,Y)|]<∞. The properties are

1. E[c1g1(X1)+ c2g2(X2)|Y = y]

= c1E[g1(X1)|Y = y]+ c2E[g2(X2)|Y = y]. (2.7)

2. if g≥ 0, then E[g(X)|Y = y]≥ 0. (2.8)

3. E[v(X,Y)|Y = y]= E[v(X,y)|Y = y]. (2.9)

4. E[g(X)|Y = y]= E[g(X)] if X and Y are independent. (2.10)

5. E[g(X)h(Y)|Y = y]= h(y)E[g(X)|Y = y]. (2.11)

6. E[g(X)h(Y)]=
∑

y

h(y)E[g(X)|Y = y]pY (y)

= E{h(Y)E[g(X)|Y]}. (2.12)

As a consequence of (2.7), (2.11), and (2.12), with either g≡ 1 or h≡ 1, we obtain

E[c|Y = y]= c, (2.13)

E[h(Y)|Y = y]= h(y), (2.14)

E[g(X)]=
∑

y

E[g(X)|Y = y]pY(y)= E{E[g(X)|Y]}. (2.15)
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Exercises

2.1.1 I roll a six-sided die and observe the number N on the uppermost face. I then toss
a fair coin N times and observe X, the total number of heads to appear. What is
the probability that N = 3 and X = 2? What is the probability that X = 5? What
is E[X], the expected number of heads to appear?

2.1.2 Four nickels and six dimes are tossed, and the total number N of heads is
observed. If N = 4, what is the conditional probability that exactly two of the
nickels were heads?

2.1.3 A poker hand of five cards is dealt from a normal deck of 52 cards. Let X be the
number of aces in the hand. Determine Pr{X > 1|X ≥ 1}. This is the probability
that the hand contains more than one ace, given that it has at least one ace.
Compare this with the probability that the hand contains more than one ace,
given that it contains the ace of spades.

2.1.4 A six-sided die is rolled, and the number N on the uppermost face is recorded.
From a jar containing 10 tags numbered 1,2, . . . ,10, we then select N tags at
random without replacement. Let X be the smallest number on the drawn tags.
Determine Pr{X = 2}.

2.1.5 Let X be a Poisson random variable with parameter λ. Find the conditional mean
of X given that X is odd.

2.1.6 Suppose U and V are independent and follow the geometric distribution

p(k)= ρ(1− ρ)k for k = 0,1, . . . .

Define the random variable Z = U+V .
(a) Determine the joint probability mass function pU,Z(u,z)= Pr{U=u,Z=z}.
(b) Determine the conditional probability mass function for U given that Z = n.

Problems

2.1.1 Let M have a binomial distribution with parameters N and p. Conditioned on
M, the random variable X has a binomial distribution with parameters M and π .
(a) Determine the marginal distribution for X.
(b) Determine the covariance between X and Y =M−X.

2.1.2 A card is picked at random from N cards labeled 1,2, . . . ,N, and the number
that appears is X. A second card is picked at random from cards numbered
1,2, . . . ,X and its number is Y . Determine the conditional distribution of X
given Y = y, for y= 1,2, . . . .

2.1.3 Let X and Y denote the respective outcomes when two fair dice are thrown. Let
U =min{X,Y},V =max{X,Y}, and S= U+V,T = V −U.
(a) Determine the conditional probability mass function for U given V = v.
(b) Determine the joint mass function for S and T .
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2.1.4 Suppose that X has a binomial distribution with parameters p= 1
2 and N, where

N is also random and follows a binomial distribution with parameters q= 1
4

and M = 20. What is the mean of X?
2.1.5 A nickel is tossed 20 times in succession. Every time that the nickel comes up

heads, a dime is tossed. Let X count the number of heads appearing on tosses
of the dime. Determine Pr{X = 0}.

2.1.6 A dime is tossed repeatedly until a head appears. Let N be the trial number on
which this first head occurs. Then, a nickel is tossed N times. Let X count the
number of times that the nickel comes up tails. Determine Pr{X=0},Pr{X=1},
and E[X].

2.1.7 The probability that an airplane accident that is due to structural failure is cor-
rectly diagnosed is 0.85, and the probability that an airplane accident that is
not due to structural failure is incorrectly diagnosed as being due to structural
failure is 0.35. If 30% of all airplane accidents are due to structural failure,
then find the probability that an airplane accident is due to structural failure
given that it has been diagnosed as due to structural failure.

2.1.8 Initially an urn contains one red and one green ball. A ball is drawn at random
from the urn, observed, and then replaced. If this ball is red, then an additional
red ball is placed in the urn. If the ball is green, then a green ball is added. A
second ball is drawn. Find the conditional probability that the first ball was red
given that the second ball drawn was red.

2.1.9 Let N have a Poisson distribution with parameter λ= 1. Conditioned on N = n,
let X have a uniform distribution over the integers 0,1, . . . ,n+ 1. What is the
marginal distribution for X?

2.1.10 Do men have more sisters than women have? In a certain society, all married
couples use the following strategy to determine the number of children that
they will have: If the first child is a girl, they have no more children. If the first
child is a boy, they have a second child. If the second child is a girl, they have
no more children. If the second child is a boy, they have exactly one additional
child. (We ignore twins, assume sexes are equally likely, and the sex of distinct
children are independent random variables, etc.) (a) What is the probability
distribution for the number of children in a family? (b) What is the probability
distribution for the number of girl children in a family? (c) A male child is
chosen at random from all of the male children in the population. What is the
probability distribution for the number of sisters of this child? What is the
probability distribution for the number of his brothers?

2.2 The Dice Game Craps

An analysis of the dice game known as craps provides an educational example of the
use of conditional probability in stochastic modeling. In craps, two dice are rolled and
the sum of their uppermost faces is observed. If the sum has value 2, 3, or 12, the
player loses immediately. If the sum is 7 or 11, the player wins. If the sum is 4, 5, 6, 8,
9, or 10, then further rolls are required to resolve the game. In the case where the sum
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is 4, e.g., the dice are rolled repeatedly until either a sum of 4 reappears or a sum of 7
is observed. If the sum of 4 appears first, the roller wins; if the sum of 7 appears first,
he or she loses.

Consider repeated rolls of the pair of dice and let Zn for n= 0,1, . . . be the sum
observed on the nth roll. Then, Z0,Z1, . . . are independent identically distributed ran-
dom variables. If the dice are fair, the probability mass function is

pZ(2) =
1

36
, pZ(8) =

5

36
,

pZ(3) =
2

36
, pZ(9) =

4

36
,

pZ(4) =
3

36
, pZ(10) =

3

36
,

pZ(5) =
4

36
, pZ(11) =

2

36
,

pZ(6) =
5

36
, pZ(12) =

1

36
.

pZ(7) =
6

36
,

(2.16)

Let A denote the event that the player wins the game. By the law of total probability,

Pr{A} =
12∑

k=2

Pr{A|Z0 = k}pZ(k). (2.17)

Because Z0 = 2,3, or 12 calls for an immediate loss, then Pr{A|Z0 = k} = 0 for
k = 2,3, or 12. Similarly, Z0 = 7 or 11 results in an immediate win, and thus Pr{A|Z0 =

7} = Pr{A|Z0 = 11} = 1. It remains to consider the values Z0 = 4,5,6,8,9, and 10,
which call for additional rolls. Since the logic remains the same in each of these cases,
we will argue only the case in which Z0 = 4. Abbreviate with α = Pr{A|Z0 = 4}. Then,
α is the probability that in successive rolls Z1,Z2, . . . of a pair of dice, a sum of 4
appears before a sum of 7. Denote this event by B, and again bring in the law of total
probability. Then,

α = Pr{B} =
12∑

k=2

Pr{B|Z1 = k}pZ(k). (2.18)

Now Pr{B|Z1 = 4} = 1, while Pr{B|Z1 = 7} = 0. If the first roll results in anything
other than a 4 or a 7, the problem is repeated in a statistically identical setting. That is,
Pr{B|Z1 = k} = α for k 6= 4 or 7. Substitution into (2.18) results in

α = pZ(4)× 1+ pZ(7)× 0+
∑

k 6=4,7

pZ(k)×α

= pZ(4)+ [1− pZ(4)− pZ(7)]α,
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or

α =
pZ(4)

pZ(4)+ pZ(7)
. (2.19)

The same result may be secured by means of a longer, more computational, method.
One may partition the event B into disjoint elemental events by writing

B= {Z1 = 4} ∪ {Z1 6= 4 or 7,Z2 = 4}

∪ {Z1 6= 4 or 7,Z2 6= 4 or 7,Z3 = 4} ∪ · · · ,

and then

Pr{B} = Pr{Z1 = 4}+Pr{Z1 6= 4 or 7,Z2 = 4}

+Pr{Z1 6= 4 or 7,Z2 6= 4 or 7,Z3 = 4}+ · · · .

Now use the independence of Z1,Z2, . . . and sum a geometric series to secure

Pr{B} = pZ(4)+ [1− pZ(4)− pZ(7)]pZ(4)

+ [1− pZ(4)− pZ(7)]
2pZ(4)+ ·· ·

=
pZ(4)

pZ(4)+ pZ(7)

in agreement with (2.19).
Extending the result just obtained to the other cases having more than one roll, we

have

Pr{A|Z0 = k} =
pZ(k)

pZ(k)+ pZ(7)
for k = 4,5,6,8,9,10.

Finally, substitution into (2.17) yields the total win probability

Pr{A} = pZ(7)+ pZ(11)+
∑

k=4,5,6,8,9,10

pZ(k)2

pZ(k)+ pZ(7)
. (2.20)

The numerical values for pZ(k) given in (2.16), together with (2.20), determine the
win probability

Pr{A} = 0.49292929 · · · .

Having explained the computations, let us go on to a more interesting question.
Suppose that the dice are not perfect cubes but are shaved so as to be slightly thinner
in one dimension than in the other two. The numbers that appear on opposite faces on a
single die always sum to 7. That is, 1 is opposite 6, 2 is opposite 5, and 3 is opposite 4.
Suppose it is the 3-4 dimension that is smaller than the other two. See Figure 2.1. This



Conditional Probability and Conditional Expectation 55

A shaved dieA cubic die

Figure 2.1 A cubic die versus a die that has been shaved down in one dimension.

will cause 3 and 4 to appear more frequently than the other faces, 1, 2, 5, and 6. To
see this, think of the extreme case in which the 3-4 dimension is very thin, leading to
a 3 or 4 on almost all tosses. Letting Y denote the result of tossing a single shaved die,
we postulate that the probability mass function is given by

pY(3)= pY(4)=
1

6
+ 2ε ≡ p+,

pY(1)= pY(2)= pY(5)= pY(6)=
1

6
− ε ≡ p−,

where ε > 0 is a small quantity depending on the amount by which the die has been
biased.

If both dice are shaved in the same manner, the mass function for their sum can be
determined in a straightforward manner from the following joint table:

Die #1

Die 1 2 3 4 5 6
#2 p− p− p+ p+ p− p−

1 p− p2
− p2

− p+p− p+p− p2
− p2

−

2 p− p2
− p2

− p+p− p+p− p2
− p2

−

3 p+ p+p− p+p− p2
+ p2

+ p+p− p+p−

4 p+ p+p− p+p− p2
+ p2

+ p+p− p+p−

5 p− p2
− p2

− p+p− p+p− p2
− p2

−

6 p− p2
− p2

− p+p− p+p− p2
− p2

−

It is easily seen that the probability mass function for the sum of the dice is

p(2)= p2
− = p(12),

p(3)= 2p2
− = p(11),

p(4)= p−(p−+ 2p+)= p(10),

p(5)= 4p+p− = p(9),

p(6)= p2
−+ (p++ p−)

2
= p(8),

p(7)= 4p2
−+ 2p2

+.
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To obtain a numerical value to compare to the win probability 0.492929 · · · asso-
ciated with fair dice, let us arbitrarily set ε = 0.02 so that p− = 0.146666 · · · and
p+ = 0.206666 · · · . Then, routine substitutions according to the table lead to

p(2) = p(12)= 0.02151111, p(5) = p(9)= 0.12124445,

p(3) = p(11)= 0.04302222, p(6) = p(8)= 0.14635556,

p(4) = p(10)= 0.08213333, p(7) = 0.17146667,

(2.21)

and the win probability becomes Pr{A} = 0.5029237.
The win probability of 0.4929293 with fair dice is unfavorable, i.e., is less than 1

2 .
With shaved dice, the win probability is favorable, now being 0.5029237. What
appears to be a slight change becomes, in fact, quite significant when a large num-
ber of games are played. See Chapter 3, Section 3.5.

Exercises

2.2.1 A red die is rolled a single time. A green die is rolled repeatedly. The game stops
the first time that the sum of the two dice is either 4 or 7. What is the probability
that the game stops with a sum of 4?

2.2.2 Verify the win probability of 0.5029237 by substituting from (2.21) into (2.20).
2.2.3 Determine the win probability when the dice are shaved on the 1–6 faces and

p+ = 0.206666 · · · and p− = 0.146666 · · · .

Problems

2.2.1 Let X1,X2, . . . be independent identically distributed positive random variables
whose common distribution function is F. We interpret X1,X2, . . . as successive
bids on an asset offered for sale. Suppose that the policy is followed of accepting
the first bid that exceeds some prescribed number A. Formally, the accepted bid
is XN , where

N =min{k ≥ 1;Xk > A}.

Set α = Pr{X1 > A} and M = E[XN].
(a) Argue the equation

M =

∞∫
A

xdF(x)+ (1−α)M

by considering the possibilities, either the first bid is accepted or it is not.
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(b) Solve for M, thereby obtaining

M = α−1

∞∫
A

xdF(x).

(c) When X1 has an exponential distribution with parameter λ, use the memo-
ryless property to deduce M = A+ λ−1.

(d) Verify this result by calculation in (b).
2.2.2 Consider a pair of dice that are unbalanced by the addition of weights in the

following manner: Die #1 has a small piece of lead placed near the four side,
causing the appearance of the outcome 3 more often than usual, while die #2 is
weighted near the three side, causing the outcome 4 to appear more often than
usual. We assign the probabilities

Die #1

p(1)= p(2)= p(5)= p(6)= 0.166667,

p(3)= 0.186666,

p(4)= 0.146666;

Die #2

p(1)= p(2)= p(5)= p(6)= 0.166667,

p(3)= 0.146666,

p(4)= 0.186666.

Determine the win probability if the game of craps is played with these loaded
dice.

2.3 Random Sums

Sums of the form X = ξ1+ ·· ·+ ξN , where N is random, arise frequently and in varied
contexts. Our study of random sums begins with a crisp definition and a precise state-
ment of the assumptions effective in this section, followed by some quick examples.

We postulate a sequence ξ1,ξ2, . . . of independent and identically distributed ran-
dom variables. Let N be a discrete random variable, independent of ξ1,ξ2, . . . and
having the probability mass function pN(n)= Pr{N = n} for n= 0,1, . . . . Define the
random sum X by

X =

{
0 if N = 0,

ξ1+ ·· ·+ ξN if N > 0.
(2.22)

We save space by abbreviating (2.22) to simply X = ξ1+ ·· ·+ ξN , understanding
that X = 0 whenever N = 0.



58 An Introduction to Stochastic Modeling

Examples

(a) Queueing Let N be the number of customers arriving at a service facility in a
specified period of time, and let ξi be the service time required by the ith customer.
Then, X = ξ1+ ·· ·+ ξN is the total demand for service time.

(b) Risk Theory Suppose that a total of N claims arrives at an insurance company in
a given week. Let ξi be the amount of the ith claim. Then, the total liability of the
insurance company is X = ξ1+ ·· ·+ ξN .

(c) Population Models Let N be the number of plants of a given species in a spec-
ified area, and let ξi be the number of seeds produced by the ith plant. Then,
X = ξ1+ ·· ·+ ξN gives the total number of seeds produced in the area.

(d) Biometrics A wildlife sampling scheme traps a random number N of a given
species. Let ξi be the weight of the ith specimen. Then, X = ξ1+ ·· ·+ ξN is the
total weight captured.

The necessary background in conditional probability was covered in Section 2.1 for
when ξ1,ξ2, . . . are discrete random variables. In order to study the random sum X =
ξ1+ ·· ·+ ξN when ξ1,ξ2, . . . are continuous random variables, we need to extend our
knowledge of conditional distributions.

2.3.1 Conditional Distributions: The Mixed Case

Let X and N be jointly distributed random variables and suppose that the possible val-
ues for N are the discrete set n= 0,1,2, . . . . Then, the elementary definition of condi-
tional probability (2.1) applies to define the conditional distribution function FX|N(x|n)
of the random variable X, given that N = n, to be

FX|N(x|n)=
Pr{X ≤ x and N = n}

Pr{N = n}
if Pr{N = n}> 0, (2.23)

and the conditional distribution function is not defined at values of n for which Pr{N =
n} = 0. It is elementary to verify that FX|N(x|n) is a probability distribution function
in x at each value of n for which it is defined.

The case in which X is a discrete random variable was covered in Section 2.1. Now
let us suppose that X is continuous and that FX|N(x|n) is differentiable in x at each value
of n for which Pr{N = n}> 0. We define the conditional probability density function
fX|N(x|n) for the random variable X given that N = n by setting

fX|N(x|n)=
d

dx
FX|N(x|n) if Pr{N = n}> 0. (2.24)

Again, fX|N(x|n) is a probability density function in x at each value of n for which it
is defined. Moreover, the conditional density as defined in (2.24) has the appropriate
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properties, e.g.,

Pr{a≤ X < b,N = n} =

b∫
a

fX|N(x|n)pN(n)dx (2.25)

for a< b and where pN(n)= Pr{N = n}. The law of total probability leads to the
marginal probability density function for X via

fX(x)=
∞∑

n=0

fX|N(x|n)pN(n). (2.26)

Suppose that g is a function for which E[|g(X)|]<∞. The conditional expectation
of g(X) given that N = n is defined by

E[g(X)|N = n]=
∫

g(x)fX|N(x|n)dx. (2.27)

Stipulated thus, E[g(X)|N = n] satisfies the properties listed in (2.7) to (2.15) for the
joint discrete case. For example, the law of total probability is

E[g(X)]=
∞∑

n=0

E[g(X)|N = n]pN(n)= E{E[g(X)|N]}. (2.28)

2.3.2 The Moments of a Random Sum

Let us assume that ξk and N have the finite moments

E[ξk] = µ, Var[ξk] = σ 2,

E[N] = v, Var[N] = τ 2,
(2.29)

and determine the mean and variance for X = ξ1+ ·· ·+ ξN as defined in (2.22). The
derivation provides practice in manipulating conditional expectations, and the results,

E[X]= µv, Var[X]= vσ 2
+µ2τ 2, (2.30)

are useful and important. The properties of conditional expectation listed in (2.7) to
(2.15) justify the steps in the determination.
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If we begin with the mean E[X], then

E[X] =
∞∑

n=0

E[X|N = n]pN(n) [by (2.15)]

=

∞∑
n=1

E[ξ1+ ·· ·+ ξN |N = n]pN(n) (definition of X)

=

∞∑
n=1

E[ξ1+ ·· ·+ ξn|N = n]pN(n) [by (2.9)]

=

∞∑
n=1

E[ξ1+ ·· ·+ ξn]pN(n) [by (2.10)]

= µ

∞∑
n=1

npN(n)= µv.

To determine the variance, we begin with the elementary step

Var[X]= E
[
(X−µv)2

]
= E

[
(X−Nµ+Nµ− vµ)2

]
= E

[
(X−Nµ)2

]
+E

[
µ2(N− v)2

]
+ 2E[µ(X−Nµ)(N− v)]. (2.31)

Then,

E
[
(X−Nµ)2

]
=

∞∑
n=0

E
[
(X−Nµ)2|N = n

]
pN(n)

=

∞∑
n=1

E
[
(ξ1+ ·· ·+ ξn− nµ)2|N = n

]
pN(n)

= σ 2
+

∞∑
n=1

npN(n)= vσ 2,

and

E
[
µ2(N− v)2

]
= µ2E

[
(N− v)2

]
= µ2τ 2,

while

E[µ(X−Nµ)(N− v)]= µ
∞∑

n=0

E[(X− nµ)(n− v)|N = n]pN(n)

= µ

∞∑
n=0

(n− v)E[(X− nµ)|N = n]pN(n)

= 0
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(because E[(X− nµ)|N = n]= E[ξ1+ ·· ·+ ξn− nµ]= 0). Then, (2.31) with the sub-
sequent three calculations validates the variance of X as stated in (2.30).

Example The number of offspring of a given species is a random variable having
probability mass function p(k) for k = 0,1, . . . . A population begins with a single
parent who produces a random number N of progeny, each of which independently
produces offspring according to p(k) to form a second generation. Then, the total
number of descendants in the second generation may be written X = ξ1+ ·· ·+ ξN ,
where ξk is the number of progeny of the kth offspring of the original parent. Let
E[N]= E[ξk]= µ and Var[N]= Var[ξk]= σ 2. Then,

E[X]= µ2 and Var[X]= µσ 2(1+µ).

2.3.3 The Distribution of a Random Sum

Suppose that the summands ξ1,ξ2, . . . are continuous random variables having a prob-
ability density function f (z). For n≥ 1, the probability density function for the fixed
sum ξ1+ ·· ·+ ξn is the n-fold convolution of the density f (z), denoted by f (n)(z) and
recursively defined by

f (1)(z)= f (z)

and

f (n)(z)=
∫

f (n−1)(z− u) f (u)du for n> 1. (2.32)

(See Chapter 1, Section 1.2.5 for a discussion of convolutions.) Because N and
ξ1,ξ2, . . . are independent, then f (n)(z) is also the conditional density function for
X = ξ1+ ·· ·+ ξN given that N = n≥ 1. Let us suppose that Pr{N = 0} = 0. Then, by
the law of total probability as expressed in (2.26), X is continuous and has the marginal
density function

fX(x)=
∞∑

n=1

f (n)(x)pN(n). (2.33)

Remark When N = 0 can occur with positive probability, then X = ξ1+ ·· ·+ ξN is a
random variable having both continuous and discrete components to its distribution.
Assuming that ξ1,ξ2, . . . are continuous with probability density function f (z), then

Pr{X = 0} = Pr{N = 0} = pN(0),

while for 0< a< b or a< b< 0, then

Pr{a< X < b} =

b∫
a

{
∞∑

n=1

f (n)(z)pN(n)

}
dz. (2.34)
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Example A Geometric Sum of Exponential Random Variables In the following com-
putational example, suppose

f (z)=

{
λe−λz for z≥ 0,
0 for z< 0,

and

pN(n)= β(1−β)
n−1 for n= 1,2, . . . .

For n≥ 1, the n-fold convolution of f (z) is the gamma density

f (n)(z)=


λn

(n− 1)!
zn−1e−λz for z≥ 0,

0 for z< 0.

(See Chapter 1, Section 1.4.4 for discussion.)
The density for X = ξ1+ ·· ·+ ξN is given, according to (2.26), by

fX(z)=
∞∑

n=1

f (n)(z)pN(n)

=

∞∑
n=1

λn

(n− 1)!
zn−1e−λzβ(1−β)n−1

= λβe−λz
∞∑

n=1

[λ(1−β)z]n−1

(n− 1)!

= λβe−λzeλ(1−β)z

= λβe−λβz, z≥ 0.

Surprise! X has an exponential distribution with parameter λβ.

Example Stock Price Changes Stochastic models for price fluctuations of publicly
traded assets were developed as early as 1900.

Let Z denote the difference in price of a single share of a certain stock between the
close of one trading day and the close of the next day. For an actively traded stock,
a large number of transactions take place in a single day, and the total daily price
change is the sum of the changes over these individual transactions. If we assume that
price changes over successive transactions are independent random variables having
a common finite variance,∗ then the central limit theorem applies. The price change
over a large number of transactions should follow a normal, or Gaussian, distribution.

∗ Rather strong economic arguments in support of these assumptions can be given. The independence fol-
lows from concepts of a “perfect market” and the common variance from notions of time stationarity.
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A variety of empirical studies have supported this conclusion. For the most part,
these studies involved price changes over a fixed number of transactions. Other stud-
ies found discrepancies in that both very small and very large price changes occurred
more frequently in the data than suggested by normal theory. At the same time,
intermediate-size price changes were under represented in the data. For the most part,
these studies examined price changes over fixed durations containing a random num-
ber of transactions.

A natural question arises: Does the random number of transactions in a given day
provide a possible explanation for the departures from normality that are observed in
data of daily price changes? Let us model the daily price change in the form

Z = ξ0+ ξ1+ ·· ·+ ξN = ξ0+X, (2.35)

where ξ0,ξ1, . . . are independent normally distributed random variables with common
mean zero and variance σ 2, and N has a Poisson distribution with mean v.

We interpret N as the number of transactions during the day, ξi for i≥ 1 as the price
change during the ith transaction, and ξ0 as an initial price change arising between
the close of the market on one day and the opening of the market on the next day.
(An obvious generalization would allow the distribution of ξ0 to differ from that of
ξ1,ξ2, . . . .)

Conditioned on N = n, the random variable Z = ξ0+ ξ1+ ·· ·+ ξn is normally dis-
tributed with mean zero and variance (n+ 1)σ 2. The conditional density function is

φn(z)=
1

√
2π(n+ 1)σ

exp

{
−

1

2

1z2

(n+ 1)σ 2

}
.

Since the probability mass function for N is

pN(n)=
λne−λ

n!
, n= 0,1, . . . ,

using (2.33) we determine the probability density function for the daily price change
to be

fZ(z)=
∞∑

n=0

φn(z)
λne−λ

n!
.

The formula for the density fZ(z) does not simplify. Nevertheless, numerical calcula-
tions are possible. When λ= 1 and σ 2

=
1
2 , then (2.30) shows that the variance of the

daily price change Z in the model (2.35) is Var[Z]= (1+ λ)σ 2
= 1. Thus, compar-

ing the density fZ(z) when λ= 1 and σ 2
=

1
2 to a normal density with mean zero and

variance, one sheds some light on the question at hand.
The calculations were carried out and are shown in Figure 2.2.
The departure from normality that is exhibited by the random sum in Figure 2.2 is

consistent with the departure from normality shown by stock price changes over fixed
time intervals. Of course, our calculations do not prove that the observed departure
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−2 −1 0 1 2

Figure 2.2 A standard normal density (solid line) as compared with a density for a random sum
(dashed line). Both densities have zero mean and unit variance.

from normality is caused by the random number of transactions in a fixed time interval.
Rather, the calculations show only that such an explanation is consistent with the data
and is, therefore, a possible cause.

Exercises

2.3.1 A six-sided die is rolled, and the number N on the uppermost face is recorded.
Then a fair coin is tossed N times, and the total number Z of heads to appear is
observed. Determine the mean and variance of Z by viewing Z as a random sum
of N Bernoulli random variables. Determine the probability mass function of Z,
and use it to find the mean and variance of Z.

2.3.2 Six nickels are tossed, and the total number N of heads is observed. Then N
dimes are tossed, and the total number Z of tails among the dimes is observed.
Determine the mean and variance of Z. What is the probability that Z = 2?

2.3.3 Suppose that upon striking a plate a single electron is transformed into a number
N of electrons, where N is a random variable with mean µ and standard devia-
tion σ . Suppose that each of these electrons strikes a second plate and releases
further electrons, independently of each other and each with the same probabil-
ity distribution as N. Let Z be the total number of electrons emitted from the
second plate. Determine the mean and variance of Z.

2.3.4 A six-sided die is rolled, and the number N on the uppermost face is recorded.
From a jar containing 10 tags numbered 1,2, . . . ,10 we then select N tags at
random without replacement. Let X be the smallest number on the drawn tags.
Determine Pr{X = 2} and E[X].

2.3.5 The number of accidents occurring in a factory in a week is a Poisson random
variable with mean 2. The number of individuals injured in different accidents
is independently distributed, each with mean 3 and variance 4. Determine the
mean and variance of the number of individuals injured in a week.

Problems

2.3.1 The following experiment is performed: An observation is made of a Poisson
random variable N with parameter λ. Then N independent Bernoulli trials are
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performed, each with probability p of success. Let Z be the total number of
successes observed in the N trials.
(a) Formulate Z as a random sum and thereby determine its mean and variance.
(b) What is the distribution of Z?

2.3.2 For each given p, let Z have a binomial distribution with parameters p and N.
Suppose that N is itself binomially distributed with parameters q and M. For-
mulate Z as a random sum and show that Z has a binomial distribution with
parameters pq and M.

2.3.3 Suppose that ξ1,ξ2, . . . are independent and identically distributed with Pr{ξk =

±1} = 1
2 . Let N be independent of ξ1,ξ2, . . . and follow the geometric probabil-

ity mass function

pN(k)= α(1−α)
k for k = 0,1, . . . ,

where 0< α < 1. Form the random sum Z = ξ1+ ·· ·+ ξN .
(a) Determine the mean and variance of Z.
(b) Evaluate the higher moments m3 = E

[
Z3
]

and m4 = E
[
Z4
]
.

Hint: Express Z4 in terms of the ξi’s where ξ2
i = 1 and E[ξiξj]= 0.

2.3.4 Suppose ξ1,ξ2, . . . are independent and identically distributed random variables
having mean µ and variance σ 2. Form the random sum SN = ξ1+ ·· ·+ ξN .
(a) Derive the mean and variance of SN when N has a Poisson distribution with

parameter λ.
(b) Determine the mean and variance of SN when N has a geometric distribution

with mean λ= (1− p)/p.
(c) Compare the behaviors in (a) and (b) as λ→∞.

2.3.5 To form a slightly different random sum, let ξ0,ξ1, . . . be independent identically
distributed random variables and let N be a nonnegative integer-valued random
variable, independent of ξ0,ξ1, . . . . The first two moments are

E[ξk] = µ, Var[ξk] = σ 2,

E[N] = v, Var[N] = τ 2.

Determine the mean and variance of the random sum Z = ξ0+ ·· ·+ ξN .

2.4 Conditioning on a Continuous Random Variable∗

Let X and Y be jointly distributed continuous random variables with joint probabil-
ity density function fX,Y(x,y). We define the conditional probability density function
fX|Y(x|y) for the random variable X given that Y = y by the formula

fX|Y(x|y)=
fX,Y(x,y)

fY(y)
if fY(y) > 0, (2.36)

∗ The reader may wish to defer reading this section until encountering Chapter 7, on renewal processes,
where conditioning on a continuous random variable first appears.
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and the conditional density is not defined at values y for which fY(y)= 0. The condi-
tional distribution function for X given Y = y is defined by

FX|Y(x|y)=

x∫
−∞

fX|Y(ξ |y)dξ if fY(y) > 0. (2.37)

Finally, given a function g for which E[|g(X)|]<∞, the conditional expectation of
g(X) given that Y = y is defined to be

E[g(X)|Y = y]=
∫

g(x)fX|Y(x|y)dx if fY(y) > 0. (2.38)

The definitions given in (2.36) to (2.38) are a significant extension of our elemen-
tary notions of conditional probability because they allow us to condition on certain
events having zero probability. To understand the distinction, try to apply the elemen-
tary formula

Pr{A|B} =
Pr{A and B}

Pr{B}
if Pr{B}> 0 (2.39)

to evaluate the conditional probability Pr{a< X ≤ b|Y = y}. We set A= {a< X ≤ b}
and B= {Y = y}. But Y is a continuous random variable, and thus, Pr{B} = Pr{Y =
y} = 0, and (2.39) cannot be applied. Equation (2.37) saves the day, yielding

Pr{a< X ≤ b|Y = y} = FX|Y(b|y)−FX|Y(a|y)=

b∫
a

fX|Y(ξ |y)dξ, (2.40)

provided only that the density fY(y) is strictly positive at the point y.
To emphasize the important advance being made, we consider the following sim-

ple problem. A woman arrives at a bus stop at a time Y that is uniformly distributed
between 0 (noon) and 1. Independently, the bus arrives at a time Z that is also uni-
formly distributed between 0 and 1. Given that the woman arrives at time Y = 0.20,
what is the probability that she misses the bus?

On the one hand, the answer Pr{Z < Y|Y = 0.20} = 0.20 is obvious. On the other
hand, this elementary question cannot be answered by the elementary conditional
probability formula (2.39) because the event {Y = 0.20} has zero probability. To apply
(2.36), start with the joint density function

fZ,Y(z,y)=

{
1 for 0≤ z,y≤ 1,

0 elsewhere,

and change variables according to X = Y −Z. Then,

fX,Y(x,y)= 1 for 0≤ y≤ 1,y− 1≤ x≤ y,
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and, applying (2.36), we find that

fX|Y(x|0.20)=
fX,Y(x,0.20)

fY(0.20)
= 1 for −0.80≤ x≤ 0.20.

Finally,

Pr{Z < Y|Y = 0.20} = Pr{X > 0|Y = 0.20} =

∞∫
0

fX|Y(x|0.20)dx= 0.20.

We see that the definition in (2.36) leads to the intuitively correct answer.
The conditional density function that is prescribed by (2.36) possesses all of the

properties that are called for by our intuition and the basic concept of conditional prob-
ability. In particular, one can calculate the probability of joint events by the formula

Pr{a< X < b,c< Y < d} =

d∫
c


b∫

a

fX|Y(x|y)dx

 fY(y)dy, (2.41)

which becomes the law of total probability by setting c=−∞ and d =+∞;

Pr{a< X < b} =

+∞∫
−∞


b∫

a

fX|Y(x|y)dx

 fY(y)dy. (2.42)

For the same reasons, the conditional expectation as defined in (2.38) satisfies the
requirements listed in (2.7) to (2.11). The property (2.12), adapted to a continuous
random variable Y , is written

E[g(X)h(Y)]= E{h(Y)E[g(X)|Y]}

=

∫
h(y)E[g(X)|Y = y] fY(y)dy, (2.43)

valid for any bounded function h, and assuming E[|g(X)|]<∞. When h(y)≡ 1, we
recover the law of total probability in the form

E[g(X)]= E{E[g(X)|Y]} =
∫

E[g(X)|Y = y] fY(y)dy. (2.44)

Both the discrete and continuous cases of (2.43) and (2.44) are contained in the
expressions

E[g(X)h(Y)]= E{h(Y)E[g(X)|Y]} =
∫

h(y)E[g(X)|Y = y]dFY(y), (2.45)
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and

E[g(X)]= E{E[g(X)|Y]} =
∫

E[g(X)|Y = y]dFY(y). (2.46)

[See the discussion following (1.9) in Chapter 1 for an explanation of the symbolism
in (2.45) and (2.46).]

The following exercises provide practice in deriving conditional probability density
functions and in manipulating the law of total probability.

Example Suppose X and Y are jointly distributed random variables having the density
function

fXY(x,y)=
1

y
e−(x/y)−y for x,y> 0.

We first determine the marginal density for y, obtaining

fY(y)=

∞∫
0

fXY(x,y)dx

= e−y

∞∫
0

y−1e−(x/y)dx= e−y for y> 0.

Then,

fX|Y(x|y)=
fXY(x,y)

fY(y)
= y−1e−(x/y) for x,y> 0.

That is, conditional on Y = y, the random variable X has an exponential distribution
with parameter 1/y. It is easily seen that E[X|Y = y]= y.

Example For each given p, let X have a binomial distribution with parameters p
and N. Suppose that p is uniformly distributed on the interval [0,1]. What is the result-
ing distribution of X?

We are given the marginal distribution for p and the conditional distribution for X.
Applying the law of total probability and the beta integral in Chapter 1 (1.66), we
obtain

Pr{X = k} =

1∫
0

Pr{X = k|p= ξ} fp(ξ)dξ

=

1∫
0

N!

k!(N− k)!
ξ k(1− ξ)N−kdξ

=
N!

k!(N− k)!

k!(N− k)!

(N+ 1)!

=
1

N+ 1
for k = 0,1, . . . ,N.
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That is, X is uniformly distributed on the integers 0,1, . . . , N.
When p has the beta distribution with parameters r and s, then similar calculations

give

Pr{X = k} =
N!

k!(N− k)!

0(r+ s)

0(r)0(s)

1∫
0

ξ r−1(1− ξ)s−1ξ k(1− ξ)N−kdξ

=

(
N
k

)
0(r+ s)0(r+ k)0(s+N− k)

0(r)0(s)0(N+ r+ s)
for k = 0,1, . . . ,N.

Example A random variable Y follows the exponential distribution with parame-
ter θ . Given that Y = y, the random variable X has a Poisson distribution with mean y.
Applying the law of total probability then yields

Pr{X = k} =

∞∫
0

yke−y

k!
θe−θydy

=
θ

k!

∞∫
0

yke−(1+θ)ydy

=
θ

k!(1+ θ)k+1

∞∫
0

uke−udu

=
θ

(1+ θ)k+1
for k = 0,1, . . . .

Suppose that Y has the gamma density

fY(y)=
θ

0(α)
(θy)α−1e−θy, y≥ 0.

Then, similar calculations yield

Pr{X = k} =

∞∫
0

yke−y

k!

θ

0(α)
(θy)α−1e−θydy

=
θα

k!0(α)(1+ θ)k+α

∞∫
0

uk+α−1e−udu

=
0(k+α)

k!0(α)

(
θ

1+ θ

)α( 1

1+ θ

)k

, k = 0,1, . . . .

This is the negative binomial distribution.
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Exercises

2.4.1 Suppose that three contestants on a quiz show are each given the same question
and that each answers it correctly, independently of the others, with probabil-
ity p. But the difficulty of the question is itself a random variable, so let us sup-
pose, for the sake of illustration, that p is uniformly distributed over the interval
(0,1]. What is the probability that exactly two of the contestants answer the
question correctly?

2.4.2 Suppose that three components in a certain system each function with prob-
ability p and fail with probability 1− p, each component operating or failing
independently of the others. But the system is in a random environment so that
p is itself a random variable. Suppose that p is uniformly distributed over the
interval (0,1]. The system operates if at least two of the components operate.
What is the probability that the system operates?

2.4.3 A random variable T is selected that is uniformly distributed over the interval
(0,1]. Then, a second random variable U is chosen, uniformly distributed on the
interval (0,T]. What is the probability that U exceeds 1

2 ?
2.4.4 Suppose X and Y are independent random variables, each exponentially distri-

buted with parameter λ. Determine the probability density function for Z=X/Y .
2.4.5 Let U be uniformly distributed over the interval [0,L] where L follows the

gamma density fL(x)= xe−x for x≥ 0. What is the joint density function of
U and V = L−U?

Problems

2.4.1 Suppose that the outcome X of a certain chance mechanism depends on a param-
eter p according to Pr{X = 1} = p and Pr{X = 0} = 1− p, where 0≤ p≤ 1. Sup-
pose that p is chosen at random, uniformly distributed over the unit interval
[0,1], and then, that two independent outcomes X1 and X2 are observed. What
is the unconditional correlation coefficient between X1 and X2?

Note: Conditionally independent random variables may become dependent if
they share a common parameter.

2.4.2 Let N have a Poisson distribution with parameter λ > 0. Suppose that, condi-
tioned on N = n, the random variable X is binomially distributed with parame-
ters N = n and p. Set Y = N−X. Show that X and Y have Poisson distributions
with respective parameters λp and λ(1− p) and that X and Y are independent.

Note: Conditionally dependent random variables may become independent
through randomization.

2.4.3 Let X have a Poisson distribution with parameter λ > 0. Suppose λ itself is
random, following an exponential density with parameter θ .
(a) What is the marginal distribution of X?
(b) Determine the conditional density for λ given X = k.

2.4.4 Suppose X and Y are independent random variables having the same Poisson
distribution with parameter λ, but where λ is also random, being exponentially
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distributed with parameter θ . What is the conditional distribution for X given
that X+Y = n?

2.4.5 Let X and Y be jointly distributed random variables whose joint probability mass
function is given in the following table:

x

−1 0 1

−1
1

9

2

9
0

y 0 0
1

9

2

9

1
2

9
0

1

9

p(x,y)= Pr{X=x,Y=y}

Show that the covariance between X and Y is zero even though X and Y are not
independent.

2.4.6 Let X0,X1,X2, . . . be independent identically distributed nonnegative random
variables having a continuous distribution. Let N be the first index k for which
Xk > X0. That is, N = 1 if X1 > X0,N = 2 if X1 ≤ X0 and X2 > X0, etc. Deter-
mine the probability mass function for N and the mean E[N]. (Interpretation:
X0,X1, . . . are successive offers or bids on a car that you are trying to sell. Then,
N is the index of the first bid that is better than the initial bid.)

2.4.7 Suppose that X and Y are independent random variables, each having the same
exponential distribution with parameter α. What is the conditional probability
density function for X, given that Z = X+Y = z?

2.4.8 Let X and Y have the normal density given in Chapter 1, in (1.47). Show that the
conditional density function for X, given that Y = y, is normal with moments

µX|Y = µX +
ρσX

σY
(y−µY)

and

σX|Y = σX

√
1− ρ2.

2.5 Martingales∗

Stochastic processes are characterized by the dependence relationships that exist
among their variables. The martingale property is one such relationship that captures
a notion of a game being fair. The martingale property is a restriction solely on the

∗ Some problems scattered throughout the text call for the student to identify certain stochastic processes as
martingales. Otherwise, the material of this section is not used in the sequel.
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conditional means of some of the variables, given values of others, and does not oth-
erwise depend on the actual distribution of the random variables in the stochastic pro-
cess. Despite the apparent weakness of the martingale assumption, the consequences
are striking, as we hope to suggest.

2.5.1 The Definition

We begin the presentation with the simplest definition.

Definition A stochastic process {Xn;n= 0,1, . . .} is a martingale if for n= 0,1, . . .,

(a) E[|Xn|]<∞,
and

(b) E[Xn+1|X0, . . . ,Xn]= Xn.

Taking expectations on both sides of (b),

E{E[Xn+1|X0, . . . ,Xn]} = E{Xn},

and using the law of total probability in the form

E{E[Xn+1|X1, . . . ,Xn]} = E[Xn+1]

shows that

E[Xn+1]= E[Xn],

and consequently, a martingale has constant mean:

E[X0]= E[Xk]= E[Xn], 0≤ k ≤ n. (2.47)

A similar conditioning (see Problem 2.5.1) verifies that the martingale equality (b)
extends to future times in the form

E[Xm|X0, . . . ,Xn]= Xn for m≥ n. (2.48)

To relate the martingale property to concepts of fairness in gambling, consider Xn

to be a certain player’s fortune after the nth play of a game. The game is “fair” if on
average, the player’s fortune neither increases nor decreases at each play. The martin-
gale property (b) requires the player’s fortune after the next play to equal, on average,
his current fortune and not be otherwise affected by previous history. Some early work
in martingale theory was motivated in part by problems in gambling. For example,
martingale systems theorems consider whether an astute choice of betting strategy can
turn a fair game into a favorable one, and the name “martingale” derives from a French
term for the particular strategy of doubling one’s bets until a win is secured. While it



Conditional Probability and Conditional Expectation 73

remains popular to illustrate martingale concepts with gambling examples, today, mar-
tingale theory has such broad scope and diverse applications that to think of it purely
in terms of gambling would be unduly restrictive and misleading.

Example Stock Prices in a Perfect Market Let Xn be the closing price at the end of
day n of a certain publicly traded security such as a share of stock. While daily prices
may fluctuate, many scholars believe that, in a perfect market, these price sequences
should be martingales. In a perfect market freely open to all, they argue, it should
not be possible to predict with any degree of accuracy whether a future price Xn+1
will be higher or lower than the current price Xn. For example, if a future price could
be expected to be higher, then a number of buyers would enter the market, and their
demand would raise the current price Xn. Similarly, if a future price could be predicted
as lower, a number of sellers would appear and tend to depress the current price. Equi-
librium obtains where the future price cannot be predicted, on average, as higher or
lower, i.e., where price sequences are martingales.

2.5.2 The Markov Inequality

What does the mean of a random variable tell us about its distribution? For a nonneg-
ative random variable X, Markov’s inequality is λPr{X ≥ λ} ≤ E[X], for any positive
constant λ. For example, if E[X]= 1, then Pr{X ≥ 4} ≤ 1

4 , no matter what the actual
distribution of X is. The proof uses two properties: (i) X ≥ 0 (X is a nonnegative ran-
dom variable), and (ii) E[X1{X ≥ λ}]≥ λPr{X ≥ λ}. (Recall that 1(A) is the indicator
of an event A and is one if A occurs and zero otherwise. See Chapter 1, Section 1.3.1.)
Then, by the law of total probability,

E[X]= E
[
X1[λ,∞)(X)

]
+E

[
X1(−∞,λ)(X)

]
≥ E

[
X1[λ,∞)(X)

]
≥ λPr[X ≥ λ]

and Markov’s inequality results.

2.5.3 The Maximal Inequality for Nonnegative Martingales

Because a martingale has constant mean, Markov’s inequality applied to a nonnegative
martingale immediately yields

Pr{Xn ≥ λ} ≤
E[X0]

λ
, λ > 0.

We will extend the reasoning behind Markov’s inequality to achieve an inequality of
far greater power:

Pr
{
max0≤n≤m Xn ≥ λ

}
≤

E[X0]

λ
. (2.49)
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Instead of limiting the probability of a large value for a single observation Xn, the
maximal inequality (2.49) limits the probability of observing a large value anywhere
in the time interval 0, . . . ,m, and since the right side of (2.49) does not depend on
the length of the interval, the maximal inequality limits the probability of observing a
large value at any time in the infinite future of the martingale!

In order to prove the maximal inequality for nonnegative martingales, we need but
a single additional fact: If X and Y are jointly distributed random variables and B is an
arbitrary set, then

E[X 1B(Y)]= E[E(X|Y)1B(Y)] (2.50)

But (2.50) follows from the conditional expectation property (2.12), E[g(X)h(Y)]=
E{h(Y)E[g(X)|Y]}, with g(x)= x and h(y)= 1(y in B}. We will have need of (2.50)
with X = Xm and Y = (X0, . . . ,Xn), whereupon (2.50) followed by (2.48) then justifies

E[Xm1{X0 < λ,. . . ,Xn−1 < λ,Xn ≥ λ}]

= E[E{Xm|X0, . . . ,Xn}1{X0 < λ,. . . ,Xn−1 < λ,Xn ≥ λ}]

= E[Xn1{X0 < λ,. . . ,Xn−1 < λ,Xn ≥ λ}].

(2.51)

Theorem 2.1. Let X0,X1, . . . be a martingale with nonnegative values; i.e., Pr{Xn ≥

0} = 1 for n= 0,1, . . . . For any λ > 0,

Pr
{
max0≤n≤m Xn ≥ λ

}
≤

E[X0]

λ
, for 0≤ n≤ m (2.52)

and

Pr
{
maxn≥0 Xn > λ

}
≤

E[X0]

λ
, for all n. (2.53)

Proof. Inequality (2.53) follows from (2.52) because the right side of (2.52) does not
depend on m. We begin with the law of total probability, as in Chapter 1, Section 1.2.1.
Either the {X0, . . . ,Xm} sequence rises above λ for the first time at some index n or else
it remains always below λ. As these possibilities are mutually exclusive and exhaus-
tive, we apply the law of total probability to obtain

E[Xm]=
m∑

n=0

E[Xm1{X0 < λ,. . . ,Xn−1 < λ,Xn ≥ λ}

+E[Xm1{X0 < λ,. . . ,Xm < λ}]

≥

m∑
n=0

E[Xm1{X0 < λ,. . . ,Xn−1 < λ,Xn ≥ λ}] (Xm ≥ 0)
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=

m∑
n=0

E[Xn1{X0 < λ,. . . ,Xn−1 < λ,Xn ≥ λ}] [using (2.51)]

≥ λ

m∑
n=0

Pr{X0 < λ,. . . ,Xn−1 < λ,Xn ≥ λ}

= λPr
{
max0≤n≤m Xn ≥ λ

}
.

�

Example A gambler begins with a unit amount of money and faces a series of inde-
pendent fair games. Beginning with X0 = 1, the gambler bets the amount p,0< p< 1.
If the first game is a win, which occurs with probability 1

2 , the gambler’s fortune is
X1 = 1+ pX0 = 1+ p. If the first game is a loss, then X1 = 1− pX0 = 1− p. After the
nth play and with a current fortune of Xn, the gambler wagers pXn, and

Xn+1 =


(1+ p)Xn with probability

1

2
,

(1− p)Xn with probability
1

2
.

Then, {Xn} is a nonnegative martingale, and the maximal inequality (2.52) with λ= 2,
e.g., asserts that the probability that the gambler ever doubles his money is less than
or equal to 1

2 , and this holds no matter what the game is, as long as it is fair, and
no matter what fraction p of his fortune is wagered at each play. Indeed, the fraction
wagered may vary from play to play, as long as it is chosen without knowledge of the
next outcome.

As amply demonstrated by this example, the maximal inequality is a very strong
statement. Indeed, more elaborate arguments based on the maximal and other related
martingale inequalities are used to show that a nonnegative martingale converges: If
{Xn} is a nonnegative martingale, then there exists a random variable, let us call it X∞,
for which limn→∞Xn = X∞. We cannot guarantee the equality of the expectations in
the limit, but the inequality E[X0]≥ E[X∞]≥ 0 can be established.

Example In Chapter 3, Section 3.8, we will introduce the branching process model for
population growth. In this model, Xn is the number of individuals in the population in
the nth generation, and µ > 0 is the mean family size or expected number of offspring
of any single individual. The mean population size in the nth generation is X0µ

n.
In this branching process model, Xn/µ

n is a nonnegative martingale (see Chapter 3,
Problem 3.8.4), and the maximal inequality implies that the probability of the actual
population ever exceeding 10 times the mean size is less than or equal to 1/10. The
nonnegative martingale convergence theorem asserts that the evolution of such a pop-
ulation after many generations may be described by a single random variable X∞ in
the form

Xn ≈ X∞µ
n, for large n.



76 An Introduction to Stochastic Modeling

Example How NOT to generate a uniformly distributed random variable An urn ini-
tially contains one red and one green ball. A ball is drawn at random and it is returned
to the urn, together with another ball of the same color. This process is repeated indef-
initely. After the nth play, there will be a total of n+ 2 balls in the urn. Let Rn be the
number of these balls that are red, and Xn = Rn/(n+ 2) the fraction of red balls. We
claim that {Xn} is a martingale. First, observe that

Rn+1 =

{
Rn+ 1 with probability Xn

Rn with probability 1−Xn

so that

E[Rn+1|Xn]= Rn+Xn = Xn(2+ n+ 1),

and finally,

E[Xn+1|Xn]=
1

n+ 3
E[Rn+1|Xn]=

2+ n+ 1

n+ 3
Xn = Xn.

This verifies the martingale property, and because such a fraction is always nonneg-
ative, indeed, between 0 and 1, there must be a random variable X∞ to which the
martingale converges. We will derive the probability distribution of the random limit.
It is immediate that R1 is equally likely to be 1 or 2, since the first ball chosen is equally
likely to be red or green. Continuing,

Pr{R2 = 3} = Pr{R2 = 3|R1 = 2}Pr{R1 = 2}

=

(
2

3

)(
1

2

)
=

1

3
;

Pr{R2 = 2} = Pr{R2 = 2|R1 = 1}Pr{R1 = 1}

+Pr{R2 = 2|R1 = 2}Pr{R1 = 2}

=

(
1

3

)(
1

2

)
+

(
1

3

)(
1

2

)
=

1

3
;

and since the probabilities must sum to 1,

Pr{R2 = 1} =
1

3
.

By repeating these simple calculations, it is easy to see that

Pr{Rn = k} =
1

n+ 1
for k = 1,2, . . . ,n+ 1,
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and that, therefore, Xn is uniformly distributed over the values 1/(n+ 2), 2/
(n+ 2), . . . , (n+ 1)/(n+ 2). This uniform distribution must prevail in the limit,
which leads to

Pr{X∞ ≤ x} = x for 0< x< 1.

Think about this remarkable result for a minute! If you sit down in front of such an
urn and play this game, eventually the fraction of red balls in your urn will stabilize in
the near vicinity of some value, call it U. If I play the game, the fraction of red balls in
my urn will stabilize also, but at another value, U′. Anyone who plays the game will
find the fraction of red balls in the urn tending toward some limit, but everyone will
experience a different limit. In fact, each play of the game generates a fresh, uniformly
distributed random variable, in the limit. Of course, there may be faster and simpler
ways to generate uniformly distributed random variables.

Martingale implications include many more inequalities and convergence theo-
rems. As briefly mentioned at the start, there are so-called systems theorems that
delimit the conditions under which a gambling system, such as doubling the bets until
a win is secured, can turn a fair game into a winning game. A deeper discussion of
martingale theory would take us well beyond the scope of this introductory text, and
our aim must be limited to building an enthusiasm for further study. Nevertheless, a
large variety of important martingales will be introduced in the Problems at the end of
each section in the remainder of the book.

Exercises

2.5.1 Let X be an exponentially distributed random variable with mean E[X]= 1. For
x= 0.5,1, and 2, compare Pr{X > x} with the Markov inequality bound E[X]/x.

2.5.2 Let X be a Bernoulli random variable with parameter p. Compare Pr{X ≥ 1}
with the Markov inequality bound.

2.5.3 Let ξ be a random variable with mean µ and standard deviation σ . Let X =
(ξ −µ)2. Apply Markov’s inequality to X to deduce Chebyshev’s inequality:

Pr{|ξ −µ| ≥ ε} ≤
σ 2

ε2
for any ε > 0.

Problems

2.5.1 Use the law of total probability for conditional expectations E[E{X|Y,Z}|Z]=
E[X|Z] to show

E[Xn+2|X0, . . . ,Xn]= E[E{Xn+2|X0, . . . ,Xn+1}|X0, . . . ,Xn].

Conclude that when Xn is a martingale,

E[Xn+2|X0, . . . ,Xn]= Xn.
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2.5.2 Let U1,U2, . . . be independent random variables each uniformly distributed
over the interval (0,1]. Show that X0 = 1 and Xn = 2nU1 · · ·Un for n= 1,2, . . .
defines a martingale.

2.5.3 Let S0 = 0, and for n≥ 1, let Sn = ε1+ ·· ·+ εn be the sum of n independent
random variables, each exponentially distributed with mean E[ε]= 1. Show that

Xn = 2n exp(−Sn), n≥ 0

defines a martingale.
2.5.4 Let ξ1,ξ2, . . . be independent Bernoulli random variables with parameter p,0<

p< 1. Show that X0 = 1 and Xn = p−nξ1 · · ·ξn,n= 1, 2, . . ., defines a nonnega-
tive martingale. What is the limit of Xn as n→∞?

2.5.5 Consider a stochastic process that evolves according to the following laws: If
Xn = 0, then Xn+1 = 0, whereas if Xn > 0, then

Xn+1 =


Xn+ 1 with probability

1

2

Xn− 1 with probability
1

2
.

(a) Show that Xn is a nonnegative martingale.
(b) Suppose that X0 = i> 0. Use the maximal inequality to bound

Pr{Xn ≥ N for some n≥ 0|X0 = i}.

Note: Xn represents the fortune of a player of a fair game who wagers $1 at
each bet and who is forced to quit if all money is lost (Xn = 0). This gambler’s
ruin problem is discussed fully in Chapter 3, Section 3.5.3.



3 Markov Chains: Introduction

3.1 Definitions

A Markov process {Xt} is a stochastic process with the property that, given the value of
Xt, the values of Xs for s> t are not influenced by the values of Xu for u< t. In words,
the probability of any particular future behavior of the process, when its current state
is known exactly, is not altered by additional knowledge concerning its past behavior.
A discrete-time Markov chain is a Markov process whose state space is a finite or
countable set, and whose (time) index set is T = (0,1,2, . . .). In formal terms, the
Markov property is that

Pr{Xn+1 = j|X0 = i0, . . . ,Xn−1 = in−1,Xn = i}

= Pr{Xn+1 = j|Xn = i} (3.1)

for all time points n and all states i0, . . . , in−1, i, j.
It is frequently convenient to label the state space of the Markov chain by the non-

negative integers {0,1,2, . . .}, which we will do unless the contrary is explicitly stated,
and it is customary to speak of Xn as being in state i if Xn = i.

The probability of Xn+1 being in state j given that Xn is in state i is called the
one-step transition probability and is denoted by Pn,n+1

ij . That is,

Pn,n+1
ij = Pr{Xn+1 = j|Xn = i}. (3.2)

The notation emphasizes that in general the transition probabilities are functions
not only of the initial and final states but also of the time of transition as well. When
the one-step transition probabilities are independent of the time variable n, we say
that the Markov chain has stationary transition probabilities. Since the vast majority
of Markov chains that we shall encounter have stationary transition probabilities, we
limit our discussion to this case. Then, Pn,n+1

ij = Pij is independent of n, and Pij is
the conditional probability that the state value undergoes a transition from i to j in one
trial. It is customary to arrange these numbers Pij in a matrix, in the infinite square
array

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥

P00 P01 P02 P03 · · ·

P10 P11 P12 P13 · · ·

P20 P21 P22 P23 · · ·
...

...
...

...

Pi0 Pi1 Pi2 Pi3 · · ·
...

...
...

...

∥∥∥∥∥∥∥∥∥∥∥∥∥
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and refer to P= ‖Pij‖ as the Markov matrix or transition probability matrix of the
process.

The ith row of P, for i= 0,1, . . . , is the probability distribution of the values of
Xn+1 under the condition that Xn = i. If the number of states is finite, then P is a finite
square matrix whose order (the number of rows) is equal to the number of states.
Clearly, the quantities Pij satisfy the conditions

Pij ≥ 0 for i, j= 0,1,2, . . . , (3.3)
∞∑

j=0

Pij = 1 for i= 0,1,2, . . . . (3.4)

The condition (3.4) merely expresses the fact that some transition occurs at each trial.
(For convenience, one says that a transition has occurred even if the state remains
unchanged.)

A Markov process is completely defined once its transition probability matrix and
initial state X0 (or, more generally, the probability distribution of X0) are specified. We
shall now prove this fact.

Let Pr{X0 = i} = pi. It is enough to show how to compute the quantities

Pr{X0 = i0,X1 = i1,X2 = i2, . . . ,Xn = in}, (3.5)

since any probability involving Xj1 , . . . ,Xjk , for j1 < · · ·< jk, can be obtained, accord-
ing to the axiom of total probability, by summing terms of the form (3.5).

By the definition of conditional probabilities, we obtain

Pr{X0 = i0,X1 = i1,X2 = i2, . . . ,Xn = in}

= Pr{X0 = i0,X1 = i1, . . . ,Xn−1 = in−1}

×Pr{Xn = in|X0 = i0,X1 = i1, . . . ,Xn−1 = in−1}.

(3.6)

Now, by the definition of a Markov process,

Pr{Xn = in|X0 = i0,X1 = i1, . . . ,Xn−1 = in−1}

= Pr{Xn = in|Xn−1 = in−1} = Pin−1,in .
(3.7)

Substituting (3.7) into (3.6) gives

Pr{X0 = i0,X1 = i1, . . . ,Xn = in}

= Pr{X0 = i0,X1 = i1, . . . ,Xn−1 = in−1}Pin−1,in.

Then, upon repeating the argument n− 1 additional times, (3.5) becomes

Pr{X0 = i0,X1 = i1, . . . ,Xn = in}

= pi0Pi0,i1 · · ·Pin−2,in−1Pin−1,in .
(3.8)
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This shows that all finite-dimensional probabilities are specified once the transition
probabilities and initial distribution are given, and in this sense, the process is defined
by these quantities.

Related computations show that (3.1) is equivalent to the Markov property in the
form

Pr{Xn+1 = j1, . . . ,Xn+m = jm|X0 = i0, . . . ,Xn = in}

= Pr{Xn+1 = j1, . . . ,Xn+m = jm|Xn = in}
(3.9)

for all time points n,m and all states i0, . . . , in, j1, . . . , jm. In other words, once (3.9) is
established for the value m= 1, it holds for all m≥ 1 as well.

Exercises

3.1.1 A Markov chain X0,X1, . . . on states 0, 1, 2 has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.1 0.2 0.7

1 0.9 0.1 0

2 0.1 0.8 0.1

∥∥∥∥∥∥∥
and initial distribution p0 = Pr{X0 = 0} = 0.3,p1 = Pr{X0 = 1} = 0.4, and p2 =

Pr{X0 = 2} = 0.3. Determine Pr{X0 = 0,X1 = 1,X2 = 2}.
3.1.2 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.7 0.2 0.1

1 0 0.6 0.4

2 0.5 0 0.5

∥∥∥∥∥∥∥.
Determine the conditional probabilities

Pr{X2 = 1,X3 = 1|X1 = 0} and Pr{X1 = 1,X2 = 1|X0 = 0}.

3.1.3 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.6 0.3 0.1

1 0.3 0.3 0.4

2 0.4 0.1 0.5

∥∥∥∥∥∥∥.
If it is known that the process starts in state X0 = 1, determine the probability
Pr{X0 = 1,X1 = 0,X2 = 2}.



82 An Introduction to Stochastic Modeling

3.1.4 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.1 0.1 0.8

1 0.2 0.2 0.6

2 0.3 0.3 0.4

∥∥∥∥∥∥∥.
Determine the conditional probabilities

Pr{X1 = 1,X2 = 1|X0 = 0} and Pr{X2 = 1,X3 = 1|X1 = 0}.

3.1.5 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.3 0.2 0.5

1 0.5 0.1 0.4

2 0.5 0.2 0.3

∥∥∥∥∥∥∥
and initial distribution p0 = 0.5 and p1 = 0.5. Determine the probabilities

Pr{X0 = 1,X1 = 1,X2 = 0} and Pr{X1 = 1,X2 = 1,X3 = 0}.

Problems

3.1.1 A simplified model for the spread of a disease goes this way: The total popu-
lation size is N = 5, of which some are diseased and the remainder are healthy.
During any single period of time, two people are selected at random from the
population and assumed to interact. The selection is such that an encounter
between any pair of individuals in the population is just as likely as between
any other pair. If one of these persons is diseased and the other not, with prob-
ability α = 0.1 the disease is transmitted to the healthy person. Otherwise, no
disease transmission takes place. Let Xn denote the number of diseased persons
in the population at the end of the nth period. Specify the transition probability
matrix.

3.1.2 Consider the problem of sending a binary message, 0 or 1, through a signal
channel consisting of several stages, where transmission through each stage is
subject to a fixed probability of error α. Suppose that X0 = 0 is the signal that is
sent and let Xn be the signal that is received at the nth stage. Assume that {Xn}

is a Markov chain with transition probabilities P00 = P11 = 1−α and P01 =

P10 = α, where 0< α < 1.
(a) Determine Pr{X0 = 0,X1 = 0,X2 = 0}, the probability that no error occurs

up to stage n= 2.
(b) Determine the probability that a correct signal is received at stage 2.

Hint: This is Pr{X0 = 0,X1 = 0,X2 = 0}+Pr{X0 = 0,X1 = 1,X2 = 0}.
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3.1.3 Consider a sequence of items from a production process, with each item being
graded as good or defective. Suppose that a good item is followed by another
good item with probability α and is followed by a defective item with probabil-
ity 1−α. Similarly, a defective item is followed by another defective item with
probability β and is followed by a good item with probability 1−β. If the first
item is good, what is the probability that the first defective item to appear is the
fifth item?

3.1.4 The random variables ξ1,ξ2, . . . are independent and with the common proba-
bility mass function

k = 0 1 2 3
Pr{ξ = k} = 0.1 0.3 0.2 0.4

Set X0 = 0, and let Xn =max{ξ1, . . . , ξn} be the largest ξ observed to date. Deter-
mine the transition probability matrix for the Markov chain {Xn}.

3.2 Transition Probability Matrices of a Markov Chain

A Markov chain is completely defined by its one-step transition probability matrix and
the specification of a probability distribution on the state of the process at time 0. The
analysis of a Markov chain concerns mainly the calculation of the probabilities of the
possible realizations of the process.

Central in these calculations are the n-step transition probability matrices P(n) =
‖P(n)ij ‖. Here, P(n)ij denotes the probability that the process goes from state i to state j
in n transitions. Formally,

P(n)ij = Pr{Xm+n = j|Xm = i}. (3.10)

Observe that we are dealing only with temporally homogeneous processes having
stationary transition probabilities, since otherwise the left side of (3.10) would also
depend on m.

The Markov property allows us to express (3.10) in terms of ‖Pij‖ as stated in the
following theorem.

Theorem 3.1. The n-step transition probabilities of a Markov chain satisfy

P(n)ij =

∞∑
k=0

PikP(n−1)
kj , (3.11)

where we define

P(0)ij =

{
1 if i= j,
0 if i 6= j.
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From the theory of matrices, we recognize the relation (3.11) as the formula for
matrix multiplication so that P(n) = P×P(n−1). By iterating this formula, we obtain

P(n) = P×P× ·· ·×P︸ ︷︷ ︸
n factors

= Pn
; (3.12)

in other words, the n-step transition probabilities P(n)ij are the entries in the matrix Pn,
the nth power of P.

Proof. The proof proceeds via a first step analysis, a breaking down, or analysis, of
the possible transitions on the first step, followed by an application of the Markov
property. The event of going from state i to state j in n transitions can be realized in the
mutually exclusive ways of going to some intermediate state k(k = 0,1, . . .) in the first
transition, and then going from state k to state j in the remaining (n− 1) transitions.
Because of the Markov property, the probability of the second transition is P(n−1)

kj and
that of the first is clearly Pik. If we use the law of total probability, then (3.11) follows.
The steps are

P(n)ij = Pr{Xn = j|X0 = i} =
∞∑

k=0

Pr{Xn = j,X1 = k|X0 = i}

=

∞∑
k=0

Pr{X1 = k|X0 = i}Pr{Xn = j|X0 = i,X1 = k}

=

∞∑
k=0

PikP(n−1)
kj .

If the probability of the process initially being in state j is pj, i.e., the distribution
law of X0 is Pr{X0 = j} = pj, then the probability of the process being in state k at
time n is

p(n)k =

∞∑
j=0

pjP
(n)
jk = Pr{Xn = k}. (3.13)

�

Exercises

3.2.1 A Markov chain {Xn} on the states 0,1,2 has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.1 0.2 0.7

1 0.2 0.2 0.6

2 0.6 0.1 0.3

∥∥∥∥∥∥∥.
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(a) Compute the two-step transition matrix P2.
(b) What is Pr{X3 = 1|X1 = 0}?
(c) What is Pr{X3 = 1|X0 = 0}?

3.2.2 A particle moves among the states 0,1,2 according to a Markov process whose
transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2

0 0
1

2

1

2

1
1

2
0

1

2

2
1

2

1

2
0

∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Let Xn denote the position of the particle at the nth move. Calculate Pr{Xn =

0|X0 = 0} for n= 0,1,2,3,4.
3.2.3 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.7 0.2 0.1

1 0 0.6 0.4

2 0.5 0 0.5

∥∥∥∥∥∥∥.
Determine the conditional probabilities

Pr{X3 = 1|X0 = 0} and Pr{X4 = 1|X0 = 0}.

3.2.4 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.6 0.3 0.1

1 0.3 0.3 0.4

2 0.4 0.1 0.5

∥∥∥∥∥∥∥.
If it is known that the process starts in state X0 = 1, determine the probability
Pr{X2 = 2}.

3.2.5 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.1 0.1 0.8

1 0.2 0.2 0.6

2 0.3 0.3 0.4

∥∥∥∥∥∥∥.
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Determine the conditional probabilities

Pr{X3 = 1|X1 = 0} and Pr{X2 = 1|X0 = 0}.

3.2.6 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.3 0.2 0.5

1 0.5 0.1 0.4

2 0.5 0.2 0.3

∥∥∥∥∥∥∥
and initial distribution p0 = 0.5 and p1 = 0.5. Determine the probabilities
Pr{X2 = 0} and Pr{X3 = 0}.

Problems

3.2.1 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0.4 0.3 0.2 0.1

1 0.1 0.4 0.3 0.2

2 0.3 0.2 0.1 0.4

3 0.2 0.1 0.4 0.3

∥∥∥∥∥∥∥∥∥.
Suppose that the initial distribution is pi =

1
4 for i= 0,1,2,3. Show that

Pr{Xn = k} = 1
4 ,k = 0,1,2,3, for all n. Can you deduce a general result from

this example?
3.2.2 Consider the problem of sending a binary message, 0 or 1, through a signal

channel consisting of several stages, where transmission through each stage is
subject to a fixed probability of error α. Let X0 be the signal that is sent, and
let Xn be the signal that is received at the nth stage. Suppose Xn is a Markov
chain with transition probabilities P00 = P11 = 1−α and P01 = P10 = α,(0<
α < 1). Determine Pr{X5 = 0|X0 = 0}, the probability of correct transmission
through five stages.

3.2.3 Let Xn denote the quality of the nth item produced by a production system
with Xn = 0 meaning “good” and Xn = 1 meaning “defective.” Suppose that
Xn evolves as a Markov chain whose transition probability matrix is

P=

∥∥∥∥∥
0 1

0 0.99 0.01

1 0.12 0.88

∥∥∥∥∥.
What is the probability that the fourth item is defective given that the first item
is defective?
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3.2.4 Suppose Xn is a two-state Markov chain whose transition probability matrix is

P=

∥∥∥∥∥
0 1

0 α 1−α

1 1−β β

∥∥∥∥∥.
Then, Zn = (Xn−1,Xn) is a Markov chain having the four states (0,0), (0,1),
(1,0), and (1,1). Determine the transition probability matrix.

3.2.5 A Markov chain has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.7 0.2 0.1

1 0.3 0.5 0.2

2 0 0 1

∥∥∥∥∥∥∥.
The Markov chain starts at time zero in state X0 = 0. Let

T =min{n≥ 0;Xn = 2}

be the first time that the process reaches state 2. Eventually, the process will
reach and be absorbed into state 2. If in some experiment we observed such a
process and noted that absorption had not yet taken place, we might be interested
in the conditional probability that the process is in state 0 (or 1), given that
absorption had not yet taken place. Determine Pr{X3 = 0|X0,T > 3}.

Hint: The event {T > 3} is exactly the same as the event {X3 6= 2} = {X3 =

0} ∪ {X3 = 1}.

3.3 Some Markov Chain Models

Markov chains can be used to model and quantify a large number of natural physical,
biological, and economic phenomena that can be described by them. This is enhanced
by the amenability of Markov chains to quantitative manipulation. In this section, we
give several examples of Markov chain models that arise in various parts of science.
General methods for computing certain functionals on Markov chains are derived in
the following section.

3.3.1 An Inventory Model

Consider a situation in which a commodity is stocked in order to satisfy a contin-
uing demand. We assume that the replenishment of stock takes place at the end of
periods labeled n= 0,1,2, . . . , and we assume that the total aggregate demand for
the commodity during period n is a random variable ξn whose distribution function is
independent of the time period,

Pr{ξn = k} = ak for k = 0,1,2, . . . , (3.14)
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where ak ≥ 0 and
∑
∞

k=0 ak = 1. The stock level is examined at the end of each period.
A replenishment policy is prescribed by specifying two nonnegative critical numbers
s and S> s whose interpretation is, if the end-of-period stock quantity is not greater
than s, then an amount sufficient to increase the quantity of stock on hand up to the
level S is immediately procured. If, however, the available stock is in excess of s, then
no replenishment of stock is undertaken. Let Xn denote the quantity on hand at the
end of period n just prior to restocking. The states of the process {Xn} consist of the
possible values of stock size

S,S− 1, . . . ,+1,0,−1,−2, . . . ,

where a negative value is interpreted as an unfilled demand that will be satisfied imme-
diately upon restocking.

The process {Xn} is depicted in Figure 3.1.
According to the rules of the inventory policy, the stock levels at two consecutive

periods are connected by the relation

Xn+1 =

{
Xn− ξn+1 if s< Xn ≤ S,

S− ξn+1 if Xn ≤ s,
(3.15)

where ξn is the quantity demanded in the nth period, stipulated to follow the probability
law (3.14). If we assume that the successive demands ξ1,ξ2, . . . are independent ran-
dom variables, then the stock values X0,X1, X2, . . . constitute a Markov chain whose
transition probability matrix can be calculated in accordance with relation (3.15).
Explicitly,

Pij = Pr{Xn+1 = j|Xn = i}

=

{
Pr{ξn+1 = i− j} if s< i≤ S,

Pr{ξn+1 = S− j} if i≤ s.

S

1 2 3 Period

s

X0 X2

X1

ξ1
ξ3

ξ2

X3

Figure 3.1 The inventory process.
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Consider a spare parts inventory model as a numerical example in which either 0,1,
or 2 repair parts are demanded in any period, with

Pr{ξn = 0} = 0.5, Pr{ξn = 1} = 0.4, Pr{ξn = 2} = 0.1,

and suppose s= 0, while S= 2. The possible values for Xn are S= 2,1,0, and −1.
To illustrate the transition probability calculations, we will consider first the deter-
mination of P10 = Pr{Xn+1 = 0|Xn = 1}. When Xn = 1, then no replenishment takes
place and the next state Xn+1 = 0 results when the demand ξn+1 = 1, and this occurs
with probability P10 = 0.4. To illustrate another case, if Xn = 0, then instantaneous
replenishment to S= 2 ensues, and a next period level of Xn+1 = 0 results from
the demand quantity ξn+1 = 2. The corresponding probability of this outcome yields
P00 = 0.1. Continuing in this manner, we obtain the transition probability matrix

P=

∥∥∥∥∥∥∥∥∥

−1 0 +1 +2

−0 0 0.1 0.4 0.5

0 0 0.1 0.4 0.5

+1 0.1 0.4 0.5 0

+2 0 0.1 0.4 0.5

∥∥∥∥∥∥∥∥∥.
Important quantities of interest in inventory models of this type are the long-term

fraction of periods in which demand is not met (Xn < 0) and long-term average inven-
tory level. Using the notation p(n)j = Pr{Xn = j}, we give these quantities, respectively,

as limn→∞6j<0p(n)j and limn→∞6j>0jp(n)j . This illustrates the importance of deter-

mining conditions under which the probabilities p(n)j stabilize and approach limiting
probabilities πj as n→∞ and of determining methods for calculating the limiting
probabilities πj when they exist. These topics are the subject of Chapter 4.

3.3.2 The Ehrenfest Urn Model

A classical mathematical description of diffusion through a membrane is the famous
Ehrenfest urn model. Imagine two containers containing a total of 2a balls (molecules).
Suppose the first container, labeled A, holds k balls and the second container, B, holds
the remaining 2a− k balls. A ball is selected at random (all selections are equally
likely) from the totality of the 2a balls and moved to the other container. (A molecule
diffuses at random through the membrane.) Each selection generates a transition of the
process. Clearly, the balls fluctuate between the two containers with an average drift
from the urn with the excess numbers to the one with the smaller concentration.

Let Yn be the number of balls in urn A at the nth stage, and define Xn = Yn− a.
Then, {Xn} is a Markov chain on the states i=−a, −a+ 1, . . . ,−1,0,+1, . . . ,a with
transition probabilities

Pij =


a− i

2a
if j= i+ 1,

a+ i

2a
if j= i− 1,

0 otherwise.
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An important quantity in the Ehrenfest urn model is the long-term, or equilibrium,
distribution of the number of balls in each urn.

3.3.3 Markov Chains in Genetics

The following idealized genetics model was introduced by S. Wright to investigate
the fluctuation of gene frequency under the influence of mutation and selection. We
begin by describing the so-called simple haploid model of random reproduction, dis-
regarding mutation pressures and selective forces. We assume that we are dealing with
a fixed population size of 2N genes composed of type-a and type-A individuals. The
makeup of the next generation is determined by 2N independent Bernoulli trials as
follows: If the parent population consists of j a-genes and 2N− j A-genes, then each
trial results in a or A with probabilities

pj =
j

2N
, qj = 1−

j

2N
,

respectively. Repeated selections are done with replacement. By this procedure, we
generate a Markov chain {Xn}, where Xn is the number of a-genes in the nth genera-
tion among a constant population size of 2N individuals. The state space contains the
2N+ 1 values {0,1,2, . . . ,2N}. The transition probability matrix is computed accord-
ing to the binomial distribution as

Pr{Xn+1 = k|Xn = j} = Pjk =

(
2N
k

)
pk

j q2N−k
j (3.16)

( j,k = 0,1, . . . ,2N).

For some discussion of the biological justification of these postulates, we refer the
reader to Fisher.∗

Notice that states 0 and 2N are completely absorbing in the sense that once Xn = 0
(or 2N), then Xn+k = 0 (or 2N, respectively) for all k ≥ 0. One of the questions of
interest is to determine the probability, under the condition X0 = i, that the popula-
tion will attain fixation, i.e., that it will become a pure population composed only of
a-genes or A-genes. It is also pertinent to determine the rate of approach to fixation.
We will examine such questions in our general analysis of absorption probabilities.

A more complete model takes account of mutation pressures. We assume that prior
to the formation of the new generation, each gene has the possibility to mutate, i.e.,
to change into a gene of the other kind. Specifically, we assume that for each gene
the mutation a→ A occurs with probability α, and A→ a occurs with probabil-
ity β. Again we assume that the composition of the next generation is determined
by 2N independent binomial trials. The relevant values of pj and qj when the parent

∗ R. A. Fisher, The Genetical Theory of Natural Selection, Oxford (Clarendon) Press, London and New York,
1962.
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population consists of j a-genes are now taken to be

pj =
j

2N
(1−α)+

(
1−

j

2N

)
β

(3.17)and

qj =
j

2N
α+

(
1−

j

2N

)
(1−β).

The rationale is as follows: We assume that the mutation pressures operate first, after
which a new gene is chosen by random selection from the population. Now, the prob-
ability of selecting an a-gene after the mutation forces have acted is just 1/(2N) times
the number of a-genes present; hence, the average probability (averaged with respect
to the possible mutations) is simply 1/(2N) times the average number of a-genes after
mutation. But this average number is clearly j(1−α)+ (2N− j)β, which leads at once
to (3.17).

The transition probabilities of the associated Markov chain are calculated by (3.16)
using the values of pj and qj given in (3.17).

If αβ > 0, then fixation will not occur in any state. Instead, as n→∞, the distri-
bution function of Xn will approach a steady-state distribution of a random variable
ξ , where Pr{ξ = k} = πk(k = 0,1,2, . . . ,2N)

(∑n
k=0πk = 1,πk > 0

)
. The distribution

function of ξ is called the steady-state gene frequency distribution.
We return to the simple random mating model and discuss the concept of a selec-

tion force operating in favor of, say, a-genes. Suppose we wish to impose a selective
advantage for a-genes over A-genes so that the relative number of offspring have
expectations proportional to 1+ s and 1, respectively, where s is small and positive.
We replace pj = j/(2N) and qj = 1− j/(2N) by

pj =
(1+ s)j

2N+ sj
, qj = 1− pj,

and build the next generation by binomial sampling as before. If the parent population
consisted of j a-genes, then in the next generation the expected population sizes of
a-genes and A-genes, respectively, are

2N
(1+ s)j

2N+ sj
, 2N

(2N− j)

2N+ sj
.

The ratio of expected population size of a-genes to A-genes at the (n+ 1)st genera-
tion is

1+ s

1
×

j

2N− j
=

(
1+ s

1

)(
number of a-genes in the nth generation

number of A-genes in the nth generation

)
,

which explains the meaning of selection.
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3.3.4 A Discrete Queueing Markov Chain

Customers arrive for service and take their place in a waiting line. During each period
of time, a single customer is served, provided that at least one customer is present.
If no customer awaits service, then during this period no service is performed. (We
can imagine, e.g., a taxi stand at which a cab arrives at fixed time intervals to give
service. If no one is present, the cab immediately departs.) During a service period,
new customers may arrive. We suppose that the actual number of customers that arrive
during the nth period is a random variable ξn whose distribution is independent of the
period and is given by

Pr{k customers arrive in a service period} = Pr{ξn = k} = ak,

for k = 0,1, . . . , where ak ≥ 0 and
∑
∞

k=0 ak = 1.
We also assume that ξ1,ξ2, . . . are independent random variables. The state of the

system at the start of each period is defined to be the number of customers waiting in
line for service. If the present state is i, then after the lapse of one period the state is

j=

{
i− 1+ ξ if i≥ 1,
ξ if i= 0,

(3.18)

where ξ is the number of new customers having arrived in this period while a single
customer was served. In terms of the random variables of the process, we can express
(3.18) formally as

Xn+1 = (Xn− 1)++ ξn,

where Y+ =max{Y,0}. In view of (3.18), the transition probability matrix may be
calculated easily, and we obtain

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥

a0 a1 a2 a3 a4 · · ·

a0 a1 a2 a3 a4 · · ·

0 a0 a1 a2 a3 · · ·

0 0 a0 a1 a2 · · ·

0 0 0 a0 a1 · · ·

...
...

...
...

...

∥∥∥∥∥∥∥∥∥∥∥∥∥
.

It is intuitively clear that if the expected number of new customers,
∑
∞

k=0 kak, who
arrive during a service period exceeds one, then with the passage of time the length
of the waiting line increases without limit. On the other hand, if

∑
∞

k=0 kak < 1, then
the length of the waiting line approaches a statistical equilibrium that is described by
a limiting distribution

lim
n→∞

Pr{Xn = k|X0 = j} = πk > 0, for k = 0,1, . . . ,

where
∑x

k=0πk = 1. Important quantities to be determined by this model include the
long run fraction of time that the service facility is idle, given by π0, and the long run
mean time that a customer spends in the system, given by

∑
∞

k=0(1+ k)πk.
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Exercises

3.3.1 Consider a spare parts inventory model in which either 0,1, or 2 repair parts are
demanded in any period, with

Pr{ξn = 0} = 0.4, Pr{ξn = 1} = 0.3, Pr{ξn = 2} = 0.3,

and suppose s= 0 and S= 3. Determine the transition probability matrix for
the Markov chain {Xn}, where Xn is defined to be the quantity on hand at the
end-of-period n.

3.3.2 Consider two urns A and B containing a total of N balls. An experiment is
performed in which a ball is selected at random (all selections equally likely) at
time t(t = 1,2, . . .) from among the totality of N balls. Then, an urn is selected
at random (A is chosen with probability p and B is chosen with probability q)
and the ball previously drawn is placed in this urn. The state of the system at
each trial is represented by the number of balls in A. Determine the transition
matrix for this Markov chain.

3.3.3 Consider the inventory model of Section 3.3.1. Suppose that S= 3. Set up
the corresponding transition probability matrix for the end-of-period inventory
level Xn.

3.3.4 Consider the inventory model of Section 3.3.1. Suppose that S= 3 and that the
probability distribution for demand is Pr{ξ = 0} = 0.1, Pr{ξ = 1} = 0.4,Pr{ξ =
2} = 0.3, and Pr{ξ = 3} = 0.2. Set up the corresponding transition probability
matrix for the end-of-period inventory level Xn.

3.3.5 An urn initially contains a single red ball and a single green ball. A ball is
drawn at random, removed, and replaced by a ball of the opposite color, and
this process repeats so that there are always exactly two balls in the urn. Let Xn

be the number of red balls in the urn after n draws, with X0 = 1. Specify the
transition probabilities for the Markov chain {Xn}.

Problems

3.3.1 An urn contains six tags, of which three are red and three are green. Two tags
are selected from the urn. If one tag is red and the other is green, then the
selected tags are discarded and two blue tags are returned to the urn. Otherwise,
the selected tags are resumed to the urn. This process repeats until the urn
contains only blue tags. Let Xn denote the number of red tags in the urn after
the nth draw, with X0 = 3. (This is an elementary model of a chemical reaction
in which red and green atoms combine to form a blue molecule.) Give the
transition probability matrix.

3.3.2 Three fair coins are tossed, and we let X1 denote the number of heads that
appear. Those coins that were heads on the first trial (there were X1 of them)
we pick up and toss again, and now we let X2 be the total number of tails,
including those left from the first toss. We toss again all coins showing tails,
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and let X3 be the resulting total number of heads, including those left from the
previous toss. We continue the process. The pattern is, count heads, toss heads,
count tails, toss tails, count heads, toss heads, etc., and X0 = 3. Then, {Xn} is a
Markov chain. What is the transition probability matrix?

3.3.3 Consider the inventory model of Section 3.3.1. Suppose that unfulfilled
demand is not back ordered but is lost.
(a) Set up the corresponding transition probability matrix for the end-of-

period inventory level Xn.
(b) Express the long run fraction of lost demand in terms of the demand dis-

tribution and limiting probabilities for the end-of-period inventory.
3.3.4 Consider the queueing model of Section 3.4. Now, suppose that at most a single

customer arrives during a single period, but that the service time of a customer
is a random variable Z with the geometric probability distribution

Pr{Z = k} = α(1−α)k−1 for k = 1,2, . . . .

Specify the transition probabilities for the Markov chain whose state is the
number of customers waiting for service or being served at the start of each
period. Assume that the probability that a customer arrives in a period is β and
that no customer arrives with probability 1−β.

3.3.5 You are going to successively flip a quarter until the pattern HHT appears,
that is, until you observe two successive heads followed by a tails. In order to
calculate some properties of this game, you set up a Markov chain with the
following states: 0,H,HH, and HHT , where 0 represents the starting point, H
represents a single observed head on the last flip, HH represents two successive
heads on the last two flips, and HHT is the sequence that you are looking for.
Observe that if you have just tossed a tails, followed by a heads, a next toss of
a tails effectively starts you over again in your quest for the HHT sequence.
Set up the transition probability matrix.

3.3.6 Two teams, A and B, are to play a best of seven series of games. Suppose that
the outcomes of successive games are independent, and each is won by A with
probability p and won by B with probability 1− p. Let the state of the system
be represented by the pair (a,b), where a is the number of games won by A,
and b is the number of games won by B. Specify the transition probability
matrix. Note that a+ b≤ 7 and that the entries end whenever a= 4 or b= 4.

3.3.7 A component in a system is placed into service, where it operates until its fail-
ure, whereupon it is replaced at the end of the period with a new component
having statistically identical properties, and the process repeats. The proba-
bility that a component lasts for k periods is αk, for k = 1,2, . . . . Let Xn be
the remaining life of the component in service at the end-of-period n. Then,
Xn = 0 means that Xn+1 will be the total operating life of the next component.
Give the transition probabilities for the Markov chain {Xn}.

3.3.8 Two urns A and B contain a total of N balls. Assume that at time t, there were
exactly k balls in A. At time t+ 1, an urn is selected at random in proportion
to its contents (i.e., A is chosen with probability k/N and B is chosen with
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probability (N− k)/N). Then, a ball is selected from A with probability p or
from B with probability q and placed in the previously chosen urn. Determine
the transition matrix for this Markov chain.

3.3.9 Suppose that two urns A and B contain a total of N balls. Assume that at time t,
there are exactly k balls in A. At time t+ 1, a ball and an urn are chosen with
probability depending on the contents of the urn (i.e., a ball is chosen from
A with probability k/N or from B with probability (N− k)/N). Then, the ball
is placed into one of the urns, where urn A is chosen with probability k/N or
urn B is chosen with probability (N− k)/N. Determine the transition matrix of
the Markov chain with states represented by the contents of A.

3.3.10 Consider a discrete-time, periodic review inventory model and let ξn be the
total demand in period n, and let Xn be the inventory quantity on hand at the
end-of-period n. An (s,S) inventory policy is used: If the end-of-period stock
is not greater than s, then a quantity is instantly procured to bring the level up
to S. If the end-of-period stock exceeds s, then no replenishment takes place.
(a) Suppose that s= 1,S= 4, and X0 = S= 4. If the period demands turn

out to be ξ1 = 2,ξ2 = 3,ξ3 = 4,ξ4 = 0,ξ5 = 2,ξ6 = 1,ξ7 = 2, and ξ8 = 2,
what are the end-of-period stock levels Xn for periods n= 1,2, . . . ,8?

(b) Suppose ξ1,ξ2, . . . are independent random variables where Pr{ξn = 0} =
0.1,Pr{ξn = 1} = 0.3,Pr{ξn = 2} = 0.3,Pr{ξn=3}=0.2, and Pr{ξn = 4} =
0.1. Then, X0,X1, . . . is a Markov chain. Determine P41 and P04.

3.4 First Step Analysis

A surprising number of functionals on a Markov chain can be evaluated by a tech-
nique that we call first step analysis. This method proceeds by analyzing, or breaking
down, the possibilities that can arise at the end of the first transition, and then invoking
the law of total probability coupled with the Markov property to establish a charac-
terizing relationship among the unknown variables. We first applied this technique in
Theorem 3.1. In this section, we develop a series of applications of the technique.

3.4.1 Simple First Step Analyses

Consider the Markov chain {Xn} whose transition probability matrix is

P=

∥∥∥∥∥∥∥
0 1 2

0 1 0 0

1 α β γ

2 0 0 1

∥∥∥∥∥∥∥,
where α > 0,β > 0,γ > 0, and α+β + γ = 1. If the Markov chain begins in state 1,
it remains there for a random duration and then proceeds either to state 0 or to state 2,
where it is trapped or absorbed. That is, once in state 0, the process remains there for
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ever after, as it also does in state 2. Two questions arise: In which state, 0 or 2, is the
process ultimately trapped, and how long, on the average, does it take to reach one of
these states? Both questions are easily answered by instituting a first step analysis.

We begin by more precisely defining the questions. Let

T =min{n≥ 0;Xn = 0 or Xn = 2}

be the time of absorption of the process. In terms of this random absorption time, the
two questions ask us to find

u= Pr{XT = 0|X0 = 1}

and

v= E[T|X0 = 1].

We proceed to institute a first step analysis, considering separately the three con-
tingencies X1 = 0,X1 = 1, and X1 = 2, with respective probabilities α,β, and γ . Con-
sider u= Pr{XT = 0|X0 = 1}. If X1 = 0, which occurs with probability α, then T = 1
and XT = 0. If X1 = 2, which occurs with probability γ , then again T = 1, but XT = 2.
Finally, if X1 = 1, which occurs with probability β, then the process returns to state 1
and the problem repeats from the same state as before. In symbols, we claim that

Pr{XT = 0|X1 = 0} = 1,

Pr{XT = 0|X1 = 2} = 0,

Pr{XT = 0|X1 = 1} = u,

which inserted into the law of total probability gives

u= Pr{XT = 0|X0 = 1}

=

2∑
k=0

Pr{XT = 0|X0 = 1,X1 = k}Pr{X1 = k|X0 = 1}

=

2∑
k=0

Pr{XT = 0|X1 = k}Pr{X1 = k|X0 = 1}

(by the Markov property)
= 1(α)+ u(β)+ 0(γ ).

Thus, we obtain the equation

u= α+βu, (3.19)

which gives

u=
α

1−β
=

α

α+ γ
.
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Observe that this quantity is the conditional probability of a transition to 0, given that
a transition to 0 or 2 occurred. That is, the answer makes sense.

We turn to determining the mean time to absorption, again analyzing the possibili-
ties arising on the first step. The absorption time T is always at least 1. If either X1 = 0
or X1 = 2, then no further steps are required. If, on the other hand, X1 = 1, then the
process is back at its starting point, and on the average, v= E[T|X0 = 1] additional
steps are required for absorption. Weighting these contingencies by their respective
probabilities, we obtain for v= E[T|X0 = 1],

v= 1+α(0)+β(v)+ γ (0)

= 1+βv, (3.20)

which gives

v=
1

1−β
.

In the example just studied, the reader is invited to verify that T has the geometric
distribution in which

Pr{T > k|X0 = 1} = βk for k = 0,1, . . . ,

and, therefore,

E[T|X0 = 1]=
∞∑

k=0

Pr{T > k|X0 = 1} =
1

1−β
.

That is, a direct calculation verifies the result of the first step analysis. Unfortunately,
in more general Markov chains, a direct calculation is rarely possible, and first step
analysis provides the only solution technique.

A significant extension occurs when we move up to the four-state Markov chain
whose transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 P10 P11 P12 P13

2 P20 P21 P22 P23

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.
Absorption now occurs in states 0 and 3, and states 1 and 2 are “transient.” The proba-
bility of ultimate absorption in state 0, say, now depends on the transient state in which
the process began. Accordingly, we must extend our notation to include the starting
state. Let

T =min{n≥ 0;Xn = 0 or Xn = 3},

ui = Pr{XT = 0|X0 = i} for i= 1,2,
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and

vi = E[T|X0 = i] for i= 1,2.

We may extend the definitions for ui and vi in a consistent and commonsense manner
by prescribing u0 = 1,u3 = 0, and v0 = v3 = 0.

The first step analysis now requires us to consider the two possible starting states
X0 = 1 and X0 = 2 separately. Considering X0 = 1 and applying a first step analysis to
u1 = Pr{XT = 0|X0 = 1}, we obtain

u1 = P10+P11u1+P12u2. (3.21)

The three terms on the right correspond to the contingencies X1 = 0,X1 = 1, and
X1 = 2, respectively, with the conditional probabilities

Pr{XT = 0|X1 = 0} = 1,

Pr{XT = 0|X1 = 1} = u1,

and

Pr{XT = 0|X1 = 2} = u2.

The law of total probability then applies to give (3.21), just as it was used in obtaining
(3.19). A similar equation is obtained for u2:

u2 = P20+P21u1+P22u2. (3.22)

The two equations in u1 and u2 are now solved simultaneously. To give a numerical
example, we will suppose

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.4 0.3 0.2 0.1

2 0.1 0.3 0.3 0.3

3 0 0 0 1

∥∥∥∥∥∥∥∥∥. (3.23)

The first step analysis equations (3.21) and (3.22) for u1 and u2 are

u1 = 0.4+ 0.3u1+ 0.2u2,

u2 = 0.1+ 0.3u1+ 0.3u2,

or

0.7u1− 0.2u2 = 0.4,

−0.3u1+ 0.7u2 = 0.1.
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The solution is u1 =
30
43 and u2 =

19
43 . Note that one cannot, in general, solve for u1

without bringing in u2, and vice versa. The result u2 =
19
43 tells us that once begun

in state X0 = 2, the Markov chain {Xn} described by (3.23) will ultimately end up in
state 0 with probability u2 =

19
43 , and alternatively, will be absorbed in state 3 with

probability 1− u2 =
24
43 .

The mean time to absorption also depends on the starting state. The first step analy-
sis equations for vi = E[T|X0 = i] are

v1 = 1+P11v1+P12v2,

v2 = 1+P21v1+P22v2.
(3.24)

The right side of (3.24) asserts that at least one step is always taken. If the first move is
to either X1 = 1 or X1 = 2, then additional steps are needed, and on the average, these
are v1 and v2, respectively. Weighting the contingencies X1 = 1 and X1 = 2 by their
respective probabilities and summing according to the law of total probability results
in (3.24).

For the transition matrix given in (3.23), the equations are

v1 = 1+ 0.3v1+ 0.2v2,

v2 = 1+ 0.3v1+ 0.3v2,

and their solutions are v1 =
90
43 and v2 =

100
43 . Again, v1 cannot be obtained without

also considering v2, and vice versa. For a process that begins in state X0 = 2, on the
average v2 =

100
43 = 2.33 steps will transpire prior to absorption.

To study the method in a more general context, let {Xn} be a finite-state Markov
chain whose states are labeled 0,1, . . . ,N. Suppose that states 0,1, . . . , r− 1 are tran-
sient∗ in that P(n)ij → 0 as n→∞ for 0≤ i, j< r, while states r, . . . ,N are absorbing
(Pii = 1 for r ≤ i≤ N). The transition matrix has the form

P=

∥∥∥∥Q R
0 I

∥∥∥∥ (3.25)

where 0 is an (N− r+ 1)× r matrix all of whose entries are zero, I is an (N− r+
1)× (N− r+ 1) identity matrix, and Qij = Pij for 0≤ i, j< r.

Started at one of the transient states X0 = i, where 0≤ i< r, such a process will
remain in the transient states for some random duration, but ultimately the process
gets trapped in one of the absorbing states i= r, . . . ,N. Functionals of importance are
the mean duration until absorption and the probability distribution over the states in
which absorption takes place.

Let us consider the second question first and fix a state k among the absorbing states
(r ≤ k ≤ N). The probability of ultimate absorption in state k, as opposed to some other
absorbing state, depends on the initial state X0 = i. Let Uik = ui denote this probability,
where we suppress the target state k in the notation for typographical convenience.

∗ The definition of a transient state is different for an infinite-state Markov chain. See Chapter 4, Section 4.3.
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We begin a first step analysis by enumerating the possibilities in the first transition.
Starting from state i, with probability Pik the process immediately goes to state k, there-
after to remain, and this is the first possibility considered. Alternatively, the process
could move on its first step to an absorbing state j 6= k, where r ≤ j≤ N, in which case
ultimate absorption in state k is precluded. Finally, the process could move to a tran-
sient state j< r. Because of the Markov property, once in state j, then the probability
of ultimate absorption in state k is uj = Ujk by definition. Weighting the enumerated
possibilities by their respective probabilities via the law of total probability, we obtain
the relation

ui = Pr{Absorption in k|X0 = i}

=

N∑
j=0

Pr{Absorption in k|X0 = i,X1 = j}Pij

= Pik+

N∑
j=r
j6=k

Pij× 0+
r−1∑
j=0

Pijuj.

To summarize, for a fixed absorbing state k, the quantities

ui = Uik = Pr{Absorption in k|X0 = i} for 0≤ i< r

satisfy the inhomogeneous system of linear equations

Uik = Pik+

r−1∑
j=0

PijUjk, i= 0,1, . . . ,r− 1. (3.26)

Example A Maze A white rat is put into the maze shown:

0 1

2 3 4

5 6

7
food

8
shock

In the absence of learning, one might hypothesize that the rat would move through the
maze at random; i.e., if there are k ways to leave a compartment, then the rat would
choose each of these with probability 1/k. Assume that the rat makes one change to
some adjacent compartment at each unit of time and let Xn denote the compartment
occupied at stage n. We suppose that compartment 7 contains food and compartment
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8 contains an electrical shocking mechanism, and we ask the probablity that the rat,
moving at random, encounters the food before being shocked. The appropriate transi-
tion probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4 5 6 7 8

0
1

2

1

2

1
1

3

1

3

1

3

2
1

3

1

3

1

3

3
1

4

1

4

1

4

1

4

4
1

3

1

3

1

3

5
1

3

1

3

1

3

6
1

2

1

2

7 1

8 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

Let ui = ui(7) denote the probability of absorption in the food compartment 7, given
that the rat is dropped initially in compartment i. Then, equation (3.26) becomes, in
this particular instance,

u0 =
1

2
u1+

1

2
u2,

u1 =
1

3
+

1

3
u0 +

1

3
u3,

u2 =
1

3
u0 +

1

3
u3,

u3 =
1

4
u1+

1

4
u2 +

1

4
u4+

1

4
u5,

u4 =
1

3
+

1

3
u3 +

1

3
u6,

u5 =
1

3
u3 +

1

3
u6,

u6 =
1

2
u4+

1

2
u5.

Turning to the solution, we see that the symmetry of the maze implies that u0 =

u6,u2 = u5, and u1 = u4. We also must have u3 =
1
2 . With these simplifications, the
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equations for u0,u1, and u2 become

u0 =
1

2
u1+

1

2
u2,

u1 =
1

2
+

1

3
u0,

u2 =
1

6
+

1

3
u0,

and the natural substitutions give u0 =
1
2

(
1
2 +

1
3 u0

)
+

1
2

(
1
6 +

1
3 u0

)
, or u0 =

1
2 ,u1 =

2
3 ,

and u2 =
1
3 .

One might compare these theoretical values under random moves with actual obser-
vations as an indication of whether or not learning is taking place.

3.4.2 The General Absorbing Markov Chain

Let {Xn} be a Markov chain whose transition probability matrix takes the form (3.25).
We turn to a more general form of the first question by introducing the random absorp-
tion time T . Formally, we define

T =min{n≥ 0;Xn ≥ r}.

Let us suppose that associated with each transient state i is a rate g(i) and that we wish
to determine the mean total rate that is accumulated up to absorption. Let wi be this
mean total amount, where the subscript i denotes the starting position X0 = i. To be
precise, let

wi = E

[
T−1∑
n=0

g(Xn)|X0 = i

]
.

The choice g(i)= 1 for all i yields
∑T−1

n=0 g(Xn)=
∑T−1

n=0 1= T , and then wi is iden-
tical to vi ≡ E[T|X0 = i], the mean time until absorption. For a transient state k, the
choice

g(i)=

{
1 if i= k,

0 if i 6= k,

gives wi =Wik, the mean number of visits to state k(0≤ k < r) prior to absorption.
We again proceed via a first step analysis. The sum

∑T−1
n=0 g(Xn) always includes the

first term g(X0)= g(i). In addition, if a transition is made from i to a transient state j,
then the sum includes future terms as well. By invoking the Markov property, we
deduce that this future sum proceeding from state j has an expected value equal to wj.
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Weighting this by the transition probability Pij and then summing all contributions in
accordance with the law of total probability, we obtain the joint relations

wi = g(i)+
r−1∑
j=0

Pijwj for i= 0, . . . ,r− 1. (3.27)

The special case in which g(i)= 1 for all i determines vi = E[T|X0 = i] as solving

vi = 1+
r−1∑
j=0

Pijvj for i= 0,1, . . . ,r− 1. (3.28)

The case in which

g(i)= δik =

{
1 if i= k,

0 if i 6= k,

determines Wik, the mean number of visits to state k prior to absorption starting from
state i, as solving

Wik = δik+

r−1∑
j=0

PijWjk for i= 0,1, . . . ,r− 1. (3.29)

Example A Model of Fecundity Changes in sociological patterns such as increase in
age at marriage, more remarriages after widowhood, and increased divorce rates have
profound effects on overall population growth rates. Here, we attempt to model the
lifespan of a female in a population in order to provide a framework for analyzing the
effect of social changes on average fecundity.

The general model we propose has a large number of states delimiting the age and
status of a typical female in the population. For example, we begin with the 12 age
groups 0–4 years, 5–9 years, . . . , 50–54 years, 55 years, and over. In addition, each
of these age groups might be further subdivided according to marital status: single,
married, separated, divorced, or widowed, and might also be subdivided according
to the number of children. Each female would begin in the (0–4, single) category
and end in a distinguished state 1 corresponding to death or emigration from the
population. However, the duration spent in the various other states might differ among
different females. Of interest is the mean duration spent in the categories of maximum
fertility, or more generally, a mean sum of durations weighted by appropriate fecundity
rates.

When there are a large number of states in the model, as just sketched, the relevant
calculations require a computer. We turn to a simpler model which, while less realistic,
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will serve to illustrate the concepts and approach. We introduce the states

E0: Prepuberty, E3: Divorced,

E1: Single, E4: Widowed,

E2: Married, E5:1,

and we are interested in the mean duration spent in state E2: Married, since this cor-
responds to the state of maximum fecundity. To illustrate the computations, we will
suppose the transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

E0 E1 E2 E3 E4 E5

E0 0 0.9 0 0 0 0.1

E1 0 0.5 0.4 0 0 0.1

E2 0 0 0.6 0.2 0.1 0.1

E3 0 0 0.4 0.5 0 0.1

E4 0 0 0.4 0 0.5 0.1

E5 0 0 0 0 0 1.0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

In practice, such a matrix would be estimated from demographic data.
Every person begins in state E0 and ends in state E5, but a variety of intervening

states may be visited. We wish to determine the mean duration spent in state E2: Mar-
ried. The powerful approach of first step analysis begins by considering the slightly
more general problem in which the initial state is varied. Let wi =Wi2 be the mean
duration in state E2 given the initial state X0 = Ei for i= 0,1, . . . ,5. We are interested
in w0, the mean duration corresponding to the initial state E0.

First step analysis breaks down, or analyzes, the possibilities arising in the first
transition, and using the Markov property, an equation that relates w0, . . . ,w5 results.

We begin by considering w0. From state E0, a transition to one of the states E1 or E5
occurs, and the mean duration spent in E2 starting from E0 must be the appropriately
weighted average of w1 and w5. That is,

w0 = 0.9w1+ 0.1w5.

Proceeding in a similar manner, we obtain

w1 = 0.5w1+ 0.4w2+ 0.1w5.

The situation changes when the process begins in state E2 because in counting the
mean duration spent in E2, we must count this initial visit plus any subsequent visits
that may occur. Thus, for E2, we have

w2 = 1+ 0.6w2+ 0.2w3+ 0.1w4+ 0.1w5.
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The other states give us

w3 = 0.4w2+ 0.5w3+ 0.1w5,

w4 = 0.4w2+ 0.5w4+ 0.1w5,

w5 = w5.

Since state E5 corresponds to death, it is clear that we must have w5 = 0. With this
prescription, the reduced equations become, after elementary simplification,

−1.0w0+ 0.9w1 = 0,
− 0.5w1+ 0.4w2 = 0,

− 0.4w2+ 0.2w3+ 0.1w4=−1,
0.4w2− 0.5w3 = 0,
0.4w2 − 0.5w4= 0.

The unique solution is

w0 = 4.5, w1 = 5.00, w2 = 6.25, w3 = w4 = 5.00.

Each female, on the average, spends w0 =W02 = 4.5 periods in the childbearing state
E2 during her lifetime.

Exercises

3.4.1 Find the mean time to reach state 3 starting from state 0 for the Markov chain
whose transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0.4 0.3 0.2 0.1

1 0 0.7 0.2 0.1

2 0 0 0.9 0.1

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.
3.4.2 Consider the Markov chain whose transition probablity matrix is given by

P=

∥∥∥∥∥∥∥
0 1 2

0 1 0 0

1 0.1 0.6 0.3

2 0 0 1

∥∥∥∥∥∥∥.
(a) Starting in state 1, determine the probability that the Markov chain ends in

state 0.
(b) Determine the mean time to absorption.
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3.4.3 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.1 0.6 0.1 0.2

2 0.2 0.3 0.4 0.1

3 0 0 0 1

∥∥∥∥∥∥∥∥∥∥
.

(a) Starting in state 1, determine the probability that the Markov chain ends in
state 0.

(b) Determine the mean time to absorption.
3.4.4 A coin is tossed repeatedly until two successive heads appear. Find the mean

number of tosses required.

Hint: Let Xn be the cumulative number of successive heads. The state space is
0,1,2, and the transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥

0 1 2

0
1

2

1

2
0

1
1

2
0

1

2

2 0 0 1

∥∥∥∥∥∥∥∥∥∥∥
.

Determine the mean time to reach state 2 starting from state 0 by invoking a first
step analysis.

3.4.5 A coin is tossed repeatedly until either two successive heads appear or two suc-
cessive tails appear. Suppose the first coin toss results in a head. Find the prob-
ability that the game ends with two successive tails.

3.4.6 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.1 0.4 0.1 0.4

2 0.2 0.1 0.6 0.1

3 0 0 0 1

∥∥∥∥∥∥∥∥∥∥
.

(a) Starting in state 1, determine the probability that the Markov chain ends in
state 0.

(b) Determine the mean time to absorption.
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3.4.7 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.1 0.2 0.5 0.2

2 0.1 0.2 0.6 0.1

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.

Starting in state 1, determine the mean time that the process spends in state 1
prior to absorption and the mean time that the process spends in state 2 prior to
absorption. Verify that the sum of these is the mean time to absorption.

3.4.8 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.5 0.2 0.1 0.2

2 0.2 0.1 0.6 0.1

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.

Starting in state 1, determine the mean time that the process spends in state 1
prior to absorption and the mean time that the process spends in state 2 prior to
absorption. Verify that the sum of these is the mean time to absorption.

3.4.9 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.1 0.2 0.5 0.2

2 0.1 0.2 0.6 0.1

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.

Starting in state 1, determine the probability that the process is absorbed into
state 0. Compare this with the (1,0)th entry in the matrix powers P2,P4,P8,
and P16.

Problems

3.4.1 Which will take fewer flips, on average: successively flipping a quarter until
the pattern HHT appears, i.e., until you observe two successive heads followed
by a tails; or successively flipping a quarter until the pattern HTH appears? Can
you explain why these are different?
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3.4.2 A zero-seeking device operates as follows: If it is in state m at time n, then at
time n+ 1, its position is uniformly distributed over the states 0,1, . . . ,m− 1.
Find the expected time until the device first hits zero starting from state m.

Note: This is a highly simplified model for an algorithm that seeks a maxi-
mum over a finite set of points.

3.4.3 A zero-seeking device operates as follows: If it is in state j at time n, then at
time n+ 1, its position is 0 with probability 1/j, and its position is k (where
k is one of the states 1,2, . . . , j− 1) with probability 2k/j2. Find the expected
time until the device first hits zero starting from state m.

3.4.4 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.1 0.2 0.5 0.2

2 0.1 0.2 0.6 0.1

3 0.2 0.2 0.3 0.3

∥∥∥∥∥∥∥∥∥.
Starting in state X0 = 1, determine the probability that the process never visits
state 2. Justify your answer.

3.4.5 A white rat is put into compartment 4 of the maze shown here:

1 2

4 5 6

3
food

7
shock

It moves through the compartments at random; i.e., if there are k ways to leave
a compartment, it chooses each of these with probability 1/k. What is the prob-
ability that it finds the food in compartment 3 before feeling the electric shock
in compartment 7?

3.4.6 Consider the Markov chain whose transition matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4

0 q p 0 0 0

1 q 0 p 0 0

2 q 0 0 p 0

3 q 0 0 0 p

4 0 0 0 0 1

∥∥∥∥∥∥∥∥∥∥∥∥
,
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where p+ q= 1. Determine the mean time to reach state 4 starting from state 0.
That is, find E[T|X0 = 0], where T =min{n≥ 0;Xn = 4}.

Hint: Let vi = E[T|X0 = i] for i= 0,1, . . . ,4. Establish equations for
v0,v1, . . . ,v4 by using a first step analysis and the boundary condition v4 = 0.
Then, solve for v0.

3.4.7 Let Xn be a Markov chain with transition probabilities Pij. We are given a
“discount factor” β with 0< β < 1 and a cost function c(i), and we wish to
determine the total expected discounted cost starting from state i, defined by

hi = E

[
∞∑

n=0

βnc(Xn)|X0 = i

]
.

Using a first step analysis show that hi satisfies the system of linear equations

hi = c(i)+β
∑

j

Pijhj for all states i.

3.4.8 An urn contains five red and three green balls. The balls are chosen at random,
one by one, from the urn. If a red ball is chosen, it is removed. Any green ball
that is chosen is returned to the urn. The selection process continues until all
of the red balls have been removed from the urn. What is the mean duration of
the game?

3.4.9 An urn contains five red and three yellow balls. The balls are chosen at ran-
dom, one by one, from the urn. Each ball removed is replaced in the urn by a
yellow ball. The selection process continues until all of the red balls have been
removed from the urn. What is the mean duration of the game?

3.4.10 You have five fair coins. You toss them all so that they randomly fall heads
or tails. Those that fall tails in the first toss you pick up and toss again. You
toss again those that show tails after the second toss, and so on, until all show
heads. Let X be the number of coins involved in the last toss. Find Pr{X = 1}.

3.4.11 An urn contains two red and two green balls. The balls are chosen at random,
one by one, and removed from the urn. The selection process continues until
all of the green balls have been removed from the urn. What is the probability
that a single red ball is in the urn at the time that the last green ball is chosen?

3.4.12 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.3 0.2 0.5

1 0.5 0.1 0.4

2 0 0 1

∥∥∥∥∥∥∥
and is known to start in state X0 = 0. Eventually, the process will end up in
state 2. What is the probability that when the process moves into state 2, it
does so from state 1?
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Hint: Let T =min{n≥ 0;Xn = 2}, and let

zi = Pr{XT−1 = 1|X0 = i} for i= 0,1.

Establish and solve the first step equations

z0= 0.3z0+ 0.2z1,

z1= 0.4+ 0.5z0+ 0.1z1.

3.4.13 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.3 0.2 0.5

1 0.5 0.1 0.4

2 0 0 1

∥∥∥∥∥∥∥
and is known to start in state X0 = 0. Eventually, the process will end up in
state 2. What is the probability that the time T =min{n≥ 0;Xn = 2} is an odd
number?

3.4.14 A single die is rolled repeatedly. The game stops the first time that the sum of
two successive rolls is either 5 or 7. What is the probability that the game stops
at a sum of 5?

3.4.15 A simplified model for the spread of a rumor goes this way: There are N = 5
people in a group of friends, of which some have heard the rumor and the
others have not. During any single period of time, two people are selected at
random from the group and assumed to interact. The selection is such that an
encounter between any pair of friends is just as likely as between any other
pair. If one of these persons has heard the rumor and the other has not, then
with probability α = 0.1 the rumor is transmitted. Let Xn denote the number of
friends who have heard the rumor at the end of the nth period.

Assuming that the process begins at time 0 with a single person knowing
the rumor, what is the mean time that it takes for everyone to hear it?

3.4.16 An urn contains five tags, of which three are red and two are green. A tag is
randomly selected from the urn and replaced with a tag of the opposite color.
This continues until only tags of a single color remain in the urn. Let Xn denote
the number of red tags in the urn after the nth draw, with X0 = 3. What is the
probability that the game ends with the urn containing only red tags?

3.4.17 The damage Xn of a system subjected to wear is a Markov chain with the
transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.7 0.3 0

1 0 0.6 0.4

2 0 0 1

∥∥∥∥∥∥∥.
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The system starts in state 0 and fails when it first reaches state 2. Let T =
min{n≥ 0;Xn = 2} be the time of failure. Use a first step analysis to evalu-
ate φ(s)= E

[
sT
]

for a fixed number 0< s< 1. (This is called the generating
function of T . See Section 3.9.)

3.4.18 Time-dependent transition probabilities. A well-disciplined man, who smokes
exactly one half of a cigar each day, buys a box containing N cigars. He cuts
a cigar in half, smokes half, and returns the other half to the box. In general,
on a day in which his cigar box contains w whole cigars and h half cigars, he
will pick one of the w+ h smokes at random, each whole and half cigar being
equally likely, and if it is a half cigar, he smokes it. If it is a whole cigar, he
cuts it in half, smokes one piece, and returns the other to the box. What is the
expected value of T , the day on which the last whole cigar is selected from
the box?

Hint: Let Xn be the number of whole cigars in the box after the nth smoke.
Then, Xn is a Markov chain whose transition probabilities vary with n. Define
vn(w)= E[T|Xn = w]. Use a first step analysis to develop a recursion for vn(w)
and show that the solution is

vn(w)=
2Nw+ n+ 2w

w+ 1
−

w∑
k=1

1

k
,

whence

E[T]= v0(N)= 2N−
N∑

k=1

1

k
.

3.4.19 Computer Challenge. Let N be a positive integer and let Z1, . . . ,ZN be inde-
pendent random variables, each having the geometric distribution

Pr{Z = k} =

(
1

2

)k

, for k = 1,2, . . . .

Since these are discrete random variables, the maximum among them may be
unique, or there may be ties for the maximum. Let pN be the probability that
the maximum is unique. How does pN behave when N is large? (Alternative
formulation: You toss N dimes. Those that are heads you set aside; those that
are tails you toss again. You repeat this until all of the coins are heads. Then,
pN is the probability that the last toss was of a single coin.)

3.5 Some Special Markov Chains

We introduce several particular Markov chains that arise in a variety of applications.
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3.5.1 The Two-State Markov Chain

Let

P=

∥∥∥∥∥
0 1

0 1− a a

1 b 1− b

∥∥∥∥∥, where 0< a,b< 1, (3.30)

be the transition matrix of a two-state Markov chain.
When a= 1− b so that the rows of P are the same, then the states X1,X2, . . . are

independent identically distributed random variables with Pr{Xn = 0} = b and Pr{Xn =

1} = a. When a 6= 1− b, the probability distribution for Xn varies depending on the
outcome Xn−1 at the previous stage.

For the two-state Markov chain, it is readily verified by induction that the n-step
transition matrix is given by

Pn
=

1

a+ b

∥∥∥∥b a
b a

∥∥∥∥+ (1− a− b)n

a+ b

∥∥∥∥ a −a
−b b

∥∥∥∥. (3.31)

To verify this general formula, introduce the abbreviations

A=

∥∥∥∥b a
b a

∥∥∥∥ and B=

∥∥∥∥ a −a
−b b

∥∥∥∥
so that (3.31) can be written

Pn
= (a+ b)−1 [A+ (1− a− b)nB

]
.

Next, check the multiplications

AP=

∥∥∥∥b a
b a

∥∥∥∥× ∥∥∥∥1− a a
b 1− b

∥∥∥∥= ∥∥∥∥b a
b a

∥∥∥∥= A

and

BP =

∥∥∥∥ a −a
−b b

∥∥∥∥× ∥∥∥∥1− a a
b 1− b

∥∥∥∥
=

∥∥∥∥ a− a2
− ab a2

− a+ ab
−b+ ab+ b2

−ab+ b− b2

∥∥∥∥= (1− a− b)B.
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Now, (3.31) is easily seen to be true when n= 1, since then

P1
=

1

a+ b

∥∥∥∥b a
b a

∥∥∥∥+ (1− a− b)

a+ b

∥∥∥∥ a −a
−b b

∥∥∥∥
=

1

a+ b

∥∥∥∥b+ a− a2
− ab a− a+ a2

+ ab
b− b+ ab+ b2 a+ b− ab− b2

∥∥∥∥
=

∥∥∥∥1− a a
b 1− b

∥∥∥∥= P.

To complete an induction proof, assume that the formula is true for n. Then,

PnP= (a+ b)−1 [A+ (1− a− b)nB
]

P

= (a+ b)−1 [AP+ (1− a− b)nBP
]

= (a+ b)−1
[
A+ (1− a− b)n+1B

]
= Pn+1.

We have verified that the formula holds for n+ 1. It, therefore, is established for all n.
Note that |1− a− b|< 1 when 0< a,b< 1, and thus |1− a− b|n→ 0 as n→∞

and

lim
n→∞

Pn
=

∥∥∥∥∥∥∥∥
b

a+ b

a

a+ b
b

a+ b

a

a+ b

∥∥∥∥∥∥∥∥ . (3.32)

This tells us that such a system, in the long run, will be in state 0 with probability
b/(a+ b) and in state 1 with probability a/(a+ b), irrespective of the initial state in
which the system started.

For a numerical example, suppose that the items produced by a certain worker are
graded as defective or not and that due to trends in raw material quality, whether or
not a particular item is defective depends in part on whether or not the previous item
was defective. Let Xn denote the quality of the nth item with Xn = 0 meaning “good”
and Xn = 1 meaning “defective.” Suppose that {Xn} evolves as a Markov chain whose
transition matrix is

P=

∥∥∥∥∥
0 1

0 0.99 0.01

1 0.12 0.88

∥∥∥∥∥.
Defective items would tend to appear in bunches in the output of such a system.

In the long run, the probability that an item produced by this system is defective is
given by a/(a+ b)= 0.01/(0.01+ 0.12)= 0.077.
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3.5.2 Markov Chains Defined by Independent Random Variables

Let ξ denote a discrete-valued random variable whose possible values are the non-
negative integers and where Pr{ξ = i} = ai ≥ 0, for i= 0,1, . . . , and

∑
∞

i=0 ai = 1. Let
ξ1,ξ2, . . . , ξn, . . . represent independent observations of ξ .

We shall now describe three different Markov chains connected with the sequence
ξ1,ξ2, . . . . In each case, the state space of the process is the set of nonnegative integers.

Example Independent Random Variables Consider the process Xn,n= 0,1,2, . . . ,
defined by Xn = ξn (X0 = ξ0 prescribed). Its Markov matrix has the form

P=

∥∥∥∥∥∥∥∥∥
a0 a1 a2 · · ·

a0 a1 a2 · · ·

a0 a1 a2 · · ·

...
...

...

∥∥∥∥∥∥∥∥∥ . (3.33)

That all rows are identical plainly expresses the fact that the random variable Xn+1 is
independent of Xn.

Example Successive Maxima The partial maxima of ξ1,ξ2, . . . define a second
important Markov chain. Let

θn =max{ξ1, . . . , ξn}, for n= 1,2, . . . ,

with θ0 = 0. The process defined by Xn = θn is readily seen to be a Markov chain, and
the relation Xn+1 =max{Xn,ξn+1} allows the transition probabilities to be computed
to be

P=

∥∥∥∥∥∥∥∥∥∥∥

A0 a1 a2 a3 · · ·

0 A1 a2 a3 · · ·

0 0 A2 a3 · · ·

0 0 0 A3 · · ·

...
...

...
...

∥∥∥∥∥∥∥∥∥∥∥
, (3.34)

where Ak = a0+ ·· ·+ ak for k = 0,1, . . . .
Suppose ξ1,ξ2, . . . represent successive bids on a certain asset that is offered for

sale. Then, Xn =max{ξ1, . . . , ξn} is the maximum that is bid up to stage n. Suppose
that the bid that is accepted is the first bid that equals or exceeds a prescribed level M.
The time of sale is the random variable T =min{n≥ 1;Xn ≥M}. A first step analysis
shows that the mean µ= E[T] satisfies

µ= 1+µPr{ξ1 <M}, (3.35)
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orµ= 1/Pr{ξ1 ≥M} = 1/(aM + aM+1+ ·· ·). The first step analysis invoked in estab-
lishing (3.35) considers the two possibilities {ξ1 <M} and {ξ1 ≥M}. With this break-
down, the law of total probability justifies the sum

E[T]= E[T|ξ1 ≥M]Pr{ξ1 ≥M}+E[T|ξ1 <M]Pr{ξ1 <M}. (3.36)

Clearly, E[T|ξ1 ≥M]= 1, since no further bids are examined in this case. On the other
hand, when ξ1 <M, we have the first bid, which was not accepted, plus some future
bids. The future bids ξ2,ξ3, . . . have the same probabilistic properties as in the original
problem, and they are examined until the first acceptable bid appears. This reasoning
leads to E[T|ξ1 <M]= 1+µ. Substitution into (3.36) then yields (3.35) as follows:

E[T]= 1×Pr{ξ1 ≥M}+ (1+µ)Pr{ξ1 <M}

= 1+µPr{ξ1 <M}.

To restate the argument somewhat differently, one always examines the first bid ξ1. If
ξ1 <M, then further bids are examined in a future that is probabilistically similar to
the original problem. That is, when ξ1 <M, then on the average µ bids in addition to
ξ1 must be examined before an acceptable bid appears. Equation (3.35) results.

Example Partial Sums Another important Markov chain arises from consideration
of the successive partial sums ηn of the ξi, i.e.,

ηn = ξ1+ ·· ·+ ξn, n= 1,2, . . . ,

and by definition, η0 = 0. The process Xn = ηn is readily seen to be a Markov chain via

Pr{Xn+1 = j|X1 = i1, . . . ,Xn−1 = in−1,Xn = i}

= Pr{ξn+1 = j− i|ξ1 = i1,ξ2 = i2− i1, . . . , ξn = i− in−1}

= Pr{ξn+1 = j− i} (independence of ξ1,ξ2, . . .)

= Pr{Xn+1 = j|Xn = i}.

The transition probability matrix is determined by

Pr{Xn+1 = j|Xn = i} = Pr{ξ1+ ·· ·+ ξn+1 = j|ξ1+ ·· ·+ ξn = i}

= Pr{ξn+1 = j− i}

=

{
aj−i for j≥ i,

0 for j< i,

where we have used the independence of the ξi.
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Schematically, we have

P=

∥∥∥∥∥∥∥∥∥
a0 a1 a2 a3 · · ·

0 a0 a1 a2 · · ·

0 0 a0 a1 · · ·

...
...

...
...

∥∥∥∥∥∥∥∥∥ . (3.37)

If the possible values of the random variable ξ are permitted to be the positive and
negative integers, then the possible values of ηn for each n will be contained among
the totality of all integers. Instead of labeling the states conventionally by means of
the nonnegative integers, it is more convenient to identify the state space with the
totality of integers, since the transition probability matrix will then appear in a more
symmetric form. The state space consists then of the values . . .−2,−1,0,1,2, . . . .

The transition probability matrix becomes

P=

∥∥∥∥∥∥∥∥∥∥∥∥

...
...

...
...

...

· · · a−1 a0 a1 a2 a3 · · ·

· · · a−2 a−1 a0 a1 a2 · · ·

· · · a−3 a−2 a−1 a0 a1 · · ·

...
...

...
...

...

∥∥∥∥∥∥∥∥∥∥∥∥
,

where Pr{ξ = k} = ak for k = 0,±1,±2, . . . , and ak ≥ 0,
∑
+∞

k=−∞ ak = 1.

3.5.3 One-Dimensional Random Walks

When we discuss random walks, it is an aid to intuition to speak about the state of the
system as the position of a moving “particle.”

A one-dimensional random walk is a Markov chain whose state space is a finite
or infinite subset a,a+ 1, . . . ,b of the integers, in which the particle, if it is in state i,
can in a single transition either stay in i or move to one of the neighboring states
i− 1, i+ 1. If the state space is taken as the nonnegative integers, the transition matrix
of a random walk has the form

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 i− 1 i i+ 1

0 r0 p0 0 . . . 0 . . .

1 q1 r1 p1 . . . 0 . . .

2 0 q2 r2 . . . 0 . . .

...
. . .

i 0 qi ri pi 0
. . .

. . .

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
, (3.38)
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where pi > 0,qi > 0,ri ≥ 0, and qi+ ri+ pi = 1, i= 1,2, . . . (i≥ 1),p0 ≥ 0,r0 ≥ 0,
r0+ p0 = 1. Specifically, if Xn = i, then for i≥ 1,

Pr{Xn+1 = i+ 1|Xn = i} = pi,

Pr{Xn+1 = i− 1|Xn = i} = qj,

Pr{Xn+1 = i|Xn = i} = ri,

with the obvious modifications holding for i= 0.
The designation “random walk” seems apt, since a realization of the process

describes the path of a person (suitably intoxicated) moving randomly one step for-
ward or backward.

The fortune of a player engaged in a series of contests is often depicted by a random
walk process. Specifically, suppose an individual (player A) with fortune k plays a
game against an infinitely rich adversary and has probability pk of winning one unit
and probability qk = 1− pk(k ≥ 1) of losing one unit in the next contest (the choice
of the contest at each stage may depend on his fortune), and r0 = 1. The process Xn,
where Xn represents his fortune after n contests, is clearly a random walk. Note that
once the state 0 is reached (i.e., player A is wiped out), the process remains in that
state. The event of reaching state k = 0 is commonly known as the “gambler’s ruin.”

If the adversary, player B, also starts with a limited fortune l and player A has an
initial fortune k(k+ l= N), then we may again consider the Markov chain process Xn

representing player A’s fortune. However, the states of the process are now restricted to
the values 0,1,2, . . . ,N. At any trial, N−Xn is interpreted as player B’s fortune. If we
allow the possibility of neither player winning in a contest, the transition probability
matrix takes the form

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 N

0 1 0 0 0 · · ·

1 q1 r1 p1 0 · · ·

2 0 q2 r2 p2 · · ·

. . .

qN−1 rN−1 pN−1

N 0 · · · · · · 0 0 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
. (3.39)

Again pi(qi), i= 1,2, . . . ,N− 1, denotes the probability of player A’s fortune increas-
ing (decreasing) by 1 at the subsequent trial when his present fortune is i, and ri may
be interpreted as the probability of a draw. Note that, in accordance with the Markov
chain given in (3.39), when player A’s fortune (the state of the process) reaches 0 or
N, it remains in this same state forever. We say player A is ruined when the state of
the process reaches 0, and player B is ruined when the state of the process reaches N.

The probability of gambler’s ruin (for player A) is derived in the next section
by solving a first step analysis. Some more complex functionals on random walk
processes are also derived in the next section.
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The random walk corresponding to pk = p,qk = 1− p= q for all k ≥ 1 and r0 = 1
describes the situation of identical contests. There is a definite advantage to player A
in each individual trial if p> q, and conversely, an advantage to player B if p< q. A
“fair” contest corresponds to p= q= 1

2 . Suppose the total of both players’ fortunes
is N. Then, the corresponding walk, where Xn is player A’s fortune at stage n, has the
transition probability matrix

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 N− 1 N

0 1 0 0 0 · · · 0 0

1 q 0 p 0 · · · 0 0

2 0 q 0 p · · · 0 0
...

...
...

...
...

...
...

N− 1 0 0 0 0 · · · 0 p

N 0 0 0 0 · · · 0 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
. (3.40)

Let ui = Ui0 be the probability of gambler’s ruin starting with the initial fortune i.
Then, ui is the probability that the random walk reaches state 0 before reaching state
N, starting from X0 = i. The first step analysis of Section 3.4, as used in deriving
equation (3.26), shows that these ruin probabilities satisfy

ui = pui+1+ qui−1 for i= 1, . . . ,N− 1 (3.41)

together with the obvious boundary conditions

u0 = 1 and uN = 0.

These equations are solved in the next section following a straight-forward but
arduous method. There it is shown that the gambler’s ruin probabilities corresponding
to the transition probability matrix given in (3.40) are

ui = Pr{Xn reaches state 0 before state N|X0 = i}

=


N− i

N
when p= q=

1

2
,

(q/p)i− (q/p)N

1− (q/p)N
when p 6= q.

(3.42)

The ruin probabilities ui given by (3.42) have the following interpretation. In a
game in which player A begins with an initial fortune of i units and player B begins
with N− i units, the probability that player A loses all his money before player B goes
broke is given by ui, where p is the probability that player A wins in a single contest.
If player B is infinitely rich (N→∞), then passing to the limit in (3.42) and using
(q/p)N→∞ as N→∞ if p< q, while (q/p)N→ 0 if p> q, we see that the ruin
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probabilities become

ui =


1 if p≤ q,(

q

p

)i

if p> q.
(3.43)

(In passing to the limit, the case p= q= 1
2 must be treated separately.) We see that

ruin is certain (ui = 1) against an infinitely rich adversary when the game is unfavor-
able (p< q), and even when the game is fair (p= q). In a favorable game (p> q),
starting with initial fortune i, then ruin occurs (player A goes broke) with probability
(q/p)i. This ruin probability decreases as the initial fortune i increases. In a favorable
game against an infinitely rich opponent, with probability 1− (q/p)i player A’s fortune
increases, in the long run, without limit.

More complex gambler’s-ruin-type problems find practical relevance in certain
models describing the fluctuation of insurance company assets over time.

Random walks are not only useful in simulating situations of gambling but fre-
quently serve as reasonable discrete approximations to physical processes describing
the motion of diffusing particles. If a particle is subjected to collisions and random
impulses, then its position fluctuates randomly, although the particle describes a con-
tinuous path. If the future position (i.e., its probability distribution) of the particle
depends only on the present position, then the process Xt, where Xt is the position at
time t, is Markov. A discrete approximation to such a continuous motion corresponds
to a random walk. A classical discrete version of Brownian motion (VIII) is provided
by the symmetric random walk. By a symmetric random walk on the integers (say all
the integers) we mean a Markov chain with state space the totality of all integers and
whose transition probability matrix has the elements

Pij =


p if j= i+ 1,
p if j= i− 1,
r if j= i,
0 otherwise,

i, j= 0,1,2, . . . ,

where p> 0,r ≥ 0, and 2p+ r = 1. Conventionally, “simple random walk” refers only
to the case r = 0,p= 1

2 .
The classical simple random walk in n dimensions admits the following formu-

lation. The state space is identified with the set of all integral lattice points in En

(Euclidean n space); that is, a state is an n-tuple k = (k1,k2, . . . ,kn) of integers. The
transition probability matrix is defined by

Pkl =


1

2n
if

n∑
i=0
|li− ki| = 1,

0 otherwise.

Analogous to the one-dimensional case, the simple random walk in En represents a
discrete version of n-dimensional Brownian motion.
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3.5.4 Success Runs

Consider a Markov chain on the nonnegative integers with transition probability
matrix of the form

P=

∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4

0 p0 q0 0 0 0 · · ·

1 p1 r1 q1 0 0 · · ·

2 p2 0 r2 q2 0 · · ·

3 p3 0 0 r3 q3 · · ·

...
...

...
...

...

∥∥∥∥∥∥∥∥∥∥∥∥
, (3.44)

where qi > 0, pi > 0, and pi+ qi+ ri = 1 for i= 0,1,2, . . . . The zero state plays a
distinguished role in that it can be reached in one transition from any other state, while
state i+ 1 can be reached only from state i.

This example arises surprisingly often in applications and at the same time is very
easy to compute with. We will frequently illustrate concepts and results in terms of it.

A special case of this transition matrix arises when one is dealing with success runs
resulting from repeated trials, each of which admits two possible outcomes, success S
or failure F. More explicitly, consider a sequence of trials with two possible outcomes,
S or F. Moreover, suppose that in each trial, the probability of S is α and the probability
of F is β = 1−α. We say a success run of length r happened at trial n if the outcomes
in the preceding r+ 1 trials, including the present trial as the last, were respectively
F,S,S, . . . ,S. Let us now label the present state of the process by the length of the
success run currently under way. In particular, if the last trial resulted in a failure, then
the state is zero. Similarly, when the preceding r+ 1 trials in order have the outcomes
F,S,S, . . . ,S, the state variable would carry the label r. The process is clearly Markov
(since the individual trials were independent of each other), and its transition matrix
has the form (3.44), where

pn = β, rn = 0, and qn = α for n= 0,1,2, . . . .

A second example is furnished by the current age in a renewal process. Consider a
light bulb whose lifetime, measured in discrete units, is a random variable ξ , where

Pr{ξ = k} = ak > 0 for k = 1,2, . . . ,
∞∑

k=1

ak = 1.

Let each bulb be replaced by a new one when it burns out. Suppose the first bulb lasts
until time ξ1, the second bulb until time ξ1+ ξ2, and the nth bulb until time ξ1+ ·· ·+

ξn, where the individual lifetimes ξ1,ξ2, . . . are independent random variables each
having the same distribution as ξ . Let Xn be the age of the bulb in service at time n.
This current age process is depicted in Figure 3.2.
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Figure 3.2 The current age Xn in a renewal process. Here, ξ1 = 3,ξ2 = 2, and ξ3 = 3.

By convention, we set Xn = 0 at the time of a failure.
The current age is a success run Markov process for which

pk =
ak+1

ak+1+ ak+2+ ·· ·
, rk = 0,qk = 1− pk,

for k = 0,1, . . . .
(3.45)

We reason as follows: The age process reverts to zero upon failure of the item in
service. Given that the age of the item in current service is k, then failure occurs in the
next time period with conditional probability pk = ak+1/(ak+1+ ak+2+ ·· ·). Given
that the item has survived k periods, it survives at least to the next period with the
remaining probability qk = 1− pk.

Renewal processes are extensively discussed in Chapter 7.

Exercises

3.5.1 The probability of the thrower winning in the dice game called “craps” is p=
0.4929. Suppose Player A is the thrower and begins the game with $5, and
Player B, his opponent, begins with $10. What is the probability that Player A
goes bankrupt before Player B? Assume that the bet is $1 per round.

Hint: Use equation (3.42).
3.5.2 Determine the gambler’s ruin probability for Player A when both players begin

with $50, bet $1 on each play, and where the win probability for Player A in
each game is
(a) p= 0.49292929
(b) p= 0.5029237
(See Chapter 2, Section 2.2.)

What are the gambler’s ruin probabilities when each player begins with
$500?
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3.5.3 Determine Pn for n= 2,3,4,5 for the Markov chain whose transition probabil-
ity matrix is

P=

∥∥∥∥0.4 0.6
0.7 0.3

∥∥∥∥ .
3.5.4 A coin is tossed repeatedly until three heads in a row appear. Let Xn record the

current number of successive heads that have appeared. That is, Xn = 0 if the
nth toss resulted in tails; Xn = 1 if the nth toss was heads and the (n− 1)st toss
was tails; and so on. Model Xn as a success runs Markov chain by specifying
the probabilities pi and qi.

3.5.5 Suppose that the items produced by a certain process are each graded as defec-
tive or good and that whether or not a particular item is defective or good
depends on the quality of the previous item. To be specific, suppose that a defec-
tive item is followed by another defective item with probability 0.80, whereas a
good item is followed by another good item with probability 0.95. Suppose that
the initial (zeroth) item is good. Using equation (3.31), determine the probabil-
ity that the eighth item is good, and verify this by computing the eighth matrix
power of the transition probability matrix.

3.5.6 A baseball trading card that you have for sale may be quite valuable. Suppose
that the successive bids ξ1,ξ2, . . . that you receive are independent random vari-
ables with the geometric distribution

Pr{ξ = k} = 0.01(0.99)k for k = 0,1, . . . .

If you decide to accept any bid over $100, how many bids, on the average, will
you receive before an acceptable bid appears?

Hint: Review the discussion surrounding equation (3.35).
3.5.7 Consider the random walk Markov chain whose transition probability matrix is

given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.3 0 0.7 0

2 0 0.3 0 0.7

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.
Starting in state 1, determine the probability that the process is absorbed into
state 0. Do this first using the basic first step approach of equations (3.21)
and (3.22) and second using the particular results for a random walk given in
equation (3.42).

3.5.8 As a special case, consider a discrete-time queueing model in which at most a
single customer arrives in any period and at most a single customer completes
service. Suppose that in any single period, a single customer arrives with proba-
bility α, and no customers arrive with probability 1−α. Provided that there are
customers in the system, in a single period a single customer completes service
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with probability β, and no customers leave with probability 1−β. Then Xn, the
number of customers in the system at the end-of-period n, is a random walk in
the sense of Section 3.5.3. Referring to equation (3.38), specify the transition
probabilities pi,qi, and ri for i= 0,1, . . . .

3.5.9 In a simplified model of a certain television game show, suppose that the con-
testant, having won k dollars, will at the next play have k+ 1 dollars with prob-
ability q and be put out of the game and leave with nothing with probability
p= 1− q. Suppose that the contestant begins with one dollar. Model her win-
nings after n plays as a success runs Markov chain by specifying the transition
probabilities pi,qi, and ri in equation (3.44).

Problems

3.5.1 As a special case of the successive maxima Markov chain whose transition prob-
abilities are given in equation (3.34), consider the Markov chain whose transi-
tion probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 a0 a1 a2 a3

1 0 a0+ a1 a2 a3

2 0 0 a0+ a1+ a2 a3

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.
Starting in state 0, show that the mean time until absorption is v0 = 1/a3.

3.5.2 A component of a computer has an active life, measured in discrete units, that is
a random variable T , where Pr{T = k} = ak for k = 1,2, . . . . Suppose one starts
with a fresh component, and each component is replaced by a new component
upon failure. Let Xn be the age of the component in service at time n. Then, {Xn}

is a success runs Markov chain.
(a) Specify the probabilities pi and qi.
(b) A “planned replacement” policy calls for replacing the component upon

its failure or upon its reaching age N, whichever occurs first. Specify the
success runs probabilities pi and qi under the planned replacement policy.

3.5.3 A Batch Processing Model. Customers arrive at a facility and wait there until
K customers have accumulated. Upon the arrival of the Kth customer, all are
instantaneously served, and the process repeats. Let ξ0,ξ1, . . . denote the arrivals
in successive periods, assumed to be independent random variables whose dis-
tribution is given by

Pr{ξk = 0} = α, Pr{ξk = 1} = 1−α,

where 0< α < 1. Let Xn denote the number of customers in the system at time n.
Then, {Xn} is a Markov chain on the states 0,1, . . . ,K− 1. With K = 3, give the
transition probability matrix for {Xn}. Be explicit about any assumptions you
make.
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3.5.4 Martha has a fair die with the usual six sides. She throws the die and records the
number. She throws the die again and adds the second number to the first. She
repeats this until the cumulative sum of all the tosses first exceeds 10. What is
the probability that she stops at a cumulative sum of 13?

3.5.5 Let {Xn} be a random walk for which zero is an absorbing state and such that
from a positive state, the process is equally likely to go up or down one unit.
The transition probability matrix is given by (3.38) with r0 = 1 and pi = qi =

1
2

for i≥ 1. (a) Show that {Xn} is a nonnegative martingale. (b) Use the maximal
inequality in Chapter 2, (2.53) to limit the probability that the process ever gets
as high as N > 0.

3.6 Functionals of Random Walks and Success Runs

Consider first the random walk on N+ 1 states whose transition probability matrix is
given by

P=

∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 · · · N

0 1 0 0 0 · · · 0

1 q 0 p 0 · · · 0

2 0 q 0 p · · · 0
...
...

...
...

...
...

N 0 0 0 0 · · · 1

∥∥∥∥∥∥∥∥∥∥∥∥
.

“Gambler’s ruin” is the event that the process reaches state 0 before reaching state N.
This event can be stated more formally if we introduce the concept of hitting time. Let
T be the (random) time that the process first reaches, or hits, state 0 or N. In symbols,

T =min{n≥ 0;Xn = 0 or Xn = N}.

The random time T is shown in Figure 3.3 in a typical case.
In terms of T , the event written as XT = 0 is the event of gambler’s ruin, and the

probability of this event starting from the initial state k is

uk = Pr{XT = 0|X0 = k}.

0

1

N

k

nT

Figure 3.3 The hitting time to 0 or N. As depicted here, state 0 was reached first.
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Figure 3.4 First step analysis for the gambler’s ruin problem.

Figure 3.4 shows the first step analysis that leads to the equation

uk = puk+1+ quk−1, for k = 1, . . . ,N− 1, (3.46)

with the obvious boundary conditions

u0 = 1, uN = 0.

Equation (3.46) yields to straightforward but tedious manipulations. Because the
approach has considerable generality and arises frequently, it is well worth pursuing
in this simplest case.

We begin the solution by introducing the differences xk = uk− uk−1 for k =
1, . . . ,N. Using p+ q= 1 to write uk = (p+ q)uk = puk+ quk, equation (3.46)
becomes

k = 1; 0= p(u2− u1)− q(u1− u0)= px2− qx1;

k = 2; 0= p(u3− u2)− q(u2− u1)= px3− qx2;

k = 3; 0= p(u4− u3)− q(u3− u2)= px4− qx3;

...

k = N− 1; 0= p(uN − uN−1)− q(uN−1− uN−2)= pxN − qxN−1;

or

x2 = (q/p)x1,

x3 = (q/p)x2 = (q/p)2x1,

x4 = (q/p)x3 = (q/p)3x1

...

xk = (q/p)xk−1 = (q/p)k−1x1,

...

xN = (q/p)xN−1 = (q/p)N−1x1.
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We now recover u0,u1, . . . ,uN by invoking the conditions u0 = 1,uN = 0 and sum-
ming the xk’s:

x1 = u1− u0 = u1− 1,
x2 = u2− u1, x1+ x2 = u2− 1,
x3 = u3− u2, x1+ x2+ x3 = u3− 1,

...
...

xk = uk− uk−1, x1+ ·· ·+ xk = uk− 1,
...

...

xN = uN − uN−1 =−uN−1, x1+ ·· ·+ xN = uN − 1=−1.

The equation for general k gives

uk = 1+ x1+ x2+ ·· ·+ xk

= 1+ x1+ (q/p)x1+ ·· ·+ (q/p)
k−1x1 (3.47)

= 1+ [1+ (q/p)+ ·· ·+ (q/p)k−1]x1,

which expresses uk in terms of the as yet undetermined x1. But uN = 0 gives

0= 1+ [1+ (q/p)+ ·· ·+ (q/p)N−1]x1,

or

x1 =−
1

1+ (q/p)+ ·· ·+ (q/p)N−1
,

which substituted into (3.47) gives

uk = 1−
1+ (q/p)+ ·· ·+ (q/p)k−1

1+ (q/p)+ ·· ·+ (q/p)N−1
.

The geometric series sums to

1+ (q/p)+ ·· ·+ (q/p)k−1
=


k if p= q=

1

2
,

1− (q/p)k

1− (q/p)
if p 6= q,

whence

uk =


1− (k/N)= (N− k)/N when p= q=

1

2
,

1−
1− (q/p)k

1− (q/p)N
=
(q/p)k− (q/p)N

1− (q/p)N
when p 6= q.

(3.48)
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A similar approach works to evaluate the mean duration

vi = E[T|X0 = i]. (3.49)

The time T is composed of a first step plus the remaining steps. With probability p,
the first step is to state i+ 1, and then, the remainder, on the average, is vi+1 additional
steps. With probability q, the first step is to i− 1, and then, on the average, there are
vi−1 further steps. Thus, for the mean duration, a first step analysis leads to the equation

vi = 1+ pvi+1+ qvi−1 for i= 1, . . . ,N− 1. (3.50)

Of course, the game ends in states 0 and N, and thus,

v0 = 0, vN = 0.

We will solve equation (3.50) when p= q= 1
2 . The solution for other values of p

proceeds in a similar manner, and the solution for a general random walk is given later
in this section.

Again, we introduce the differences xk = vk− vk−1 for k = 1, . . . ,N, writing (3.50)
in the form

k = 1; −1=
1

2
(v2− v1)−

1

2
(v1− v0)=

1

2
x2−

1

2
x1;

k = 2; −1=
1

2
(v3− v2)−

1

2
(v2− v1)=

1

2
x3−

1

2
x2;

k = 3; −1=
1

2
(v4− v3)−

1

2
(v3− v2)=

1

2
x4−

1

2
x3;

...

k = N− 1; −1=
1

2
(vN − vN−1)−

1

2
(vN−1− vN−2)=

1

2
xN −

1

2
xN−1.

The right side forms a collapsing sum. Upon adding, we obtain

k = 1; −1=
1

2
x2−

1

2
x1;

k = 2; −2=
1

2
x3−

1

2
x1;

k = 3; −3=
1

2
x4−

1

2
x1;

...

k = N− 1; −(N− 1)=
1

2
xN −

1

2
x1.
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The general line gives xk = x1− 2(k− 1) for k = 2,3, . . . , N. We return to the vk’s by
means of

x1 = v1− v0 = v1;

x2 = v2− v1; x1+ x2 = v2;

x3 = v3− v2; x1+ x2+ x3 = v3;

...

xk = vk− vk−1; x1+ ·· ·+ xk = vk;

or

vk = kv1− 2[1+ 2+ ·· ·+ (k− 1)]= kv1− k(k− 1), (3.51)

which gives vk in terms of the as yet unknown v1. We impose the boundary condition
vN = 0 to obtain 0= Nv1−N(N− 1) or v1 = (N− 1). Substituting this into (3.51), we
obtain

vk = k(N− k), k = 0,1, . . . ,N, (3.52)

for the mean duration of the game. Note that the mean duration is greatest for initial
fortunes k that are midway between the boundaries 0 and N, as we would expect.

3.6.1 The General Random Walk

We give the results of similar derivations on the random walk whose transition
matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 · · · N

0 1 0 0 0 · · · 0

1 q1 r1 p1 0 · · · 0

2 0 q2 r2 p2 · · · 0
...

...
...

...
...

...

N 0 0 0 0 · · · 1

∥∥∥∥∥∥∥∥∥∥∥∥
,

where qk > 0 and pk > 0 for k = 1, . . . ,N− 1. Let T =min{n≥ 0; Xn = 0 or Xn = N}
be the hitting time to states 0 and N.

Example As a sample calculation of these functionals, we consider the special case
in which the transition probabilities are the same from row to row. That is, we study
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the random walk whose transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 · · · N

0 1 0 0 0 · · · 0

1 q r p 0 · · · 0

2 0 q r p · · · 0
...
...

...
...

...
...

N 0 0 0 0 1

∥∥∥∥∥∥∥∥∥∥∥∥
,

with p> 0, q> 0, and p+ q+ r = 1. Let us abbreviate by setting θ = (q/p), and then
ρk, as defined in (3.63), simplifies according to

ρk =
q1q2 · · ·qk

p1p2 · · ·pk
=

(
q

p

)k

= θk for k = 1, . . . ,N− 1.

The probability of gambler’s ruin, as defined in (3.61) and evaluated in (3.62),
becomes

uk = Pr{XT = 0|X0 = k}

=
θk
+ ·· ·+ θN−1

1+ θ + ·· ·+ θN−1

=


θk
− θN

1− θN
if θ ≡ (q/p) 6= 1,

N− k

N
if θ ≡ (q/p)= 1.

This, of course, agrees with the answer given in (3.48).
We turn to evaluating the mean time

vk = E[T|X0 = k] for k = 1, . . . ,N = 1

by first substituting ρi = θ
i into (3.67) to obtain

8i =

(
1

q
+

1

qθ
+ ·· ·+

1

qθ i−1

)
θ i

=
1

q
(θ i
+ θ i−1

+ ·· ·+ θ)

=
1

p
(1+ θ + ·· ·+ θ i−1)
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=


i

p
when p= q(θ = 1),

1

p

(
1− θ i

1− θ

)
when p 6= q(θ 6= 1).

Now observe that

1+ ρ1+ ·· ·+ ρi−1 = 1+ θ + ·· ·+ θ i−1

= p8i

so that (3.66) reduces to

vk =
8k

8N
(81+ ·· ·+8N−1)− (81+ ·· ·+8k−1). (3.53)

In order to continue, we need to simplify the terms of the form 81+ ·· ·+8j−1. We
consider the two cases θ ≡ (q/p)= 1 and θ ≡ (q/p) 6= 1 separately.

When p= q, or equivalently, θ = 1, then 8i = i/p, whence

81+ ·· ·+8j−1 =
1+ ·· ·+ ( j− 1)

p
=

j( j− 1)

2p
,

which inserted into (3.53) gives

vi ≡ E[T|X0 = i]

=
i

N

[
N(N− 1)

2p

]
−

i(i− 1)

2p

=
i(N− i)

2p
if p= q.

(3.54)

When p= 1
2 , then vi = i(N− i) in agreement with (3.52).

When p 6= q, so that θ ≡ q/p 6= 1, then

8i =
1

p

(
1− θ i

1− θ

)
,

whence

81+ ·· ·+8j−1 =
1

p(1− θ)

[
( j− 1)−

(
θ + θ2

+ ·· ·+ θ j−1
)]

=
1

p(1− θ)

[
( j− 1)− θ

(
1− θ j−1

1− θ

)]
,
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and

vi = E[T|X0 = i]

=

(
1− θ i

1− θN

)
1

p(1− θ)

[
N−

(
1− θN

1− θ

)]
−

1

p(1− θ)

[
i−

(
1− θ i

1− θ

)]

=
1

p(1− θ)

[
N

(
1− θ i

1− θN

)
− i

]
,

when θ ≡ (q/p) 6= 1.
Finally, we evaluate Wik, expressed verbally as the mean number of visits to state k

starting from X0 = i and defined formally in (3.68). Again, we consider the two cases
θ ≡ (q/p)= 1 and θ ≡ (q/p) 6= 1.

When θ = 1, then ρj = θ
j
= 1 and 1+ ·· ·+ ρi−1 = i,ρk+ ·· ·+ ρN−1 = N− k, and

(3.69) simplifies to

Wik =


i(N− k)

qN
for 0< i≤ k < N,

1

q

[
i(N− k)

N
− (i− k)

]
=

k(N− i)

qN
for 0< k < i< N,

=
i(N− k)

qN
−

max{o, i− k}

q
. (3.55)

When θ = (q/p) 6= 1, then ρj = θ
j and

1+ ·· ·+ ρi−1 =
1− θ i

1− θ
,

ρk+ ·· ·+ ρN−1 =
θk
− θN

1− θ
,

and

qρk−1 = pρk = pθk.

In this case, (3.69) simplifies to

Wik =

(
1− θ i

)(
θk
− θN

)
(1− θ)

(
1− θN

) ( 1

pθk

)
for 0< i≤ k < N,

and

Wik =

(
1− θk

)(
θ i
− θN

)
(1− θ)

(
1− θN

) ( 1

pθk

)
for 0< k < i< N.
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We may write the expression for Wik in a single line by introducing the notation
(i− k)+ =max{0, i− k}. Then,

Wik =

(
1− θ i

)(
1− θN−k

)
p(1− θ)

(
1− θN

) − 1− θ (i−k)+

p(1− θ)
. (3.56)

3.6.2 Cash Management

Short-term cash management is the review and control of a corporation’s cash bal-
ances, short-term loan balances, and short-term marketable security holdings. The
objective is to maintain the smallest cash balances that are adequate to meet future
disbursements. The corporation cashier tries to eliminate idle cash balances (e.g., by
reducing short-term loans or buying treasury bills) but to cover potential cash short-
ages (by selling treasury bills or increasing short-term loans). The analogous problem
for an individual is to maintain an optimal balance between a checking and a savings
account.

In the absence of intervention, the corporation’s cash level fluctuates randomly as
the result of many relatively small transactions. We model this by dividing time into
successive, equal length periods, each of short duration, and by assuming that from
period to period, the cash level moves up or down one unit, each with a probability
of one-half. Let Xn be the cash on hand in period n. We are assuming that {Xn} is the
random walk in which

Pr{Xn+1 = k± 1|Xn = k} =
1

2
.

The cashier’s job is to intervene if the cash level ever gets too low or too high. We
consider cash management strategies that are specified by two parameters, s and 6,
where 0< s< 6. The policy is as follows: If the cash level ever drops to zero, then
sell sufficient treasury bills to replenish the cash level up to s. If the cash level ever
increases up to 6, then invest in treasury bills in order to reduce the cash level to s. A
typical sequence of cash levels {Xn} when s= 2 and 6 = 5 is depicted in Figure 3.5.

We see that the cash level fluctuates in a series of statistically similar cycles, each
cycle beginning with s units of cash on hand and ending at the next intervention,

Xn

4

3
s= 2

=5

1
0

Third
cycle

Second
cycle

First
cycle

n

Figure 3.5 Several typical cycles in a cash inventory model.
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whether a replenishment or reduction in cash. We begin our study by evaluating the
mean length of a cycle and the mean total unit periods of cash on hand during a cycle.
Later, we use these quantities to evaluate the long run performance of the model.

Let T denote the random time at which the cash on hand first reaches the level 6
or 0. That is, T is the time of the first transaction. Let vs = E[T|X0 = s] be the mean
time to the first transaction, or the mean cycle length. From (3.52), we have

vs = s(6− s). (3.57)

Next, fix an arbitrary state k(0< k < 6) and let Wsk be the mean number of visits to k
up to time T for a process starting at X0 = s. From (3.55), we have

Wsk = 2
[ s

6
(6− k)− (s− k)+

]
. (3.58)

Using this we obtain the mean total unit periods of cash on hand up to time T starting
from X0 = s by weighting Wsk by k and summing according to

Ws =

6−1∑
k=1

kWsk

= 2

 s

6

6−1∑
k=1

k(6− k)−
s−1∑
k=1

k(s− k)


= 2

{
s

6

[
6(6− 1)(6+ 1)

6

]
−

s(s− 1)(s+ 1)

6

}∗
=

s

3

[
62
− s2

]
.

(3.59)

Having obtained these single cycle results, we will use them to evaluate the long run
behavior of the model. Note that each cycle starts from the cash level s, and thus, the
cycles are statistically independent. Let K be the fixed cost of each transaction. Let Ti

be the duration of the ith cycle and let Ri be the total opportunity cost of holding cash
on hand during that time. Over n cycles the average cost per unit time is

Average cost=
nK+R1+ ·· ·+Rn

T1+ ·· ·+Tn
.

Next, divide the numerator and denominator by n, let n→∞, and invoke the law of
large numbers to obtain

Long run average cost=
K+E[Ri]

E[Ti]
.

∗ Use the sum
∑a−1

k=1 k(a− k)= 1
6 a(a+ 1)(a− 1).
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Let r denote the opportunity cost per unit time of cash on hand. Then, E[Ri]= rWs,
while E[Ti]= vs. Since these quantities were determined in (3.57) and (3.59), we have

Long run average cost=
K+ (1/3)rs

(
62
− s2

)
s(6− s)

. (3.60)

In order to use calculus to determine the cost-minimizing values for 6 and s, it simpli-
fies matters if we introduce the new variable x= s/6. Then, (3.60) becomes

Long run average cost=
K+ (1/3)r63x

(
1− x2

)
62x(1− x)

,

whence

d(average cost)

dx
= 0=−

K(1− 2x)

62x2(1− x)2
+

1

3
r6,

d(average cost)

d6
= 0=−

2K

63x(1− x)
+

r(1+ x)

3
,

which yield

xopt =
1

3
and 6opt = 3sopt = 3 3

√
3K

4r
.

Implementing the cash management strategy with the values sopt and 6opt results in
the optimal balance between transaction costs and the opportunity cost of holding cash
on hand.

3.6.3 The Success Runs Markov Chain

Consider the success runs Markov chain on N+ 1 states whose transition matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 · · · N

0 1 0 0 0 · · · 0

1 p1 r1 q1 0 · · · 0

2 p2 0 r2 q2 · · · 0
...

...
...

...
...

...

N− 1 pN−1 0 0 0 · · · qN−1

N 0 0 0 0 · · · 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Note that states 0 and N are absorbing; once the process reaches one of these two states
it remains there.

Let T be the hitting time to states 0 or N,

T =min{n≥ 0;Xn = 0 or Xn = N}.
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Exercises

3.6.1 A rat is put into the linear maze as shown:

0
shock

1 2 3 4 5
food

(a) Assume that the rat is equally likely to move right or left at each step. What
is the probability that the rat finds the food before getting shocked?

(b) As a result of learning, at each step the rat moves to the right with prob-
ability p> 1

2 and to the left with probability q= 1− p< 1
2 . What is the

probability that the rat finds the food before getting shocked?
3.6.2 Customer accounts receivable at Smith Company are classified each month

according to

0: Current
1: 30–60 days past due
2: 60–90 days past due
3: Over 90 days past due

Consider a particular customer account and suppose that it evolves month to
month as a Markov chain {Xn} whose transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0.9 0.1 0 0

1 0.5 0 0.5 0

2 0.3 0 0 0.7

3 0.2 0 0 0.8

∥∥∥∥∥∥∥∥∥.
Suppose that a certain customer’s account is now in state 1: 30–60 days past due.
What is the probability that this account will be paid (and thereby enter state 0:
Current) before it becomes over 90 days past due? That is, let T =min{n≥ 0;
Xn = 0 or Xn = 3}. Determine Pr{XT = 0|X0 = 1}.

3.6.3 Players A and B each have $50 at the beginning of a game in which each player
bets $1 at each play, and the game continues until one player is broke. Suppose
there is a constant probability p= 0.492929 . . . that Player A wins on any given
bet. What is the mean duration of the game?

3.6.4 Consider the random walk Markov chain whose transition probability matrix is
given by

P=

∥∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.3 0 0.7 0

2 0 0.3 0 0.7

3 0 0 0 1

∥∥∥∥∥∥∥∥∥∥
.
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Starting in state 1, determine the mean time until absorption. Do this first using
the basic first step approach of equation (3.24), and second using the particular
formula for vi that follows equation (3.54), which applies for a random walk in
which p 6= q.

Problems

3.6.1 The probability of gambler’s ruin

ui = Pr{XT = 0|X0 = i} (3.61)

satisfies the first step analysis equation

ui = qiui−1+ riui+ piui+1 for i= 1, . . . ,N− 1,

and

u0 = 1, uN = 0.

The solution is

ui =
ρi+ ·· ·+ ρN−1

1+ ρ1+ ρ2+ ·· ·+ ρN−1
, i= 1, . . . ,N− 1, (3.62)

where

ρk =
q1q2 · · ·qk

p1p2 · · ·pk
, k = 1, . . . ,N− 1. (3.63)

3.6.2 The mean hitting time

vk = E[T|X0 = k] (3.64)

satisfies the equations

vk = 1+ qkvk−1+ rkvk+ pkvk+1 and v0 = vN = 0. (3.65)

The solution is

vk =

(
81+ ·· ·+8N−1

1+ ρ1+ ·· ·+ ρN−1

)
(1+ ρ1+ ·· ·+ ρk−1)

− (81+ ·· ·+8k−1) for k = 1, . . . ,N− 1,
(3.66)

where ρi is given in (3.63) and

8i =

(
1

q1
+

1

q2ρ1
+ ·· ·+

1

qiρi−1

)
ρi

=
q2 · · ·qi

p1 · · ·pi
+

q3 · · ·qi

p2 · · ·pi
+ ·· ·+

qi

pi−1pi
+

1

pi
for i= 1, . . . ,N− 1.

(3.67)
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3.6.3 Fix a state k, where 0< k < N, and let Wik be the mean total visits to state k
starting from i. Formally, the definition is

Wik = E

[
T−1∑
n=0

1{Xn = k}|X0 = i

]
, (3.68)

where

1{Xn = k} =

{
1 if Xn = k,

0 if Xn 6= k.

Then, Wik satisfies the equations

Wik = δik+ qiWi−1,k+ riWik+ piWi+1,k for i= 1, . . . ,N− 1

and

W0k =WNk = 0,

where

δik =

{
1 if i= k,

0 if i 6= k.

The solution is

Wik =



(1+ ·· ·+ ρi−1)(ρk+ ·· ·+ ρN−1)

1+ ·· ·+ ρN−1

(
1

qkρk−1

)
for i≤ k,

[
(1+ ·· ·+ ρi−1)(ρk+ ·· ·+ ρN−1)

1+ ·· ·+ ρN−1

−(ρk+ ·· ·+ ρi−1)

](
1

qkρk−1

)
for i≥ k.

(3.69)

3.6.4 The probability of absorption at 0 starting from state k

uk = Pr{XT = 0|X0 = k} (3.70)

satisfies the equation

uk = pk+ rkuk+ qkuk+1,

for k = 1, . . . ,N− 1 and u0 = 1,uN = 0.
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The solution is

uk = 1−

(
qk

pk+ qk

)
· · ·

(
qN−1

pN−1+ qN−1

)
for k = 1, . . . ,N− 1. (3.71)

3.6.5 The mean hitting time

vk = E[T|X0 = k] (3.72)

satisfies the equation

vk = 1+ rkvk+ qkvk+1 for k = 1, . . . ,N− 1 and v0 = vN = 0.

The solution is

vk =
1

pk+ qk
+

πk,k+1

pk+1+ qk+1
+ ·· ·+

πk,N−1

pN−1+ qN−1
, (3.73)

where

πkj =

(
qk

pk+ qk

)(
qk+1

pk+1+ qk+1

)
· · ·

(
qj−1

pj−1+ qj−1

)
(3.74)

for k < j.

3.6.6 Fix a state j(0< j< N) and let Wij be the mean total visits to state j starting
from state i [see equation (3.68)]. Then,

WiJ =



1

pi+ qi
for j= i,(

qi

pi+ qi

)
· · ·

(
qj−1

pj−1+ qj−1

)
1

pj+ qj
for i< j,

0 for i> j.

(3.75)

3.6.7 Consider the random walk Markov chain whose transition probability matrix is
given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.3 0 0.7 0

2 0 0.1 0 0.9

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.
Starting in state 1, determine the mean time until absorption. Do this first using
the basic first step approach of equation (3.24) and second using the particular
results for a random walk given in equation (3.66).
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3.6.8 Consider the Markov chain {Xn} whose transition matrix is

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 α 0 β 0

1 α 0 0 β

2 α β 0 0

3 0 0 0 1

∥∥∥∥∥∥∥∥∥,

where α > 0,β > 0, and α+β = 1. Determine the mean time to reach state 3
starting from state 0. That is, find E[T|X0 = 0], where T =min{n≥ 0;Xn = 3}.

3.6.9 Computer Challenge. You have two urns: A and B, with a balls in A and b
balls in B. You pick an urn at random, each urn being equally likely, and move
a ball from it to the other urn. You do this repeatedly. The game ends when
either of the urns becomes empty. The number of balls in A at the nth move is
a simple random walk, and the expected duration of the game is E[T]= ab [see
equation (3.52)]. Now consider three urns, A,B, and C, with a,b, and c balls,
respectively. You pick an urn at random, each being equally likely, and move a
ball from it to one of the other two urns, each being equally likely. The game
ends when one of the three urns becomes empty. What is the mean duration of
the game? If you can guess the general form of this mean time by computing it
in a variety of particular cases, it is not particularly difficult to verify it by a first
step analysis. What about four urns?

3.7 Another Look at First Step Analysis∗

In this section, we provide an alternative approach to evaluating the functionals treated
in Section 3.4. The nth power of a transition probability matrix having both transient
and absorbing states is directly evaluated. From these nth powers, it is possible to
extract the mean number of visits to a transient state j prior to absorption, the mean
time until absorption, and the probability of absorption in any particular absorbing
state k. These functionals all depend on the initial state X0 = i, and as a by-product of
the derivation, we show that, as functions of this initial state i, these functionals satisfy
their appropriate first step analysis equations.

Consider a Markov chain whose states are labeled 0,1, . . . ,N. States 0,1, . . . , r− 1
are transient in that P(n)ij → 0 as n→∞ for 0≤ i, j< r, while states r, . . . , N are
absorbing, or trap, and here Pii = 1 for r ≤ i≤ N. The transition matrix has the form

P=

∥∥∥∥Q R
0 I

∥∥∥∥ , (3.76)

∗ This section contains material at a more difficult level. It is not prerequisite to what follows.
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where 0 is an (N− r+ 1)× r matrix all of whose components are zero, I is an (N−
r+ 1)× (N− r+ 1) identity matrix, and Qij = Pij for 0≤ i, j< r.

To illustrate the calculations, begin with the four-state transition matrix

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 Q00 Q01 R02 R03

1 Q10 Q11 R12 R13

2 0 0 1 0

3 0 0 0 1

∥∥∥∥∥∥∥∥∥. (3.77)

Straightforward matrix multiplication shows the square of P to be

P2
=

∥∥∥∥Q2 R+QR
0 I

∥∥∥∥ . (3.78)

Continuing on to the third power, we have

P3
=

∥∥∥∥Q R
0 I

∥∥∥∥× ∥∥∥∥Q2 R+QR
0 I

∥∥∥∥= ∥∥∥∥Q3 R+QR+Q2R
0 I

∥∥∥∥ ,
and for higher values of n,

Pn
=

∥∥∥∥∥∥Qn
(

I+Q+ ·· ·+Qn−1
)

R

0 I

∥∥∥∥∥∥ . (3.79)

The consideration of four states was for typographical convenience only. It is straight-
forward to verify that the nth power of P is given by (3.79) for the general (N+ 1)-
state transition matrix of (3.76) in which states 0,1, . . . ,r− 1 are transient (P(n)ij → 0
as n→∞ for 0≤ i, j< r) while states r, . . . ,N are absorbing (Pii = 1 for r ≤ i≤ N).

We turn to the interpretation of (3.79). Let W(n)
ij be the mean number of visits to

state j up to stage n for a Markov chain starting in state i. Formally,

W(n)
ij = E

[
n∑

l=0

1{Xl = j}|X0 = i

]
, (3.80)

where

1{Xl = j} =

{
1 if Xl = j,

0 if Xl 6= j.
(3.81)
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Now, E[1{Xl = j}|X0 = i]= Pr{Xl = j|X0 = i} = P(l)ij , and since the expected value of
a sum is the sum of the expected values, we obtain from (3.80) that

W(n)
ij =

n∑
i=0

E[1{Xl = j}|X0 = i]

=

n∑
l=0

P(l)ij .

(3.82)

Equation (3.82) holds for all states i, j, but it has the most meaning when i and j are
transient. Because (3.79) asserts that P(l)ij = Q(l)ij when 0≤ i, j< r, then

W(n)
ij = Q(0)ij +Q(1)ij + ·· ·+Q(n)ij , 0≤ i, j< r,

where

Q(0)ij =

{
1 if i= j,

0 if i 6= j.

In matrix notation, Q(0)
= I, and because Q(n)

=Qn, the nth power of Q, then

W(n)
= I+Q+Q2

+ ·· ·+Qn

= I+Q
(

I+Q+ ·· ·+Qn−1
)

= I+QW(n−1).

(3.83)

Upon writing out the matrix equation (3.83) in terms of the matrix entries, we recog-
nize the results of a first step analysis. We have

W(n)
ij = δij+

r−1∑
k=0

QikW(n−1)
kj

= δij+

r−1∑
k=0

PikW(n−1)
kj .

In words, the equation asserts that the mean number of visits to state j in the first n
stages starting from the initial stage i includes the initial visit if i= j(δij) plus the
future visits during the n− 1 remaining stages weighted by the appropriate transition
probabilities.

We pass to the limit in (3.83) and obtain for

Wij = lim
n→∞

W(n)
ij = E[Total visits to j|X0 = i], 0≤ i, j< r,
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the matrix equations

W= I+Q+Q2
+ ·· ·

and

W= I+QW. (3.84)

In terms of its entries, (3.84) is

Wij = δij+

r−1∑
l=0

PilWlj for i, j= 0, . . . ,r− 1. (3.85)

Equation (3.85) is the same as equation (3.29), which was derived by a first step
analysis.

Rewriting equation (3.84) in the form

W−QW= (I−Q)W= I, (3.86)

we see that W= (I−Q)−1, the inverse matrix to I−Q. The matrix W is often called
the fundamental matrix associated with Q.

Let T be the time of absorption. Formally, since states r,r+ 1, . . . ,N are the absorb-
ing ones, the definition is

T =min{n≥ 0;r ≤ Xn ≤ N}.

Then, the (i, j)th element Wij of the fundamental matrix W evaluates

Wij = E

[
T−1∑
n=0

1{X = j}|X0 = i

]
for 0≤ i, j< r. (3.87)

Let vi = E[T|X0 = i] be the mean time to absorption starting from state i. The time to
absorption is composed of sojourns in the transient states. Formally,

r−1∑
j=0

T−1∑
n=0

1{Xn = j} =
T−1∑
n=0

r−1∑
j=0

1{Xn = j}

=

T−1∑
n=0

1= T.

It follows from (3.87), then, that

r−1∑
j=0

Wij =

r−1∑
j=0

E

[
T−1∑
n=0

1{Xn = j}|X0 = i

]
= E[T|X0 = i]= vi for 0≤ i< r.

(3.88)
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Summing equation (3.85) over transient states j as follows,

r−1∑
j=0

Wij =

r−1∑
j=0

δij+

r−1∑
j=0

r−1∑
k=0

PijWkj for i= 0,1, . . . ,r− 1,

and using the equivalence vi =6
r−1
j=0 Wij leads to

vi = 1+
r−1∑
k=0

Pijvk for i= 0,1, . . . ,r− 1. (3.89)

This equation is identical with that derived by first step analysis in (3.28). We turn
to the hitting probabilities. Recall that states k = r, . . . ,N are absorbing. Since such a
state cannot be left once entered, the probability of absorption in a particular absorbing
state k up to time n, starting from initial state i, is simply

P(n)ik = Pr{Xn = k|X0 = i}

= Pr{T ≤ n and XT = k|X0 = i}

for i= 0, . . . ,r− 1;k = r, . . . ,N,

(3.90)

where T =min{n≥ 0: r ≤ Xn ≤ N} is the time of absorption. Let

U(n)
ik = Pr{T ≤ n and XT = k|X0 = i}

for 0≤ i< r and r ≤ k ≤ N.
(3.91)

Referring to (3.79) and (3.90), we give the matrix U(n) by

U(n) =
(

I+Q+ ·· ·+Qn−1
)

R

=W(n−1)R [by (3.83)].
(3.92)

If we pass to the limit in n, we obtain the hitting probabilities

Uik = lim
n→∞

U(n)
ik = Pr{XT = k|X0 = i} for 0≤ i< r and r ≤ k ≤ N.

Equation (3.92) then leads to an expression of the hitting probability matrix U in terms
of the fundamental matrix W as simply U=WR, or

Uik =

r−1∑
j=0

WijRjk for 0≤ i< r and r ≤ k ≤ N. (3.93)
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Equation (3.93) may be used in conjunction with (3.85) to verify the first step analysis
equation for Uik. We multiply (3.85) by Rjk and sum, obtaining thereby

r−1∑
j=0

WijRjk =

r−1∑
j=0

δijRjk+

r−1∑
j=0

r−1∑
l=0

PilWljRjk,

which with (3.93) gives

Uik = Rik+

r−1∑
l=0

PilUlk

= Pik+

r−1∑
l=0

PilUlk for 0≤ i< r and r ≤ k ≤ N.

This equation was derived earlier by first step analysis in (3.26).

Exercises

3.7.1 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.1 0.2 0.5 0.2

2 0.1 0.2 0.6 0.1

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.
The transition probability matrix corresponding to the nonabsorbing states is

Q=

∥∥∥∥∥
1 2

0 0.2 0.5

1 0.2 0.6

∥∥∥∥∥.
Calculate the matrix inverse to I−Q, and from this determine
(a) the probability of absorption into state 0 starting from state 1;
(b) the mean time spent in each of states 1 and 2 prior to absorption.

3.7.2 Consider the random walk Markov chain whose transition probability matrix is
given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.3 0 0.7 0

2 0 0.3 0 0.7

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.
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The transition probability matrix corresponding to the nonabsorbing states is

Q=

∥∥∥∥∥
1 2

0 0 0.7

1 0.3 0

∥∥∥∥∥.
Calculate the matrix inverse to I−Q, and from this determine
(a) the probability of absorption into state 0 starting from state 1;
(b) the mean time spent in each of states 1 and 2 prior to absorption.

Problems

3.7.1 A zero-seeking device operates as follows: If it is in state m at time n, then at
time n+ 1 its position is uniformly distributed over the states 0,1, . . . ,m− 1.
State 0 is absorbing. Find the inverse of the I−Q matrix for the transient states
1,2, . . . ,m.

3.7.2 A zero-seeking device operates as follows: If it is in state j at time n, then at
time n+ 1 its position is 0 with probability 1/j, and its position is k (where k
is one of the states 1,2, . . . , j− 1) with probability 2k/j2. State 0 is absorbing.
Find the inverse of the I−Q matrix.

3.7.3 Let Xn be an absorbing Markov chain whose transition probability matrix takes
the form given in equation (3.76). Let W be the fundamental matrix, the matrix
inverse of I−Q. Let

T =min{n≥ 0;r ≤ n≤ N}

be the random time of absorption (recall that states r,r+ 1, . . . ,N are the absorb-
ing states). Establish the joint distribution

Pr{XT−1 = j,XT = k|X0 = i} =WijPjk for 0≤ i, j< r;r ≤ k ≤ N,

whence

Pr{XT−1 = j|X0 = i} =
N∑

k=r

WijPjk for 0≤ i, j< r.

3.7.4 The possible states for a Markov chain are the integers 0,1, . . . ,N, and if the
chain is in state j, at the next step it is equally likely to be in any of the states
0,1, . . . , j− 1. Formally,

Pij =


1, if i= j= 0,

0 if 0< i≤ j≤ N,

1/i, if 0≤ j< i≤ N.
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(a) Determine the fundamental matrix for the transient states 1,2, . . . ,N.
(b) Determine the probability distribution for the last positive integer that the

chain visits.
3.7.5 Computer Challenge. Consider the partial sums:

S0 = k and Sm = k+ ξ1+ ·· ·+ ξm, k > 0,

where ξ1,ξ2, . . . are independent and identically distributed as

Pr{ξ = 0} = 1−
2

π

and

Pr{ξ =±j} =
2

π(4j2− 1)
, j= 1,2, . . . .

Can you find an explicit formula for the mean time vk for the partial sums start-
ing from S0 = k to exit the interval [0,N]= {0,1, . . . ,N}? In another context,
the answer was found by computing it in a variety of special cases.

Note: A simple random walk on the integer plane moves according to the rule:
If (Xn,Yn)= (i, j), then the next position is equally likely to be any of the four
points (i+ 1, j), (i− 1, j), (i, j+ 1), or (i, j− 1). Let us suppose that the process
starts at the point (X0,Y0)= (k,k) on the diagonal, and we observe the process
only when it visits the diagonal. Formally, we define

τ1 =min{n> 0;Xn = Yn},

and

τm =min{n> τm−1;Xn = Yn}.

It is not hard to show that

S0 = k, Sm = Xτm = Yτm , m> 0,

is a version of the above partial sum process.

3.8 Branching Processes∗

Suppose an organism at the end of its lifetime produces a random number ξ of off-
spring with probability distribution

Pr{ξ = k} = pk for k = 0,1,2, . . . , (3.94)

∗ Branching processes are Markov chains of a special type. Sections 3.8 and 3.9 are not prerequisites to the
later chapters.
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where as usual, pk ≥ 0 and
∑
∞

k=0 pk = 1. We assume that all offspring act indepen-
dently of each other and at the ends of their lifetimes (for simplicity, the lifespans of
all organisms are assumed to be the same) individually have progeny in accordance
with the probability distribution (3.94), thus propagating their species. The process
{Xn}, where Xn is the population size at the nth generation, is a Markov chain of spe-
cial structure called a branching process.

The Markov property may be reasoned simply as follows. In the nth generation, the
Xn individuals independently give rise to numbers of offspring ξ (n)1 ,ξ

(n)
2 , . . . , ξ

(n)
Xn

, and
hence the cumulative number produced for the (n+ 1)st generation is

Xn+1 = ξ
(n)
1 + ξ

(n)
2 + ·· ·+ ξ

(n)
Xn
. (3.95)

3.8.1 Examples of Branching Processes

There are numerous examples of Markov branching processes that arise naturally in
various scientific disciplines. We list some of the more prominent cases.

Electron Multipliers

An electron multiplier is a device that amplifies a weak current of electrons. A series of
plates are set up in the path of electrons emitted by a source. Each electron, as it strikes
the first plate, generates a random number of new electrons, which in turn strike the
next plate and produce more electrons, and so forth. Let X0 be the number of electrons
initially emitted and X1 be the number of electrons produced on the first plate by the
impact due to the X0 initial electrons; in general, let Xn be the number of electrons
emitted from the nth plate due to electrons emanating from the (n− 1)st plate. The
sequence of random variables X0,X1,X2, . . . ,Xn, . . . constitutes a branching process.

Neutron Chain Reaction

A nucleus is split by a chance collision with a neutron. The resulting fission yields
a random number of new neutrons. Each of these secondary neutrons may hit some
other nucleus, producing a random number of additional neutrons, and so forth. In
this case, the initial number of neutrons is X0 = 1. The first generation of neutrons
comprises all those produced from the fission caused by the initial neutron. The size
of the first generation is a random variable X1. In general, the population Xn at the
nth generation is produced by the chance hits of the Xn−1 individual neutrons of the
(n− 1)st generation.

Survival of Family Names

The family name is inherited by sons only. Suppose that each individual has prob-
ability pk of having k male offspring. Then, from one individual there result the
1st,2nd, . . . ,nth, . . . generations of descendants. We may investigate the distribution
of such random variables as the number of descendants in the nth generation, or the
probability that the family name will eventually become extinct. Such questions will
be dealt with beginning in Section 3.8.3.



148 An Introduction to Stochastic Modeling

Survival of Mutant Genes

Each individual gene has a chance to give birth to k offspring, k = 1,2, . . . , which
are genes of the same kind. Any individual, however, has a chance to transform into
a different type of mutant gene. This gene may become the first in a sequence of
generations of a particular mutant gene. We may inquire about the chances of survival
of the mutant gene within the population of the original genes. In this example, the
number of offspring is often assumed to follow a Poisson distribution.

The rationale behind this choice of distribution is as follows. In many populations a
large number of zygotes (fertilized eggs) are produced, only a small number of which
grow to maturity. The events of fertilization and maturation of different zygotes obey
the law of independent binomial trials. The number of trials (i.e., number zygotes) is
large. The law of rare events then implies that the number of progeny that mature will
approximately follow the Poisson distribution. The Poisson assumption seems quite
appropriate in the model of population growth of a rare mutant gene. If the mutant
gene carries a biological advantage (or disadvantage), then the probability distribution
is taken to be the Poisson distribution with mean λ > 1 or (< 1).

All of the preceding examples possess the following structure. Let X0 denote the
size of the initial population. Each individual gives birth to k new individuals with
probability pk independently of the others. The totality of all the direct descendants of
the initial population constitutes the first generation, whose size we denote by X1. Each
individual of the first generation independently bears a progeny set whose size is gov-
erned by the probability distribution (3.94). The descendants produced constitute the
second generation, of size X2. In general, the nth generation is composed of descen-
dants of the (n− 1)st generation, each of whose members independently produces k
progeny with probability pk,k = 0,1,2, . . . . The population size of the nth generation
is denoted by Xn. The Xn forms a sequence of integer-valued random variables that
generate a Markov chain in the manner described by (3.95).

3.8.2 The Mean and Variance of a Branching Process

Equation (3.95) characterizes the evolution of the branching process as successive ran-
dom sums of random variables. Random sums were studied in Chapter 2, Section 2.3,
and we can use the moment formulas developed there to compute the mean and
variance of the population size Xn. First some notation. Let µ= E[ξ ] and σ 2

= Var[ξ ]
be the mean and variance, respectively, of the offspring distribution (3.94). Let M(n)
and V(n) be the mean and variance of Xn under the initial condition X0 = 1. Then,
direct application of Chapter 2, (2.30) with respect to the random sum (3.95) gives the
recursions

M(n+ 1)= µM(n) (3.96)

and

V(n+ 1)= σ 2M(n)+µ2V(n). (3.97)
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The initial condition X0 = 1 starts the recursions (3.96) and (3.97) at M(0)= 1 and
V(0)= 0. Then, from (3.96), we obtain M(1)= µ1= µ,M(2)= µM(1)= µ2, and,
in general,

M(n)= µn for n= 0,1, . . . . (3.98)

Thus, the mean population size increases geometrically whenµ > 1, decreases geo-
metrically when µ < 1, and remains constant when µ= 1.

Next, substitution of M(n)= µn into (3.97) gives V(n+ 1)= σ 2µn
+µ2V(n),

which with V(0)= 0 yields

V(1)= σ 2,

V(2)= σ 2µ+µ2V(1)= σ 2µ+ σ 2µ2,

V(3)= σ 2µ2
+µ2V(2)

= σ 2µ2
+ σ 2µ3

+ σ 2µ4,

and, in general,

V(n)= σ 2
[
µn−1

+µn
+ ·· ·+µ2n−2

]
= σ 2µn−1

[
1+µ+ ·· ·+µn−1

]
= σ 2µn−1

×


n if µ= 1,
1−µn

1−µ
if µ 6= 1.

(3.99)

Thus, the variance of the population size increases geometrically ifµ > 1, increases
linearly if µ= 1, and decreases geometrically if µ < 1.

3.8.3 Extinction Probabilities

Population extinction occurs when and if the population size is reduced to zero. The
random time of extinction N is thus the first time n for which Xn = 0, and then, obvi-
ously, Xk = 0 for all k ≥ N. In Markov chain terminology, 0 is an absorbing state, and
we may calculate the probability of extinction by invoking a first step analysis. Let

un = Pr{N ≤ n} = Pr{Xn = 0} (3.100)

be the probability of extinction at or prior to the nth generation, beginning with a
single parent X0 = 1. Suppose that the single parent represented by X0 = 1 gives rise
to ξ (0)1 = k offspring. In turn, each of these offspring will generate a population of its
own descendants, and if the original population is to die out in n generations, then each
of these k lines of descent must die out in n− 1 generations. The analysis is depicted
in Figure 3.6.
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n − 1

X0 = 1

n

0

1

2

3

Generation

k subsequent subpopulations

X1 = ξ1
(0) = k

Figure 3.6 The diagram illustrates that if the original population is to die out by generation
n, then the subpopulations generated by distinct initial offspring must all die out in n− 1
generations.

Now, the k subpopulations generated by the distinct offspring of the original parent
are independent, and they have the same statistical properties as the original popu-
lation. Therefore, the probability that any particular one of them dies out in n− 1
generations is un−1 by definition, and the probability that all k subpopulations die out
in n− 1 generations is the kth power (un−1)

k because they are independent. Upon
weighting this factor by the probability of k offspring and summing according to the
law of total probability, we obtain

un =

∞∑
k=0

pk(un−1)
k, n= 1,2, . . . . (3.101)

Of course u0 = 0, and u1 = p0, the probability that the original parent had no offspring.

Example Suppose a parent has no offspring with probability 1
4 and two offspring with

probability 3
4 . Then, the recursion (3.101) specializes to

un =
1

4
+

3

4
(un−1)

2
=

1+ 3(un−1)
2

4
.

Beginning with u0 = 0, we successively compute

u1 = 0.2500, u6 = 0.3313,
u2 = 0.2969, u7 = 0.3323,
u3 = 0.3161, u8 = 0.3328,
u4 = 0.3249, u9 = 0.3331,
u5 = 0.3292, u10 = 0.3332.

We see that the chances are very nearly 1
3 that such a population will die out by the

tenth generation.
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Exercises

3.8.1 A population begins with a single individual. In each generation, each individual
in the population dies with probability 1

2 or doubles with probability 1
2 . Let Xn

denote the number of individuals in the population in the nth generation. Find
the mean and variance of Xn.

3.8.2 The number of offspring of an individual in a population is 0,1, or 2 with
respective probabilities a> 0, b> 0, and c> 0, where a+ b+ c= 1. Express
the mean and variance of the offspring distribution in terms of b and c.

3.8.3 Suppose a parent has no offspring with probability 1
2 and has two offspring with

probability 1
2 . If a population of such individuals begins with a single parent and

evolves as a branching process, determine un, the probability that the population
is extinct by the nth generation, for n= 1,2,3,4,5.

3.8.4 At each stage of an electron multiplier, each electron, upon striking the plate,
generates a Poisson distributed number of electrons for the next stage. Suppose
the mean of the Poisson distribution is λ. Determine the mean and variance for
the number of electrons in the nth stage.

Problems

3.8.1 Each adult individual in a population produces a fixed number M of offspring
and then dies. A fixed number L of these remain at the location of the parent.
These local offspring will either all grow to adulthood, which occurs with a
fixed probability β, or all will die, which has probability 1−β. Local mortal-
ity is catastrophic in that it affects the entire local population. The remaining
N =M−L offspring disperse. Their successful growth to adulthood will occur
statistically independently of one another, but at a lower probability α = pβ,
where p may be thought of as the probability of successfully surviving the dis-
persal process. Define the random variable ξ to be the number of offspring of a
single parent that survive to reach adulthood in the next generation. According
to our assumptions, we may write ξ as

ξ = v1+ v2+ ·· ·+ vN + (M−N)2,

where 2,v1,v2, . . . ,vN are independent with Pr{vk = 1} = α,Pr{vk = 0} = 1−
α, and with Pr{2= 1} = β and Pr{2= 0} = 1−β. Show that the mean number
of offspring reaching adulthood is E[ξ ]= αN+β(M−N), and since α < β, the
mean number of surviving offspring is maximized by dispersing none (N = 0).
Show that the probability of having no offspring surviving to adulthood is

Pr{ξ = 0} = (1−α)N(1−β)

and that this probability is made smallest by making N large.
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3.8.2 Let Z =
∑x

n=0 Xn be the total family size in a branching process whose offspring
distribution has a mean µ= E[ξ ]< 1. Assuming that X0 = 1, show that E[Z]=
1/(1−µ).

3.8.3 Families in a certain society choose the number of children that they will have
according to the following rule: If the first child is a girl, they have exactly one
more child. If the first child is a boy, they continue to have children until the
first girl, and then cease childbearing.
(a) For k = 0,1,2, . . . , what is the probability that a particular family will have

k children in total?
(b) For k = 0,1,2, . . . , what is the probability that a particular family will have

exactly k male children among their offspring?
3.8.4 Let {Xn} be a branching process with mean family sizeµ. Show that Zn = Xn/µ

n

is a nonnegative martingale. Interpret the maximal inequality as applied to {Zn}.

3.9 Branching Processes and Generating Functions∗

Consider a nonnegative integer-valued random variable ξ whose probability distribu-
tion is given by

Pr{ξ = k} = pk for k = 0,1, . . . . (3.102)

The generating function φ(s) associated with the random variable ξ (or equivalently,
with the distribution {pk}) is defined by

φ(s)= E
[
sξ
]
=

∞∑
k=0

pksk for 0≤ s≤ 1. (3.103)

Much of the importance of generating functions derives from the following three
results.

First, the relation between probability mass functions (3.102) and generating func-
tions (3.103) is one-to-one. Thus, knowing the generating function is equivalent, in
some sense, to knowing the distribution. The relation that expresses the probability
mass function {pk} in terms of the generating function φ(s) is

pk =
1

k!

dkφ(s)

dsk

∣∣∣∣
s=0

. (3.104)

For example,

φ(s)= p0+ p1s+ p2s2
+ ·· · ,

∗ This topic is not prerequisite to what follows.
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whence

p0 = φ(0),

and

dφ(s)

ds
= p1+ 2p2s+ 3p3s2

+ ·· · ,

whence

p1 =
dφ(s)

ds

∣∣∣∣
s=0
.

Second, if ξ1, . . . , ξn are independent random variables having generating functions
φ1(s), . . . ,φn(s), respectively, then the generating function of their sum X = ξ1+ ·· ·+

ξn is simply the product

φX(s)= φ1(s)φ2(s) · · ·φn(s). (3.105)

This simple result makes generating functions extremely helpful in dealing with prob-
lems involving sums of independent random variables. It is to be expected, then, that
generating functions might provide a major tool in the analysis of branching processes.

Third, the moments of a nonnegative integer-valued random variable may be found
by differentiating the generating function. For example, the first derivative is

dφ(s)

ds
= p1+ 2p2s+ 3p3s2

+ ·· · ,

whence

dφ(s)

ds

∣∣∣∣
s=1
= p1+ 2p2+ 3p3+ ·· · = E[ξ ], (3.106)

and the second derivative is

d2φ(s)

ds2
= 2p2+ 3(2)p3s+ 4(3)p4s2

+ ·· · ,

whence

d2φ(s)

ds2

∣∣∣∣
s=1
= 2p2+ 3(2)p3+ 4(3)p4+ ·· ·

=

∞∑
k=2

k(k− 1)pk = E[ξ(ξ − 1)]

= E
[
ξ2]
−E[ξ ].
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Thus

E
[
ξ2
]
=

d2φ(s)

ds2

∣∣∣∣
s=1
+E[ξ ]

=
d2φ(s)

ds2

∣∣∣∣
s=1
+

dφ(s)

ds

∣∣∣∣
s=1

and

Var[ξ ]= E
[
ξ2
]
−{E[ξ ]}2

=
d2φ(s)

ds2

∣∣∣∣
s=1
+

dφ(s)

ds

∣∣∣∣
s=1
−

{
dφ(s)

ds

∣∣∣∣
s=1

}2

.

(3.107)

Example If ξ has a Poisson distribution with mean λ for which

pk = Pr{ξ = k} =
λke−λ

k!
for k = 0,1, . . . ,

then,

φ(s)= E
[
sξ
]
=

∞∑
k=0

sk λ
ke−λ

k!

= e−λ
∞∑

k=0

(λs)k

k!

= e−λeλs
= e−λ(1−s) for |s|< 1.

Then,

dφ(s)

ds
= λe−λ(1−s)

;
dφ(s)

ds

∣∣∣∣
s=1
= λ;

d2φ(s)

ds2
= λ2e−λ(1−s)

;
d2φ(s)

ds2

∣∣∣∣
s=1
= λ2.

From (3.106) and (3.107), we verify that

E[ξ ]= λ,

Var[ξ ]= λ2
+ λ− (λ)2 = λ.

3.9.1 Generating Functions and Extinction Probabilities

Consider a branching process whose population size at stage n is denoted by Xn.
Assume that the offspring distribution pk = Pr{ξ = k} has the generating function



Markov Chains: Introduction 155

φ(s)= E
[
sξ
]
=
∑

k skpk. If un = Pr{Xn = 0} is the probability of extinction by stage n,
then the recursion (3.101) in terms of generating functions becomes

un =

∞∑
k=0

pk(un−1)
k
= φ(un−1).

That is, knowing the generating function φ(s), we may successively compute the
extinction probabilities un beginning with u0 = 0 and then u1 = φ(u0),u2 = φ(u1),
and so on.

Example The extinction probabilities when there are no offspring with probability
p0 =

1
4 and two offspring with probability p2 =

3
4 were computed in the example in

Section 3.8.3. We now reexamine this example using the offspring generating function
φ(s)= 1

4 +
3
4 s2. This generating function is plotted as Figure 3.7. From the figure, it

is clear that the extinction probabilities converge upward to the smallest solution of
the equation u= φ(u). This, in fact, occurs in the most general case. If u∞ denotes
this smallest solution to u= φ(u), then u∞ gives the probability that the population
eventually becomes extinct at some indefinite, but finite, time. The alternative is that
the population grows infinitely large, and this occurs with probability 1− u∞.

For the example at hand, φ(s)= 1
4 +

3
4 s2, and the equation u= φ(u) is the simple

quadratic u= 1
4 +

3
4 u2, which gives

u=
4±
√

16− 12

6
= 1,

1

3
.

φ (s)

u=φ (u)

(1, 1)

u2=φ (u1)
u1=φ (u0)

u0=0 u1

Figure 3.7 The generating function corresponding to the offspring distribution p0 =
1
4 and p2 =

3
4 . Here uk = Pr{Xk = 0} is the probability of extinction by generation k.
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φ (u) (1, 1)

u2=φ (u1)

u1=φ (u0)

u1 u2 u

Figure 3.8 The generating function corresponding to the offspring distribution p0 =
3
4 and

p2 =
1
4 .

The smaller solution is u∞ =
1
3 , which is to be compared with the apparent limit of

the sequence un computed in the example in Section 3.8.3.
It may happen that u∞ = 1, i.e., the population is sure to die out at some time. An

example is depicted in Figure 3.8: The offspring distribution is p0 =
3
4 and p2 =

1
4 . We

solve u= φ(u)= 3
4 +

1
4 u2 to obtain

u=
4±
√

16− 12

2
= 1,3.

The smaller solution is u∞ = 1, the probability of eventual extinction.
In general, the key is whether or not the generating function φ(s) crosses the 45◦

line φ(s)= s, and this, in turn, can be determined from the slope

φ′(1)=
dφ(s)

ds

∣∣∣∣
s=1

of the generating function at s= 1. If this slope is less than or equal to one, then no
crossing takes place, and the probability of eventual extinction is u∞ = 1. On the other
hand, if the slope φ′(1) exceeds one, then the equation u= φ(u) has a smaller solution
that is less than one, and extinction is not a certain event.

But the slope φ′(1) of a generating function at s= 1 is the mean E[ξ ] of the corre-
sponding distribution. We have thus arrived at the following important conclusion: If
the mean offspring size E[ξ ]≤ 1, then u∞ = 1 and extinction is certain. If E[ξ ]> 1,
then u∞ < 1 and the population may grow unboundedly with positive probability.
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The borderline case E[ξ ]= 1 merits some special attention. Here, E[Xn|X0=1]=1
for all n, so the mean population size is constant. Yet the population is sure to die out
eventually! This is a simple example in which the mean population size alone does not
adequately describe the population behavior.

3.9.2 Probability Generating Functions and Sums of Independent
Random Variables

Let ξ and η be independent nonnegative integer-valued random variables having the
probability generating functions (p.g.f.s)

φ(s)= E
[
sξ
]

and ψ(s)= E
[
sη
]

for |s|< 1.

The probability generating function of the sum ξ + η is simply the product φ(s)ψ(s)
because

E
[
sξ+η

]
= E

[
sξ sη

]
= E

[
sξ
]

E
[
sη
]

(because ξ and η are independent)

= φ(s)ψ(s).

(3.108)

The converse is also true. Specifically, if the product of the p.g.f.s of two indepen-
dent random variables is a p.g.f. of a third random variable, then the third random
variable equals (in distribution) the sum of the other two.

Let ξ1,ξ2, . . . be independent and identically distributed nonnegative integer-valued
random variables with p.g.f. φ(s)= E

[
sξ
]
. Direct induction of (3.108) implies that the

sum ξ1+ ·· ·+ ξm has p.g.f.

E
[
sξ1+···+ξm

]
= [φ(s)]m. (3.109)

We extend this result to determine the p.g.f. of a sum of a random number of indepen-
dent summands. Accordingly, let N be a nonnegative integer-valued random variable,
independent of ξ1,ξ2, . . . , with p.g.f. gN(s)= E

[
sN
]
, and consider the random sum

(see Chapter 2, Section 2.3).

X = ξ1+ ·· ·+ ξN .

Let hX(s)= E
[
sX
]

be the p.g.f. of X. We claim that hX(s) takes the simple form

hX(s)= gN[φ(s)]. (3.110)
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To establish (3.110), consider

hX(s)=
∞∑

k=0

Pr{X = k}sk

=

∞∑
k=0

(
∞∑

n=0

Pr{X = k|N = n}Pr{N = n}

)
sk

=

∞∑
k=0

(
∞∑

n=0

Pr{ξ1+ ·· ·+ ξn = k|N = n}Pr{N = n}

)
sk

=

∞∑
k=0

∞∑
n=0

Pr{ξ1+ ·· ·+ ξn = k}Pr{N = n}sk

[because N is independent of ξ1,ξ2, . . .]

=

∞∑
n=0

(
∞∑

k=0

Pr{ξ1+ ·· ·+ ξn = k}sk

)
Pr{N = n}

=

∞∑
n=0

φ(s)n Pr{N = n} [using (3.109)]

= gn[φ(s)] [by the definition of gn(s)].

With the aid of (3.110), the basic branching process equation

Xn+1 = ξ
(n)
1 + ·· ·+ ξ

(n)
Xn

(3.111)

can be expressed equivalently and succinctly by means of generating functions. To this
end, let φn(s)= E[sXn ] be the p.g.f. of the population size Xn at generation n, assuming
that X0 = 1. Then easily, φ0(s)= E[s1]= s, and φ1(s)= φ(s)= E[sξ ]. To obtain the
general expression, we apply (3.110) to (3.111) to yield

φn+1(s)= φn[φ(s)]. (3.112)

This expression may be iterated in the manner

φn+1(s)= φn−1{φ[φ(s)]}

= φ{· · ·φ[φ(s)]}︸ ︷︷ ︸
(n+1) iterations

= φ[φn(s)].

(3.113)

That is, we obtain the generating function for the population size Xn at generation n,
given that X0 = 1, by repeated substitution in the probability generating function of
the offspring distribution.



Markov Chains: Introduction 159

For general initial population sizes X0 = k, the p.g.f. is

∞∑
j=0

Pr{Xn = j|X0 = k}s j
= [φn(s)]

k, (3.114)

exactly that of a sum of k independent lines of descents. From this perspective, the
branching process evolves as the sum of k independent branching processes, one for
each initial parent.

Example Let φ(s)= q+ ps, where 0< p< 1 and p+ q= 1. The associated branch-
ing process is a pure death process. In each period, each individual dies with prob-
ability q and survives with probability p. The iterates φn(s) in this case are readily
determined, e.g., φ2(s)= q+ p, (q+ ps)= 1− p2

+ p2s, and generally, φn(s)= 1−
pn
+ pns. If we follow (3.114), the nth generation p.g.f. starting from an initial popu-

lation size of k is [φn(s)]k
= [1− pn

+ pns]k.
The probability distribution of the time T to extinction may be determined from the

p.g.f. as follows:

Pr{T = n|X(0)= k} = Pr{Xn = 0|X0 = k}−Pr{Xn−1 = 0|X0 = k}

= [φn(0)]
k
− [φn−1(0)]

k

=
(
1− pn)k

−

(
1− pn−1

)k
.

3.9.3 Multiple Branching Processes

Population growth processes often involve several life history phases (e.g., juvenile,
reproductive adult, senescence) with different viability and behavioral patterns. We
consider a number of examples of branching processes that take account of this char-
acteristic.

For the first example, suppose that a mature individual produces offspring accord-
ing to the p.g.f. φ(s). Consider a population of immature individuals, each of which
grows to maturity with probability p and then reproduces independently of the status
of the remaining members of the population. With probability 1− p, an immature indi-
vidual will not attain maturity and thus will leave no descendants. With probability p,
an individual will reach maturity and reproduce a number of offspring determined
according to the p.g.f. φ(s). Therefore, the progeny size distribution (or equivalently
the p.g.f.) of a typical immature individual taking account of both contingencies is

(1− p)+ pφ(s). (3.115)

If a census is taken of individuals at the adult (mature) stage, the aggregate number
of mature individuals contributed by a mature individual will now have p.g.f.

φ(1− p+ ps). (3.116)

(The student should verify this finding.)
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It is worth emphasis that the p.g.f.s (3.115) and (3.116) have the same mean pφ′(1)
but generally not the same variance, the first being

p
[
φ′′(1)+φ′(1)− (φ′(1))2

]
as compared with

p2φ′′(1)+ pφ′(1)− p2(φ′(1))2.

Example A second example leading to (3.116), as opposed to (3.115), concerns the
different forms of mortality that affect a population. We appraise the strength (stabil-
ity) of a population as the probability of indefinite survivorship = 1− probability of
eventual extinction.

In the absence of mortality, the offspring number X of a single individual has the
p.g.f. φ(s). Assume, consistent with the postulates of a branching process, that all off-
spring in the population behave independently governed by the same probability laws.
Assume also an adult population of size X = k. We consider three types of mortality:

(a) Mortality of Individuals Let p be the probability of an offspring surviving to reproduce,
independently of what happens to others. Thus, the contribution of each litter (family) to the
adult population of the next generation has a binomial distribution with parameters (N,p),
where N is the progeny size of the parent with p.g.f. φ(s). The p.g.f. of the adult numbers
contributed by a single parent is, therefore, φ(q+ ps),q= 1− p, and for the population as
a whole is

ψ1(s)= [φ(q+ ps)]k. (3.117)

This type of mortality might reflect predation on adults.
(b) Mortality of Litters Independently of what happens to other litters, each litter survives with

probability p and is wiped out with probability q= 1− p. That is, given an actual litter size
ξ , the effective litter size is ξ with probability p, and 0 with probability q. The p.g.f. of
adults in the following generation is accordingly

ψ2(s)= [q+ pφ(s)]k. (3.118)

This type of mortality might reflect predation on juveniles or on nests and eggs in the case
of birds.

(c) Mortality of Generations An entire generation survives with probability p and is wiped
out with probability q. This type of mortality might represent environmental catastro-
phes (e.g., forest fire, flood). The p.g.f. of population size in the next generation in this
case is

ψ3(s)= q+ p[φ(s)]k. (3.119)

All the p.g.f.s (3.117) through (3.119) have the same mean but usually different variances.
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It is interesting to assess the relative stability of these three models. That is, we need
to compare the smallest positive roots of ψi(s)= s, i= 1,2,3, which we will denote
by s∗i , i= 1,2,3, respectively.

We will show by convexity analysis that

ψ1(s)≤ ψ2(s)≤ ψ3(s).

A function f (x) is convex in x if for every x1 and x2 and 0< λ < 1, then f [λx1+

(1− λ)x2]≤ λf (x1)+ (1− λ)f (x2). In particular, the function φ(s)=
∑
∞

k=0 pksk for
0< s< 1 is convex in s, since for each positive integer k, [(λs1)+ (1− λ)s2]k

≤ λsk
1+

(1− λ)sk
2 for 0< λ,s1,s2 < 1. Now,ψ1(s)= [φ(q+ ps)]k < [qφ(1)+ pφ(s)]k

= [q+
pφ(s)]k

= ψ2(s), and then s∗1 < s∗2. Thus, the first model is more stable than the second
model.

Observe further that due to the convexity of f (x)= xk,x> 0,ψ2(s)= [pφ(s)+
q]k < p[φ(s)]k

+ q× 1k
= ψ3(s), and thus s∗2 < s∗3, implying that the second model is

more stable than the third model. In conjunction we get the ordering s∗1 < s∗2 < s∗3.

Exercises

3.9.1 Suppose that the offspring distribution is Poisson with mean λ= 1.1. Compute
the extinction probabilities un = Pr{Xn = 0|X0 = 1} for n= 0,1, . . . ,5. What is
u∞, the probability of ultimate extinction?

3.9.2 Determine the probability generating function for the offspring distribution in
which an individual either dies, with probability p0, or is replaced by two
progeny, with probability p2, where p0+ p2 = 1.

3.9.3 Determine the probability generating function corresponding to the offspring
distribution in which each individual produces 0 or N direct descendants, with
probabilities p and q, respectively.

3.9.4 Let φ(s) be the generating function of an offspring random variable ξ . Let Z
be a random variable whose distribution is that of ξ , but conditional on ξ > 0.
That is,

Pr{Z = k} = Pr{ξ = k|ξ > 0} for k = 1,2, . . . .

Express the generating function for Z in terms of φ.

Problems

3.9.1 One-fourth of the married couples in a far-off society have no children at all.
The other three-fourths of couples have exactly three children, with each child
equally likely to be a boy or a girl. What is the probability that the male line of
descent of a particular husband will eventually die out?
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3.9.2 One-fourth of the married couples in a far-off society have exactly three chil-
dren. The other three-fourths of couples continue to have children until the
first boy and then cease childbearing. Assume that each child is equally likely
to be a boy or girl. What is the probability that the male line of descent of a
particular husband will eventually die out?

3.9.3 Consider a large region consisting of many subareas. Each subarea contains
a branching process that is characterized by a Poisson distribution with para-
meter λ. Assume, furthermore, that the value of λ varies with the subarea, and
its distribution over the whole region is that of a gamma distribution. Formally,
suppose that the offspring distribution is given by

π(k|λ)=
e−λλk

k!
for k = 0,1, . . . ,

where λ itself is a random variable having the density function

f (λ)=
θαλα−1e−θλ

0(α)
for λ > 0,

where θ and α are positive constants. Determine the marginal offspring distri-
bution pk =

∫
π(k|λ)f (λ)dλ.

Hint: Refer to the last example of Chapter 2, Section 2.4.
3.9.4 Let φ(s)= 1− p(1− s)β , where p and β are constants with 0< p,β < 1.

Prove that φ(s) is a probability generating function and that its iterates are

φn(s)= 1− p1+β+···+βn−1
(1− s)β

n
for n= 1,2, . . . .

3.9.5 At time 0, a blood culture starts with one red cell. At the end of 1 min, the
red cell dies and is replaced by one of the following combinations with the
probabilities as indicated:

Two red cells
1

4

One red, One white
2

3

Two white
1

12

Each red cell lives for 1 min and gives birth to offspring in the same way as
the parent cell. Each white cell lives for 1 min and dies without reproducing.
Assume that individual cells behave independently.
(a) At time n+ 1

2 min after the culture begins, what is the probability that no
white cells have yet appeared?

(b) What is the probability that the entire culture eventually dies out entirely?
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3.9.6 Let φ(s)= as2
+ bs+ c, where a,b,c are positive and φ(1)= 1. Assume that

the probability of extinction is u∞, where 0< u∞ < 1. Prove that u∞ = c/a.
3.9.7 Families in a certain society choose the number of children that they will have

according to the following rule: If the first child is a girl, they have exactly one
more child. If the first child is a boy, they continue to have children until the
first girl and then cease childbearing. Let ξ be the number of male children in
a particular family. What is the generating function of ξ? Determine the mean
of ξ directly and by differentiating the generating function.

3.9.8 Consider a branching process whose offspring follow the geometric distribu-
tion pk = (1− c)ck for k = 0,1, . . . , where 0< c< 1. Determine the probabil-
ity of eventual extinction.

3.9.9 One-fourth of the married couples in a distant society have no children at all.
The other three-fourths of couples continue to have children until the first girl
and then cease childbearing. Assume that each child is equally likely to be a
boy or girl.
(a) For k = 0,1,2, . . . , what is the probability that a particular husband will

have k male offspring?
(b) What is the probability that the husband’s male line of descent will cease

to exist by the fifth generation?
3.9.10 Suppose that in a branching process the number of offspring of an initial par-

ticle has a distribution whose generating function is f (s). Each member of the
first generation has a number of offspring whose distribution has generating
function g(s). The next generation has generating function f , the next has g,
and the distributions continue to alternate in this way from generation to gen-
eration.
(a) Determine the extinction probability of the process in terms of f (s)

and g(s).
(b) Determine the mean population size at generation n.
(c) Would any of these quantities change if the process started with the g(s)

process and then continued to alternate?



4 The Long Run Behavior of
Markov Chains

4.1 Regular Transition Probability Matrices

Suppose that a transition probability matrix P= ‖Pij‖ on a finite number of states
labeled 0,1, . . . ,N has the property that when raised to some power k, the matrix
Pk has all of its elements strictly positive. Such a transition probability matrix, or
the corresponding Markov chain, is called regular. The most important fact con-
cerning a regular Markov chain is the existence of a limiting probability distribution
π = (π0,π1, . . . ,πN), where πj>0 for j= 0,1, . . . ,N and 6jπj = 1, and this distribu-
tion is independent of the initial state. Formally, for a regular transition probability
matrix P= ‖Pij‖, we have the convergence

lim
n→∞

P(n)ij = πj > 0 for j= 0,1, . . . ,N,

or, in terms of the Markov chain {Xn},

lim
n→∞

Pr{Xn = j|X0 = i} = πj > 0 for j= 0,1, . . . ,N.

This convergence means that, in the long run (n→∞), the probability of finding
the Markov chain in state j is approximately πj no matter in which state the chain
began at time 0.

Example The Markov chain whose transition probability matrix is

0 1
0 1− a aP =
1 b 1− b

(4.1)

is regular when 0< a, b< 1, and in this case, the limiting distribution is π = (b/(a+
b), a/(a+ b)). To give a numerical example, we will suppose that

P=
0.33 0.67

0.75 0.25
.

An Introduction to Stochastic Modeling. DOI: 10.1016/B978-0-12-381416-6.00004-6
c© 2011 Elsevier Inc. All rights reserved.
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The first several powers of P are given as follows:

P2
=

0.6114 0.3886
0.4350 0.5650

, P3
=

0.4932 0.5068
0.5673 0.4327

,

P4
=

0.5428 0.4572
0.5117 0.4883

, P5
=

0.5220 0.4780
0.5350 0.4560

,

P6
=

0.5307 0.4693
0.5253 0.4747

, P7
=

0.5271 0.4729
0.5294 0.4706

.

By n= 7, the entries agree row-to-row to two decimal places. The limiting probabili-
ties are b/(a+ b)= 0.5282 and a/(a+ b)= 0.4718.

Example Sociologists often assume that the social classes of successive generations in
a family can be regarded as a Markov chain. Thus, the occupation of a son is assumed
to depend only on his father’s occupation and not on his grandfather’s. Suppose that
such a model is appropriate and that the transition probability matrix is given by

Son’s class
Lower Middle Upper

Lower
Father’s
class

Middle
Upper

0.40 0.50 0.10
0.05 0.70 0.25
0.05 0.50 0.45

.

For such a population, what fraction of people are middle class in the long run?
For the time being, we will answer the question by computing sufficiently high

powers of Pn. A better method for determining the limiting distribution will be pre-
sented later in this section.

We compute

P2
= P×P=

0.1900 0.6000 0.2100
0.0675 0.6400 0.2925
0.0675 0.6000 0.3325

,

P4
= P2

×P2
=

0.0908 0.6240 0.2852
0.0758 0.6256 0.2986
0.0758 0.6240 0.3002

,

P8
= P4

×P4
=

0.0772 0.6250 0.2978
0.0769 0.6250 0.2981
0.0769 0.6250 0.2981

.

Note that we have not computed Pn for consecutive values of n but have speeded
up the calculations by evaluating the successive squares P2,P4,P8.

In the long run, approximately 62.5% of the population are middle class under the
assumptions of the model.
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Computing the limiting distribution by raising the transition probability matrix to
a high power suffers from being inexact, since n=∞ is never attained, and it also
requires more computational effort than is necessary. Theorem 4.1 provides an alter-
native computational approach by asserting that the limiting distribution is the unique
solution to a set of linear equations. For this social class example, the exact limit-
ing distribution, computed using the method of Theorem 4.1, is π0 =

1
13 = 0.0769,

π1 =
5
8 = 0.6250, and π2 =

31
104 = 0.2981.

If a transition probability matrix P on N states is regular, then PN2
will have no

zero elements. Equivalently, if PN2
is not strictly positive, then the Markov chain is

not regular. Furthermore, once it happens that Pk has no zero entries, then every higher
power Pk+n,n= 1,2, . . . , will have no zero entries. Thus, it suffices to check the suc-
cessive squares P,P2,P4,P8, . . . .

Finally, to determine whether or not the square of a transition probability matrix has
only strictly positive entries, it is not necessary to perform the actual multiplication,
but only to record whether or not the product is nonzero.

Example Consider the transition probability matrix

P=

0.9 0.1 0 0 0 0 0
0.9 0 0.1 0 0 0 0
0.9 0 0 0.1 0 0 0
0.9 0 0 0 0.1 0 0
0.9 0 0 0 0 0.1 0
0.9 0 0 0 0 0 0.1
0.9 0 0 0 0 0 0.1

.

We recognize this as a success runs Markov chain. We record the nonzero entries
as + and write P×P in the form

P×P=

+ + 0 0 0 0 0
+ 0 + 0 0 0 0
+ 0 0 + 0 0 0
+ 0 0 0 + 0 0
+ 0 0 0 0 + 0
+ 0 0 0 0 0 +

+ 0 0 0 0 0 +

×

+ + 0 0 0 0 0
+ 0 + 0 0 0 0
+ 0 0 + 0 0 0
+ 0 0 0 + 0 0
+ 0 0 0 0 + 0
+ 0 0 0 0 0 +

+ 0 0 0 0 0 +
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=

+ + + 0 0 0 0
+ + 0 + 0 0 0
+ + 0 0 + 0 0
+ + 0 0 0 + 0
+ + 0 0 0 0 +

+ + 0 0 0 0 +

+ + 0 0 0 0 +

= P2,

P4
=

+ + + + + 0 0
+ + + + 0 + 0
+ + + + 0 0 +

+ + + + 0 0 +

+ + + + 0 0 +

+ + + + 0 0 +

+ + + + 0 0 +

,

P8
=

+ + + + + + +

+ + + + + + +

+ + + + + + +

+ + + + + + +

+ + + + + + +

+ + + + + + +

+ + + + + + +

.

We see that P8 has all strictly positive entries, and therefore, P is regular. The limiting
distribution for a similar matrix is computed in Section 4.2.2.

Every transition probability matrix on the states 0,1, . . . ,N that satisfies the follow-
ing two conditions is regular:

1. For every pair of states i, j there is a path k1, . . . ,kr for which Pik1 Pk1k2 · · ·Pkr j > 0.
2. There is at least one state i for which Pii > 0.

Theorem 4.1. Let P be a regular transition probability matrix on the states 0,1, . . . ,N.
Then the limiting distribution π = (π0,π1, . . . ,πN) is the unique nonnegative solution
of the equations

πj =

N∑
k=0

πkPkj, j= 0,1, . . . ,N, (4.2)

N∑
k=0

πk = 1. (4.3)

Proof. Because the Markov chain is regular, we have a limiting distribution,
limn→∞P(n)ij = πj, for which

∑N
k=0πk = 1. Write Pn as the matrix product Pn−1P
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in the form

P(n)ij =

N∑
k=0

P(n−1)
ik Pkj, j= 0, . . . ,N, (4.4)

and now let n→∞. Then, P(n)ij → πj, while P(n−1)
ik → πk, and (4.4) passes into πj =∑N

k=0πkPkj as claimed.
It remains to show that the solution is unique. Suppose that x0,x1, . . . ,xN solves

xj =

N∑
k=0

xkPkj for j= 0, . . . ,N (4.5)

and

N∑
k=0

xk = 1. (4.6)

We wish to show that xj = πj, the limiting probability. Begin by multiplying (4.5)
on the right by Pjl and then sum over j to get

N∑
j=0

xjPjl =

N∑
j=0

N∑
k=0

xkPkjPjl =

N∑
k=0

xkP(2)kl . (4.7)

But by (4.5), we have xl =
∑N

j=0 xjPjl, whence (4.7) becomes

xl =

N∑
k=0

xkP(2)kl for l= 0, . . . ,N.

Repeating this argument n times we deduce that

xl =

N∑
k=0

xkP(n)kl for l= 0, . . . ,N,

and then passing to the limit in n and using that P(n)kl → πl, we see that

xl =

N∑
k=0

xkπl, l= 0, . . . ,N.

But by (4.6), we have 6kxk = 1, whence x= πl as claimed. �
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Example For the social class matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.40 0.50 0.10

1 0.05 0.70 0.25

2 0.05 0.50 0.45

∥∥∥∥∥∥∥,
the equations determining the limiting distribution (π0,π1,π2) are

0.40π0+ 0.05π1+ 0.05π2 = π0, (4.8)

0.50π0+ 0.70π1+ 0.50π2 = π1, (4.9)

0.10π0+ 0.25π1+ 0.45π2 = π2, (4.10)

π0+ π1+ π2 = 1. (4.11)

One of the equations (4.8), (4.9), and (4.10) is redundant because of the linear con-
straint6kPik = 1. We arbitrarily strike out (4.10) and simplify the remaining equations
to get

−60π0+ 5π1+ 5π2 = 0, (4.12)

5π0− 3π1+ 5π2 = 0, (4.13)

π0+ π1+ π2 = 1. (4.14)

We eliminate π2 by subtracting (4.12) from (4.13) and five times (4.14) to reduce the
system to

65π0− 8π1 = 0,

65π0 = 5.

Then, π0 =
5
65 =

1
13 ,π1 =

5
8 , and then π2 = 1−π0−π1 =

31
104 , as given earlier.

4.1.1 Doubly Stochastic Matrices

A transition probability matrix is called doubly stochastic if the columns sum to one
as well as the rows. Formally, P= ‖Pij‖ is doubly stochastic if

Pij ≥ 0 and
∑

k

Pik =
∑

k

Pkj = 1 for all i, j.

Consider a doubly stochastic transition probability matrix on the N states 0,
1, . . . ,N− 1. If the matrix is regular, then the unique limiting distribution is the uniform
distribution π = (1/N, . . . ,1/N). Because there is only one solution to πj =6kπkPkj

and 6kπk = 1 when P is regular, we need only to check that π = (1/N, . . . ,1/N) is
a solution where P is doubly stochastic in order to establish the claim. By using the
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doubly stochastic feature 6jPjk = 1, we verify that

1

N
=

∑
j

1

N
Pjk =

1

N
.

As an example, let Yn be the sum of n independent rolls of a fair die and consider
the problem of determining with what probability Yn is a multiple of 7 in the long run.
Let Xn be the remainder when Yn is divided by 7. Then, Xn is a Markov chain on the
states 0,1, . . . ,6 with transition probability matrix

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4 5 6

0 0
1

6

1

6

1

6

1

6

1

6

1

6

1
1

6
0

1

6

1

6

1

6

1

6

1

6

2
1

6

1

6
0

1

6

1

6

1

6

1

6

3
1

6

1

6

1

6
0

1

6

1

6

1

6

4
1

6

1

6

1

6

1

6
0

1

6

1

6

5
1

6

1

6

1

6

1

6

1

6
0

1

6

6
1

6

1

6

1

6

1

6

1

6

1

6
0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

The matrix is doubly stochastic, and it is regular (P2 has only strictly positive entries),

hence the limiting distribution is π =
(

1
7 , . . . ,

1
7

)
. Furthermore, Yn is a multiple of 7 if

and only if Xn = 0. Thus, the limiting probability that Yn is a multiple of 7 is 1
7 .

4.1.2 Interpretation of the Limiting Distribution

Given a regular transition matrix P for a Markov process {Xn} on the N+ 1 states
0,1, . . . ,N, we solve the linear equations

πi =

N∑
k=0

πkPki for i= 0,1, . . . ,N

and

π0+π1+ ·· ·+πN = 1.

The primary interpretation of the solution (π0, . . . ,πN) is as the limiting distribution

πj = lim
n→∞

P(n)ij = lim
n→∞

Pr{Xn = j|X0 = i}.
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In words, after the process has been in operation for a long duration, the probability of
finding the process in state j is πj, irrespective of the starting state.

There is a second interpretation of the limiting distribution π = (π0,π1, . . . ,πN)

that plays a major role in many models. We claim that πj also gives the long run mean
fraction of time that the process {Xn} is in state j. Thus, if each visit to state j incurs
a “cost” of cj, then the long run mean cost per unit time associated with this Markov
chain is

Long run mean cost per unit time=
N∑

j=0

πjcj.

To verify this interpretation, recall that if a sequence a0,a1, . . . of real numbers
converges to a limit a, then the averages of these numbers also converge in the manner

lim
m→∞

1

m

m−1∑
k=0

ak = a.

We apply this result to the convergence limn→∞P(n)ij = πj to conclude that

lim
m→∞

1

m

m−1∑
k=0

P(k)ij = πj.

Now, (1/m)
∑m−1

k=0 P(k)ij is exactly the mean fraction of time during steps 0,1, . . . ,m− 1
that the process spends in state j. Indeed, the actual (random) fraction of time in state j is

1

m

m−1∑
k=0

1{Xk = j},

where

1{Xk = j} =

{
1 if Xk = j,
0 if Xk 6= j.

Therefore, the mean fraction of visits is obtained by taking expected values accord-
ing to

E

[
1

m

m−1∑
k=0

1{Xk = i}|X0 = j

]
=

1

m

m−1∑
k=0

E[1{Xk = j}|X0 = i]

=
1

m

m−1∑
k=0

Pr{Xk = j|X0 = i}

=
1

m

m−1∑
k=0

P(k)ij .
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Because limn→∞P(n)ij = πj, the long run mean fraction of time that the process spends
in state j is

lim
m→∞

E

[
1

m

m−1∑
k=0

1{Xk = j}|X0 = i

]
= lim

m→∞

1

m

m−1∑
k=0

P(k)ij = πj,

independent of the starting state i.

Exercises

4.1.1 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.7 0.2 0.1

1 0 0.6 0.4

2 0.5 0 0.5

∥∥∥∥∥∥∥.
Determine the limiting distribution.

4.1.2 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.6 0.3 0.1

1 0.3 0.3 0.4

2 0.4 0.1 0.5

∥∥∥∥∥∥∥.
Determine the limiting distribution.

4.1.3 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.1 0.1 0.8

1 0.2 0.2 0.6

2 0.3 0.3 0.4

∥∥∥∥∥∥∥.
What fraction of time, in the long run, does the process spend in state 1?

4.1.4 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.3 0.2 0.5

1 0.5 0.1 0.4

2 0.5 0.2 0.3

∥∥∥∥∥∥∥.
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Every period that the process spends in state 0 incurs a cost of $2. Every period
that the process spends in state 1 incurs a cost of $5. Every period that the
process spends in state 2 incurs a cost of $3. What is the long run cost per
period associated with this Markov chain?

4.1.5 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0.1 0.5 0 0.4

1 0 0 1 0

2 0 0 0 1

3 1 0 0 0

∥∥∥∥∥∥∥∥∥.
Determine the limiting distribution for the process.

4.1.6 Compute the limiting distribution for the transition probability matrix

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2

0
1

2

1

2
0

1
1

3

1

3

1

3

2
1

6

1

2

1

3

∥∥∥∥∥∥∥∥∥∥∥∥∥
.

4.1.7 A Markov chain on the states 0,1,2,3 has the transition probability matrix

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0.1 0.2 0.3 0.4

1 0 0.3 0.3 0.4

2 0 0 0.6 0.4

3 1 0 0 0

∥∥∥∥∥∥∥∥∥.
Determine the corresponding limiting distribution.

4.1.8 Suppose that the social classes of successive generations in a family follow a
Markov chain with transition probability matrix given by

Son’s class

Father’s
class

∥∥∥∥∥∥∥
Lower Middle Upper

Lower 0.7 0.2 0.1

Middle 0.2 0.6 0.2

Upper 0.1 0.4 0.5

∥∥∥∥∥∥∥
.

What fraction of families are upper class in the long run?
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4.1.9 Determine the limiting distribution for the Markov chain whose transition
probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2

0
1

2

1

2
0

1
1

3

1

2

1

6

2 0
1

4

3

4

∥∥∥∥∥∥∥∥∥∥∥∥∥
.

4.1.10 A bus in a mass transit system is operating on a continuous route with interme-
diate stops. The arrival of the bus at a stop is classified into one of three states,
namely
1. Early arrival;
2. On-time arrival;
3. Late arrival.
Suppose that the successive states form a Markov chain with transition proba-
bility matrix

P=

∥∥∥∥∥∥∥
1 2 3

1 0.5 0.4 0.1
2 0.2 0.5 0.3
3 0.1 0.2 0.7

∥∥∥∥∥∥∥.
Over a long period of time, what fraction of stops can be expected to be late?

Problems

4.1.1 Five balls are distributed between two urns, labeled A and B. Each period, an
urn is selected at random, and if it is not empty, a ball from that urn is removed
and placed into the other urn. In the long run what fraction of time is urn A
empty?

4.1.2 Five balls are distributed between two urns, labeled A and B. Each period, one
of the five balls is selected at random, and whichever urn it’s in, it is moved to
the other urn. In the long run, what fraction of time is urn A empty?

4.1.3 A Markov chain has the transition probability matrix

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4 5

0 α1 α2 α3 α4 α5 α6

1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0
5 0 0 0 0 1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥
,
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where αi ≥ 0, i= 1, . . . ,6, and α1+ ·· ·+α6 = 1. Determine the limiting pro-
bability of being in state 0.

4.1.4 A finite-state regular Markov chain has transition probability matrix P= ‖Pij‖

and limiting distribution π = ‖πi‖. In the long run, what fraction of the tran-
sitions are from a prescribed state k to a prescribed state m?

4.1.5 The four towns A,B,C, and D are connected by railroad lines as shown in the
following diagram:

A B

D

C

Figure 4.1 A graph whose nodes represent towns and whose arcs represent railroad lines.

Each day, in whichever town it is in, a train chooses one of the lines out
of that town at random and traverses it to the next town, where the process
repeats the next day. In the long run, what is the probability of finding the train
in town D?

4.1.6 Determine the following limits in terms of the transition probability matrix
P= ‖Pij‖ and limiting distribution π = ‖πj‖ of a finite-state regular Markov
chain {Xn}:

(a) limn→∞Pr{Xn+1 = j|X0 = i}.

(b) limn→∞Pr{Xn = k,Xn+1 = j|X0 = i}.

(c) limn→∞Pr{Xn−1 = k,Xn = j|X0 = i}.

4.1.7 Determine the limiting distribution for the Markov chain whose transition
probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3

0
1

2
0 0

1

2

1 1 0 0 0

2 0
1

2

1

3

1

6

3 0 0 1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.
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4.1.8 Show that the transition probability matrix

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4

0 0
1

2

1

2
0 0

1
1

2
0

1

2
0 0

2
1

3

1

3
0

1

3
0

3 0 0
1

2
0

1

2

4
1

2
0 0

1

2
0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
is regular and compute the limiting distribution.

4.1.9 Determine the long run, or limiting, distribution for the Markov chain whose
transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0 0 1 0

1 0 0 0 1

2
1

4

1

4

1

4

1

4

3 0 0
1

2

1

2

∥∥∥∥∥∥∥∥∥∥∥∥∥
.

4.1.10 Consider a Markov chain with transition probability matrix

P=

p0 p1 p2 · · · pN

pN p0 p1 · · · pN−1
pN−1 pN p0 · · · pN−2
...

...
...

...

p1 p2 p3 · · · p0

,

where 0<p0<1 and p0+p1+ ·· · +pN=1. Determine the limiting distribution.
4.1.11 Suppose that a production process changes state according to a Markov process

whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0.3 0.5 0 0.2

1 0.5 0.2 0.2 0.1

2 0.2 0.3 0.4 0.1

3 0.1 0.2 0.4 0.3

∥∥∥∥∥∥∥∥∥ .
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It is known that π1 =
119
379 = 0.3140 and π2 =

81
379 = 0.2137.

(a) Determine the limiting probabilities π0 and π3.
(b) Suppose that states 0 and 1 are “In-Control” while states 2 and 3 are

deemed “Out-of-Control.” In the long run, what fraction of time is the
process Out-of-Control?

(c) In the long run, what fraction of transitions are from an In-Control state to
an Out-of-Control state?

4.1.12 Let P be the transition probability matrix of a finite-state regular Markov chain,
and let 5 be the matrix whose rows are the stationary distribution π . Define
Q= P−5.
(a) Show that Pn

=5+Qn.
(b) When

P=

1

2

1

2
0

1

4

1

2

1

4

0
1

2

1

2

obtain an explicit expression for Qn and then for Pn.
4.1.13 A Markov chain has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.4 0.4 0.2

1 0.6 0.2 0.2

2 0.4 0.2 0.4

∥∥∥∥∥∥∥.
After a long period of time, you observe the chain and see that it is in state

1. What is the conditional probability that the previous state was state 2? That
is, find

lim
n→∞

Pr{Xn−1 = 2|Xn = 1}.

4.2 Examples

Markov chains arising in meteorology, reliability, statistical quality control, and man-
agement science are presented next, and the long run behavior of each Markov chain
is developed and interpreted in terms of the phenomenon under study.

4.2.1 Including History in the State Description

Often a phenomenon that is not naturally a Markov process can be modeled as a
Markov process by including part of the history in the state description. To illustrate
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this technique, we suppose that the weather on any day depends on the weather
conditions for the previous 2 days. To be exact, we suppose that if it was sunny today
and yesterday, then it will be sunny tomorrow with probability 0.8; if it was sunny
today but cloudy yesterday, then it will be sunny tomorrow with probability 0.6; if
it was cloudy today but sunny yesterday, then it will be sunny tomorrow with prob-
ability 0.4; if it was cloudy for the last 2 days, then it will be sunny tomorrow with
probability 0.1.

Such a model can be transformed into a Markov chain, provided we say that the
state at any time is determined by the weather conditions during both that day and the
previous day. We say the process is in

State (S,S) if it was sunny both today and yesterday,

State (S,C) if it was sunny yesterday but cloudy today,

State (C,S) if it was cloudy yesterday but sunny today,

State (C,C) if it was cloudy both today and yesterday.

Then, the transition probability matrix is

∥∥∥∥∥∥∥∥

Today’s state ∥∥∥∥∥∥∥∥
(S,S) (S,C) (C,S) (C,C)

(S,S) 0.8 0.2
Yesterday’s (S,C) 0.4 0.6
state (C,S) 0.6 0.4

(C,C) 0.1 0.9

.

The equations determining the limiting distribution are

0.8π0 + 0.6π2 = π0,

0.2π0 + 0.4π2 = π1,

0.4π1 + 0.1π3 = π2,

0.6π1 0.9π3 = π3,

π0 + π1 + π2 + π3 = 1.

Again, one of the top four equations is redundant. Striking out the first equation and
solving the remaining four equations gives π0 =

3
11 ,π1 =

1
11 ,π2 =

1
11 , and π3 =

6
11 .

We recover the fraction of days, in the long run, on which it is sunny by summing
the appropriate terms in the limiting distribution. It can be sunny today in conjunction
with either being sunny or cloudy tomorrow. Therefore, the long run fraction of days
in which it is sunny is π0+π1 = π(S,S)+π(S,C)=

4
11 . Formally, limn→∞Pr{Xn =

S} = limn→∞[Pr{Xn = S,Xn+1 = S}+Pr{Xn = S,Xn+1 = C}]= π0+π1.

4.2.2 Reliability and Redundancy

An airline reservation system has two computers, only one of which is in operation
at any given time. A computer may break down on any given day with probability p.
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There is a single repair facility that takes 2 days to restore a computer to normal.
The facilities are such that only one computer at a time can be dealt with. Form a
Markov chain by taking as states the pairs (x,y), where x is the number of machines
in operating condition at the end of a day and y is 1 if a day’s labor has been expended
on a machine not yet repaired and 0 otherwise. The transition matrix is

To state
→ (2,0) (1,0) (1,1) (0,1)

From state
↓

P=

∥∥∥∥∥∥∥∥∥∥
(2,0) q p 0 0

(1,0) 0 0 q p

(1,1) q p 0 0

(0,1) 0 1 0 0

∥∥∥∥∥∥∥∥∥∥
,

where p+ q= 1.
We are interested in the long run probability that both machines are inoperative. Let

(π0,π1,π2,π3) be the limiting distribution of the Markov chain. Then, the long run
probability that neither computer is operating is π3, and the availability, the probability
that at least one computer is operating, is 1−π3 = π0+π1+π2.

The equations for the limiting distributions are

qπ0 + qπ2 = π0,

pπ0 + pπ2 + π3 = π1,

qπ1 = π2,

pπ1 = π3

and

π0+π1+π2+π3 = 1.

The solution is

π0 =
q2

1+ p2
, π2 =

qp

1+ p2
,

π1 =
p

1+ p2
, π3 =

p2

1+ p2
.

The availability is R1 = 1−π3 = 1/
(
1+ p2

)
.

In order to increase the system availability, it is proposed to add a duplicate repair
facility so that both computers can be repaired simultaneously. The corresponding
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transition matrix is now

To state
→ (2,0) (1,0) (1,1) (0,1)

From state
↓

P=

∥∥∥∥∥∥∥∥∥
(2,0) q p 0 0

(1,0) 0 0 q p

(1,1) q p 0 0

(0,1) 0 0 1 0

∥∥∥∥∥∥∥∥∥,
and the limiting distribution is

π0 =
q

1+ p+ p2
, π2 =

p

1+ p+ p2
,

π1 =
p

1+ p+ p2
, π3 =

p2

1+ p+ p2
.

Thus, availability has increased to R2 = 1−π3 = (1+ p)/
(
1+ p+ p2

)
.

4.2.3 A Continuous Sampling Plan

Consider a production line where each item has probability p of being defective.
Assume that the condition of a particular item (defective or nondefective) does not
depend on the conditions of other items. The following sampling plan is used.

Initially every item is sampled as it is produced; this procedure continues until i
consecutive nondefective items are found. Then, the sampling plan calls for sampling
only one out of every r items at random until a defective one is found. When this
happens the plan calls for reverting to 100% sampling until i consecutive nondefective
items are found. The process continues in the same way.

State Ek(k = 0,1, . . . , i− 1) denotes that k consecutive nondefective items have
been found in the 100% sampling portion of the plan, while state Ei denotes that
the plan is in the second stage (sampling one out of r). Time m is considered to fol-
low the mth item, whether sampled or not. Then, the sequence of states is a Markov
chain with

Pjk = Pr{in state Ek after m+ 1 items|in state Ej after m items}

=



p for k = 0,0≤ j< i,

1− p for k = j+ 1≤ i,
p

r
for k = 0, j= i,

1−
p

r
for k = j= i,

0 otherwise.
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Let πk be the limiting probability that the system is in state Ek for k = 0,1, . . . , i. The
equations determining these limiting probabilities are

(0) pπ0 + pπ1 +·· ·+ pπi−1 + (p/r)πi = π0,

(1) (1− p)π0 = π1,

(2) (1− p)π1 = π2,

...

(i) (1− p)πi−1 + (1− p/r)πi = πi

together with

(∗) π0+π1+ ·· ·+πi = 1.

From equations (1) through (i), we deduce that πk = (1− p)πk−1 so that πk =

(1− p)kπ0 for k = 0, . . . , i− 1, while equation (i) yields πi = (r/p)(1− p)πi−1 or
πi = (r/p)(1− p)iπ0. Having determined πk in terms of π0 for k = 0, . . . , i, we place
these values in (*) to obtain{

[1+ ·· ·+ (1− p)i−1]+
r

p
(1− p)i

}
π0 = 1.

The geometric series simplifies, and after elementary algebra, the solution is

π0 =
p

1+ (r− 1)(1− p)i
,

whence

πk =
p(1− p)k

1+ (r− 1)(1− p)i
for k = 0, . . . , i− 1,

while

πi =
r(1− p)i

1+ (r− 1)(1− p)i
.

Let AFI (Average Fraction Inspected) denote the long run fraction of items that are
inspected. Since each item is inspected while in states E0, . . . ,Ei−1 but only one out of
r is inspected in state Ei, we have

AFI= (π0+ ·· ·+πi−1)+ (1/r)πi

= (1−πi)+ (1/r)πi

=
1

1+ (r− 1)(1− p)i
.
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A
O

Q

AOQL

0 1p

Figure 4.2 The average outgoing quality (AOQ) as a function of the input quality level p.

CONTINUOUS
SAMPLING

INSPECTION

OUTPUT

Guaranteed quality
AOQL

INPUT

Arbitrary quality
p

Figure 4.3 Black-box picture of a continuous inspection scheme as a method of guaranteeing
outgoing quality.

Let us assume that each item found to be defective is replaced by an item known to
be good. The average outgoing quality (AOQ) is defined to be the fraction of defectives
in the output of such an inspection scheme. The average fraction not inspected is

1−AFI=
(r− 1)(1− p)i

1+ (r− 1)(1− p)i
,

and of these on the average p are defective. Hence

AOQ=
(r− 1)(1− p)ip

1+ (r− 1)(1− p)i
.

This average outgoing quality is zero if p= 0 or p= 1, and rises to a maximum at
some intermediate value, as shown in Figure 4.2. The maximum AOQ is called the
average outgoing quality limit (AOQL), and it has been determined numerically and
tabulated as a function of i and r.

This quality control scheme guarantees an output quality better than the AOQL
regardless of the input fraction defective, as shown in Figure 4.3.

4.2.4 Age Replacement Policies

A component of a computer has an active life, measured in discrete units, that is a
random variable T , where Pr[T = k]= ak for k = 1,2, . . . . Suppose one starts with a
fresh component, and each component is replaced by a new component upon failure.
Let Xn be the age of the component in service at time n. Then, (Xn) is a success runs
Markov chain. (See Chapter 3, Section 3.5.4.)
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In an attempt to replace components before they fail in service, an age replacement
policy is instituted. This policy calls for replacing the component upon its failure or
upon its reaching age N, whichever occurs first. Under this age replacement policy,
the Markov chain {Xn} has the transition probability matrix

P=

∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 N− 1

0 p0 1− p0 0 0 . . . 0

1 p1 0 1− p1 0 0

2 p2 0 0 1− p2 . . . 0
...

...
...

...
...

...

N− 1 1 0 0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥
,

where

pk =
ak+1

ak+1+ ak+2+ ·· ·
for k = 0,1, . . . ,N− 2.

State 0 corresponds to a new component, and therefore, the limiting probability π0
corresponds to the long run probability of replacement during any single time unit,
or the long run replacement per unit time. Some of these replacements are planned
or age replacements, and some correspond to failures in service. A planned replace-
ment occurs in each period for which Xn = N− 1, and therefore, the long run planned
replacements per unit time is the limiting probability πN−1. The difference π0−πN−1
is the long run rate of failures in service. The equations for the limiting distribution
π = (π0,π1, . . . ,πN−1) are

p0π0 + p1π1 +·· ·+ pN−2πN−2 + πN−1 = π0,

(1− p0)π0 = π1,

(1− p1)π1 = π2,
...

(1− pN−2)πN−2 = πN−1,

π0 + π1 +·· · +πN−1 = 1.

Solving in terms of π0, we obtain

π0 = π0,

π1 = (1− p0)π0,

π2 = (1− p1)π1 = (1− p1)(1− p0)π0,

...

πk = (1− pk−1)πk−1 = (1− pk−1)(1− pk−2) · · ·(1− p0)π0,

...

πN−1 = (1− pN−2)πN−2 = (1− pN−2)(1− pN−3) · · ·(1− p0)π0,
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and since π0+π1+ ·· ·+πN−1 = 1, we have

1= [1+ (1− p0)+ (1− p0)(1− p1)+ ·· ·

+ (1− p0)(1− p1) · · ·(1− pN−2)]π0,

or

π0 =
1

1+ (1− p0)+ (1− p0)(1− p1)+ ·· ·+ (1− p0)(1− p1) · · ·(1− pN−2)
.

If Aj = aj+ aj+1+ ·· · for j= 1,2, . . . , where A1 = 1, then pk = ak+1/Ak+1 and
1− pk = Ak+2/Ak+1, which simplifies the expression for π0 to

π0 =
1

A1+A2+ ·· ·+AN
,

and then

πN−1 = ANπ0 =
AN

A1+A2+ ·· ·+AN
.

In practice, one determines the cost C of a replacement and the additional cost K
that is incurred when a failure in service occurs. Then, the long run total cost per unit
time is Cπ0+K(π0−πN−1), and the replacement age N is chosen so as to minimize
this total cost per unit time.

Observe that

1

π0
= A1+A2+ ·· ·+AN =

N∑
j=1

Pr{T ≥ j} =
N−1∑
k=0

Pr{T > k}

=

∞∑
k=0

Pr{min{T,N}> k} = E[min{T,N}].

In words, the reciprocal of the mean time between replacements E[min{T,N}] yields
the long run replacements per unit time π0. This relation will be further explored in
the chapter on renewal processes.

4.2.5 Optimal Replacement Rules

A common industrial activity is the periodic inspection of some system as part of a
procedure for keeping it operative. After each inspection, a decision must be made
whether or not to alter the system at that time. If the inspection procedure and the
ways of modifying the system are fixed, an important problem is that of determining,
according to some cost criterion, the optimal rule for making the appropriate decision.
Here, we consider the case in which the only possible act is to replace the system with
a new one.
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Suppose that the system is inspected at equally spaced points in time and that after
each inspection it is classified into one of the L+ 1 possible states 0,1, . . . ,L. A system
is in state 0 if and only if it is new and is in state L if and only if it is inoperative. Let
the inspection times be n= 0,1, . . . , and let Xn denote the observed state of the system
at time n. In the absence of replacement, we assume that {Xn} is a Markov chain with
transition probabilities pij = Pr{Xn+1 = j|Xn = i} for all i, j, and n.

It is possible to replace the system at any time before failure. The motivation for
doing so may be to avoid the possible consequences of further deterioration or of fail-
ure of the system. A replacement rule, denoted by R, is a specification of those states
at which the system will be replaced. Replacement takes place at the next inspec-
tion time. A replacement rule R modifies the behavior of the system and results in a
modified Markov chain {Xn(R);n= 0,1, . . .}. The corresponding modified transition
probabilities pij(R) are given by

pij(R)= pij if the system is not replaced at state i,

pi0(R)= 1,

and

pij(R)= 0, j 6= 0 if the system is replaced at state i.

It is assumed that each time the equipment is replaced, a replacement cost of K units
is incurred. Further it is assumed that each unit of time the system is in state j incurs
an operating cost of aj. Note that aL may be interpreted as failure (inoperative) cost.
This interpretation leads to the one period cost function ci(R) given for i= 0, . . . ,L by

ci(R)=

{
ai if pi0(R)= 0,

K+ ai if pi0(R)= 1.

We are interested in replacement rules that minimize the expected long run time
average cost. This cost is given by the expected cost under the limiting distribution for
the Markov chain {Xn(R)}. Denoting this average cost by φ(R), we have

φ(R)=
L∑

i=0

πi(R)ci(R),

where πi(R)= limn→∞Pr{Xn(R)= i}. The limiting distribution πi(R) is determined
by the equations

πi(R)=
L∑

k=0

πk(R)pki(R), i= 0, . . . ,L,

and

π0(R)+π1(R)+ ·· ·+πL(R)= 1.
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We define a control limit rule to be a replacement rule of the form

“Replace the system if and only if Xn ≥ k,”

where k, called the control limit, is some fixed state between 0 and L. We let Rk denote
the control limit rule with control limit equal to k. Then, R0 is the rule “Replace the
system at every step,” and RL is the rule “Replace only upon failure (State L).”

Control limit rules seem reasonable provided that the states are labeled monotoni-
cally from best (0) to worst (L) in some sense. Indeed, it can be shown that a control
limit rule is optimal whenever the following two conditions hold:

1. a0 ≤ a1 ≤ ·· · ≤ aL.

2. If i≤ j, then
L∑

m=k
pim ≤

L∑
m=k

pjm for every k = 0, . . . ,L.

Condition (1) asserts that the one-stage costs are higher in the “worse” states. Con-
dition (2) asserts that further deterioration is more likely in the “worse” states.

Let us suppose that conditions (1) and (2) prevail. Then, we need only check the
L+ 1 control limit rules R0, . . . ,RL in order to find an optimal rule. Furthermore, it can
be shown that a control limit k∗ satisfying φ(Rk∗−1)≥ φ(Rk∗)≤ φ(Rk∗+1) is optimal
so that not always do all L+ 1 control limit rules need to be checked.

Under control limit k, we have the cost vector

c(Rk)= (a0, . . . ,ak−1,K+ ak, . . . ,K+ aL)

and the transition probabilities

P(Rk)=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 k− 1 k L

0 0 p01 . . . p0,k−1 p0k . . . p0L

1 0 p11 . . . p1,k−1 p1k . . . p1L

k− 1 0 pk−1,1 . . . pk−1,k−1 pk−1,k . . . pk−1,L

k 1 0 . . . 0 0 . . . 0
...

L 1 0 . . . 0 0 . . . 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

To look at a numerical example, we will find the optimal control limit k∗ for the
following data: L= 5 and

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4 5

0 0 0.2 0.2 0.2 0.2 0.2

1 0 0.1 0.2 0.2 0.2 0.3

2 0 0 0.1 0.2 0.3 0.4

3 0 0 0 0.1 0.4 0.5

4 0 0 0 0 0.4 0.6

5 0 0 0 0 0 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
,
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a0 = ·· · = aL−1 = 0,aL = 5, and K = 3. When k = 1, the transition matrix is

P(R1)=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4 5

0 0 0.2 0.2 0.2 0.2 0.2

1 1 0 0 0 0 0

2 1 0 0 0 0 0

3 1 0 0 0 0 0

4 1 0 0 0 0 0

5 1 0 0 0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
,

which implies the following equations for the stationary distribution:

π1 + π2 + π3 + π4 + π5 = π0,

0.2π0 = π1,

0.2π0 = π2,

0.2π0 = π3,

0.2π0 = π4,

0.2π0 = π5,

π0 + π1 + π2 + π3 + π4 + π5 = 1.

The solution is π0 = 0.5 and π1 = π2 = π3 = π4 = π5 = 0.1. The average cost asso-
ciated with k = 1 is

φ1 = 0.5(0)+ 0.1(3)+ 0.1(3)+ 0.1(3)+ 0.1(3)+ 0.1(3+ 5)

= 2.0.

When k = 2, the transition matrix is

P(R2)=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4 5

0 0 0.2 0.2 0.2 0.2 0.2

1 0 0.1 0.2 0.2 0.2 0.3

2 1 0 0 0 0 0

3 1 0 0 0 0 0

4 1 0 0 0 0 0

5 1 0 0 0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
,

and the associated stationary distribution is π0 = 0.450,π1 = 0.100,π2 = π3 = π4 =

0.110,π5 = 0.120. We evaluate the average cost to be

φ2 = 0.45(0)+ 0.10(0)+ 0.11(3)+ 0.11(3)+ 0.11(3)+ 0.12(8)

= 1.95.
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Continuing in this manner, we obtain the following table:

Control Average
Limit Stationary Distribution Cost

k π0 π1 π2 π3 π4 π5 φk

1 0.5000 0.1000 0.1000 0.1000 0.1000 0.1000 2.0000
2 0.4500 0.1000 0.1100 0.1100 0.1100 0.1200 1.9500
3 0.4010 0.0891 0.1089 0.1198 0.1307 0.1505 1.9555
4 0.3539 0.9786 0.0961 0.1175 0.1623 0.1916 2.0197
5 0.2785 0.06189 0.0756 0.0925 0.2139 0.2785 2.2280

The optimal control limit is k∗ = 2, and the corresponding minimum average cost
per unit time is φ2 = 1.95.

Exercises

4.2.1 On a southern Pacific island, a sunny day is followed by another sunny day
with probability 0.9, whereas a rainy day is followed by another rainy day with
probability 0.2. Supposing that there are only sunny or rainy days, in the long
run on what fraction of days is it sunny?

4.2.2 In the reliability example of Section 4.2.2, what fraction of time is the repair
facility idle? When a second repair facility is added, what fraction of time is
each facility idle?

4.2.3 Determine the average fraction inspected, AFI, and the average outgoing qual-
ity, AOQ, of Section 4.2.3 for p= 0,0.05,0.10,0.15, . . . ,0.50 when
(a) r = 10 and i= 5.
(b) r = 5 and i= 10.

4.2.4 Section 4.2.2 determined the availability R of a certain computer system to be

R1 =
1

1+ p2
for one repair facility,

R2 =
1+ p

1+ p+ p2
for two repair facilities,

where p is the computer failure probability on a single day. Compute and com-
pare R1 and R2 for p= 0.01,0.02,0.05, and 0.10.

4.2.5 From purchase to purchase, a particular customer switches brands among prod-
ucts A,B, and C according to a Markov chain whose transition probability
matrix is

P=

∥∥∥∥∥∥∥
A B C

A 0.6 0.2 0.2

B 0.1 0.7 0.2

C 0.1 0.1 0.8

∥∥∥∥∥∥∥.
In the long run, what fraction of time does this customer purchase brand A?
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4.2.6 A component of a computer has an active life, measured in discrete units, that
is a random variable T where

Pr{T = 1} = 0.1, Pr{T = 3} = 0.3,

Pr{T = 2} = 0.2, Pr{T = 4} = 0.4.

Suppose one starts with a fresh component, and each component is replaced by
a new component upon failure. Determine the long run probability that a failure
occurs in a given period.

4.2.7 Consider a machine whose condition at any time can be observed and classified
as being in one of the following three states:

State 1: Good operating order
State 2: Deteriorated operating order
State 3: In repair

We observe the condition of the machine at the end of each period in a sequence
of periods. Let Xn denote the condition of the machine at the end of period
n for n= 1,2, . . . . Let X0 be the condition of the machine at the start. We
assume that the sequence of machine conditions is a Markov chain with transi-
tion probabilities

P11 = 0.9, P12 = 0.1, P13 = 0,

P21 = 0, P22 = 0.9, P23 = 0.1,

P31 = 1, P32 = 0, P33 = 0,

and that the process starts in state X0 = 1.
(a) Find Pr{X4 = 1}.
(b) Calculate the limiting distribution.
(c) What is the long run rate of repairs per unit time?

4.2.8 At the end of a month, a large retail store classifies each receivable account
according to
0: Current
1: 30–60 days overdue
2: 60–90 days overdue
3: Over 90 days
Each such account moves from state to state according to a Markov chain with
transition probability matrix

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0.95 0.05 0 0

1 0.50 0 0.50 0

2 0.20 0 0 0.80

3 0.10 0 0 0.90

∥∥∥∥∥∥∥∥∥.
In the long run, what fraction of accounts are over 90 days overdue?
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Problems

4.2.1 Consider a discrete-time periodic review inventory model (see Chapter 3,
Section 3.3.1), and let ξn be the total demand in period n. Let Xn be the inventory
quantity on hand at the end of period n. Instead of following an (s,S) policy, a
(q,Q) policy will be used: If the stock level at the end of a period is less than
or equal to q= 2 units, then Q= 2 additional units will be ordered and will be
available at the beginning of the next period. Otherwise, no ordering will take
place. This is a (q,Q) policy with q= 2 and Q= 2. Assume that demand that is
not filled in a period is lost (no back ordering).
(a) Suppose that X0 = 4 and that the period demands turn out to be ξ1 = 3,

ξ2 = 4,ξ3 = 0,ξ4 = 2. What are the end-of-period stock levels for periods
n= 1,2,3,4?

(b) Suppose that ξ1,ξ2, . . . are independent random variables, each having the
probability distribution where

k = 0 1 2 3 4

Pr{ξ = k} = 0.1 0.3 0.3 0.2 0.1

Then, X0,X1, . . . is a Markov chain. Determine the transition probability
distribution and the limiting distribution.

(c) In the long run, during what fraction of periods are orders placed?
4.2.2 A system consists of two components operating in parallel: The system func-

tions if at least one of the components is operating. In any single period, if
both components are operating at the beginning of the period, then each will
fail, independently, during the period with probability α. When one component
has failed, the remaining component fails during a period with a higher prob-
ability β. There is a single repair facility, and it takes two periods to repair a
component.
(a) Define an appropriate set of states for the system in the manner of the Reli-

ability and Redundancy example and specify the transition probabilities in
terms of α and β.

(b) When α = 0.1 and β = 0.2, in the long run what fraction of time is the
system operating?

4.2.3 Suppose that a production process changes state according to a Markov process
whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0.2 0.2 0.4 0.2

1 0.5 0.2 0.2 0.1

2 0.2 0.3 0.4 0.1

3 0.1 0.2 0.4 0.3

∥∥∥∥∥∥∥∥∥∥
.
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(a) Determine the limiting distribution for the process.
(b) Suppose that states 0 and 1 are “In-Control,” while states 2 and 3 are deemed

“Out-of-Control.” In the long run, what fraction of time is the process Out-
of-Control?

(c) In the long run, what fraction of transitions are from an In-Control state to
an Out-of-Control state?

4.2.4 A component of a computer has an active life, measured in discrete units, that
is a random variable ξ , where

k = 1 2 3 4
Pr{ξ = k} = 0.1 0.3 0.2 0.4

Suppose that one starts with a fresh component, and each component is replaced
by a new component upon failure. Let Xn be the remaining life of the component
in service at the end of period n. When Xn = 0, a new item is placed into service
at the start of the next period.
(a) Set up the transition probability matrix for {Xn}.
(b) By showing that the chain is regular and solving for the limiting distribution,

determine the long run probability that the item in service at the end of a
period has no remaining life and therefore will be replaced.

(c) Relate this to the mean life of a component.
4.2.5 Suppose that the weather on any day depends on the weather conditions during

the previous 2 days. We form a Markov chain with the following states:

State (S,S) if it was sunny both today and yesterday,

State (S,C) if it was sunny yesterday but cloudy today,

State (C,S) if it was cloudy yesterday but sunny today,

State (C,C) if it was cloudy both today and yesterday,

and transition probability matrix

Today’s state

P=

∥∥∥∥∥∥∥∥∥

(S,S) (S,C) (C,S) (C,C)

(S,S) 0.7 0.3 0 0

(S,C) 0 0 0.4 0.6

(C,S) 0.5 0.5 0 0

(C,C) 0 0 0.2 0.8

∥∥∥∥∥∥∥∥∥.
(a) Given that it is sunny on days 0 and 1, what is the probability it is sunny on

day 5?
(b) In the long run, what fraction of days are sunny?

4.2.6 Consider a computer system that fails on a given day with probability p and
remains “up” with probability q= 1− p. Suppose the repair time is a random
variable N having the probability mass function p(k)= β(1−β)k−1 for k =
1,2, . . . , where 0< β < 1. Let Xn = 1 if the computer is operating on day n and
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X1 = 0 if not. Show that {Xn} is a Markov chain with transition matrix

∥∥∥∥∥
0 1

0 α β

1 p q

∥∥∥∥∥
and α = 1−β. Determine the long run probability that the computer is operat-
ing in terms of α,β,p, and q.

4.2.7 Customers arrive for service and take their place in a waiting line. There is a
single service facility, and a customer undergoing service at the beginning of a
period will complete service and depart at the end of the period with probability
β and will continue service into the next period with probability α = 1−β, and
then the process repeats. This description implies that the service time η of an
individual is a random variable with the geometric distribution,

Pr{η = k} = βαk−1 for k = 1,2, . . . ,

and the service times of distinct customers are independent random variables.
At most a single customer can arrive during a period. We suppose that the

actual number of arrivals during the nth period is a random variable ξn taking
on the values 0 or 1 according to

Pr{ξn = 0} = p

and

Pr{ξn = 1} = q= 1− p for n= 0,1, . . . .

The state Xn of the system at the start of period n is defined to be the num-
ber of customers in the system, either waiting or being served. Then, {Xn} is a
Markov chain. Specify the following transition probabilities in terms of α,β,p,
and q : P00,P01,P02,P10,P11, and P12. State any additional assumptions that
you make.

4.2.8 An airline reservation system has a single computer, which breaks down on any
given day with probability p. It takes 2 days to restore a failed computer to
normal service. Form a Markov chain by taking as states the pairs (x,y), where
x is the number of machines in operating condition at the end of a day and y is 1
if a day’s labor has been expended on a machine, and 0 otherwise. The transition
probability matrix is

To state
→ (1,0) (0,0) (0,1)

From state
↓

P=

∥∥∥∥∥∥∥
(1,0) q p 0

(0,0) 0 0 1

(0,1) 1 0 0

∥∥∥∥∥∥∥.
Compute the system availability π(1,0) for p= 0.01,0.02,0.05, and 0.10.
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4.3 The Classification of States

Not all Markov chains are regular. We consider some examples.
The Markov chain whose transition probability matrix is the identity matrix

P=

∥∥∥∥∥
0 1

0 1 0

1 0 1

∥∥∥∥∥
remains always in the state in which it starts. State trivially Pn

= P for all n, the
Markov chain Xn has a limiting distribution, but it obviously depends on the initial
state.

The Markov chain whose transition probability matrix is

P=

∥∥∥∥∥
0 1

0 1 0

1 0 1

∥∥∥∥∥
oscillates deterministically between the two states. The Markov chain is periodic, and
no limiting distribution exists. When n is an odd number, then Pn

=P, but when n is
even, then Pn is the 2× 2 identity matrix.

When P is the matrix

P=

∥∥∥∥∥∥
0 1

0
1

2

1

2
1 0 1

∥∥∥∥∥∥,
Pn is given by

Pn
=

∥∥∥∥∥∥∥
0 1

0

(
1

2

)n

1−

(
1

2

)n

1 0 1

∥∥∥∥∥∥∥,
and the limit is

lim
n→∞

Pn
=

∥∥∥∥∥
0 1

0 0 1

1 0 1

∥∥∥∥∥.
Here, state 0 is transient; after the process starts from state 0, there is a positive prob-
ability that it will never return to that state.
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The three matrices just presented illustrated three distinct types of behavior in
addition to the convergence exemplified by a regular Markov chain. Various and more
elaborate combinations of these behaviors are also possible. Some definitions and
classifications of states and matrices are needed in order to sort out the variety of
possibilities.

4.3.1 Irreducible Markov Chains

j is said to be accessible from state i if P(n)ij > 0 for some integer n≥ 0; i.e., state j is
accessible from state i if there is positive probability that state j can be reached starting
from state i in some finite number of transitions. Two states i and j, each accessible
to the other, are said to communicate, and we write i↔ j. If two states i and j do not
communicate, then either

P(n)ij = 0 for all n≥ 0

or

P(n)ji = 0 for all n≥ 0

or both relations are true. The concept of communication is an equivalence relation:

1. i↔ i (reflexivity), a consequence of the definition of

P(0)ij = δij =

{
1 i= j,

0 i 6= j.

2. If i↔ j, then j↔ i (symmetry), from the definition of communication.
3. If i↔ j and j↔ k, then i↔ k (transitivity).

The proof of transitivity proceeds as follows: i↔ j and j↔ k imply that there exist
integers n and m such that P(n)ij > 0 and P(m)jk > 0. Consequently, by the nonnegativity

of each P(t)rs , we conclude that

P(n+m)
ik =

∞∑
r=0

P(n)ir P(m)rk ≥ P(n)ij P(m)jk > 0.

A similar argument shows the existence of an integer ν such that P(ν)ki > 0, as desired.
We can now partition the totality of states into equivalence classes. The states in

an equivalence class are those that communicate with each other. It may be possible
starting in one class to enter some other class with positive probability; if so, however,
it is clearly not possible to return to the initial class, or else the two classes would
together form a single class. We say that the Markov chain is irreducible if the equiv-
alence relation induces only one class. In other words, a process is irreducible if all
states communicate with each other.
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To illustrate this concept, we consider the transition probability matrix

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1

2

1

2

...........................

0 0 0

1

4

3

4
0 0 0

· · · · · · · · · · · · · · · · · ·· · · · · ·

0 0 0 1 0

0 0
1

2
0

1

2
0 0 0 1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥P1 0

0 P2

∥∥∥∥,

where P1 is an abbreviation for the matrix formed from the initial two rows and
columns of P, and similarly for P2. This Markov chain clearly divides into the two
classes composed of states {1, 2} and states {3, 4, 5}.

If the state of X0 lies in the first class, then the state of the system thereafter remains
in this class, and for all purposes the relevant transition matrix is P1. Similarly, if the
initial state belongs to the second class, then the relevant transition matrix is P2. This
is a situation where we have two completely unrelated processes labeled together.

In the random walk model with transition matrix

P=

∥∥∥∥∥∥∥∥∥∥∥∥

1 0 0 0 · · · 0 0 0
q 0 p 0 · · · 0 0 0
0 q 0 p · · · 0 0 0
...

...
...

...
0 · · · q 0 p
0 · · · 0 0 1

∥∥∥∥∥∥∥∥∥∥∥∥

states
0
1
2
...

a− 1
a

, (4.15)

we have the three classes {0}, {1,2, . . . ,a− 1}, and {a}. In this example, it is possible
to reach the first class or third class from the second class, but it is not possible to
return to the second class from either the first or the third class.

4.3.2 Periodicity of a Markov Chain

We define the period of state i, written d(i), to be the greatest common divisor (g.c.d.)
of all integers n≥ 1 for which P(n)ii > 0. (If P(n)ii = 0 for all n≥ 1, define d(i)= 0.) In
a random walk (4.15), every transient state 1,2, . . . ,α− 1 has period 2. If Pii > 0 for
some single state i, then that state now has period 1, since the system can remain in
this state any length of time.

In a finite Markov chain of n states with transition matrix
n︷ ︸︸ ︷

P=

∥∥∥∥∥∥∥∥∥
0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
0 0 · · · 1
1 0 0 · · · 0

∥∥∥∥∥∥∥∥∥,
each state has period n.
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Consider the Markov chain whose transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0 1 0 0

1 0 0 1 0

2 0 0 0 1

3
1

2
0

1

2
0

∥∥∥∥∥∥∥∥∥∥∥∥
.

We evaluate P00 = 0,P(2)00 = 0,P(3)00 = 0,P(4)00 =
1
2 ,P

(5)
00 = 0,P(6)00 =

1
4 . The set of inte-

gers n≥ 1 for which P(n)00 > 0 is {4,6,8, . . .}. The period of state 0 is d(0)= 2, the
greatest common divisor of this set.

Example Suppose that the precipitation in a certain locale depends on the season
(Wet or Dry) as well as on the precipitation level (High or Low) during the preceding
season. We model the process as a Markov chain whose states are of the form (x,y),
where x denotes the season (W =Wet, D= Dry) and y denotes the precipitation level
(H = High, L= Low). Suppose the transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥

(W,H) (W,L) (D,H) (D,L)

(W,H) 0 0 0.8 0.2

(W,L) 0 0 0.4 0.6

(D,H) 0.7 0.3 0 0

(D,L) 0.2 0.8 0 0

∥∥∥∥∥∥∥∥∥.

All states are periodic with period d = 2.
A situation in which the demand for an inventory item depends on the month of

the year as well as on the demand during the previous month would lead to a Markov
chain whose states had period d = 12.

The random walk on the states 0,±1,±2, . . . with probabilities Pi,i+1=p, Pi,i−1 =

q= 1− p is periodic with period d = 2.
We state, without proof, three basic properties of the period of a state:

1. If i↔ j, then d(i)= d( j).
This assertion shows that the period is a constant in each class of communicating states.

2. If state i has period d(i), then there exists an integer N depending on i such that for all
integers n≥ N,

P(nd(i))
ii > 0.

This asserts that a return to state i can occur at all sufficiently large multiples of the period
d(i).

3. If P(m)ji > 0, then P(m+nd(i))
ji > 0 for all n (a positive integer) sufficiently large.
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A Markov chain in which each state has period 1 is called aperiodic. The vast
majority of Markov chain processes we deal with are aperiodic. Results will be devel-
oped for the aperiodic case, and the modified conclusions for the general case will be
stated, usually without proof.

4.3.3 Recurrent and Transient States

Consider an arbitrary, but fixed, state i. We define, for each integer n≥ 1,

f (n)ii = Pr{Xn = i,Xν 6= i,ν = 1,2, . . . ,n− 1|X0 = i}.

In other words, P(n)ii is the probability that starting from state i, the first return to state i

occurs at the nth transition. Clearly, f (1)ii = Pii, and f (n)ii may be calculated recursively
according to

P(n)ii =

n∑
k=0

f (k)ii P(n−k)
ii , n≥ 1, (4.16)

where we define f (0)ii = 0 for all i. Equation (4.16) is derived by decomposing the event

from which P(n)ii is computed according to the time of the first return to state i. Indeed,
consider all the possible realizations of the process for which X0 = i,Xn = i, and the
first return to state i occurs at the kth transition. Call this event Ek. The events Ek(k =
1,2, . . . ,n) are clearly mutually exclusive. The probability of the event that the first
return is at the kth transition is by definition f (k)ii . In the remaining n− k transitions, we
are dealing only with those realizations for which Xn = i. Using the Markov property,
we have

Pr{Ek} = Pr{first return is at kth transition|X0 = i}Pr{Xn = i|Xk = i}

= f (k)ii P(n−k)
ii , 1≤ k ≤ n

(recall that P0
ii = 1). Hence,

Pr{Xn = i|X0 = i} =
n∑

k=1

Pr{Ek} =

n∑
k=1

f (k)ii P(n−k)
ii =

n∑
k=0

f (k)ii P(n−k)
ii ,

since by definition f (0)ii = 0. The verification of (4.16) is now complete.
When the process starts from state i, the probability that it returns to state i at some

time is

fii =
∞∑

n=0

f (n)ii = lim
N→∞

N∑
n=0

f (n)ii . (4.17)
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We say that a state i is recurrent if fii = 1. This definition says that a state i is recurrent
if and only if, after the process starts from state i, the probability of its returning to state
i after some finite length of time is one. A nonrecurrent state is said to be transient.

Consider a transient state i. Then, the probability that a process starting from state i
returns to state i at least once is fii < 1. Because of the Markov property, the probability
that the process returns to state i at least twice is ( fii)2, and repeating the argument,
we see that the probability that the process returns to i at least k times is ( fii)k for
k = 1,2, . . . . Let M be the random variable that counts the number of times that the
process returns to i. Then, we have shown that M has the geometric distribution in
which

Pr{M ≥ k|X0 = i} = ( fii)
k for k = 1,2, . . . (4.18)

and

E[M|X0 = i]=
fii

1− fii
. (4.19)

Theorem 4.2 establishes a criterion for the recurrence of a state i in terms of the
transition probabilities P(n)ii .

Theorem 4.2. A state i is recurrent if and only if
∞∑

n=1

P(n)ii =∞.

Equivalently, state i is transient if and only if
∑
∞

n=1 P(n)ii <∞.

Proof. Suppose first that state i is transient so that, by definition, fii < 1, and let M
count the total number of returns to state i. We write M in terms of indicator random
variables as

M =
∞∑

n=1

1{Xn = i},

where

1{Xn = i} =

{
1 if Xn = i,
0 if Xn 6= i.

Now, equation (3.5) shows that E[M|X0 = i]<∞ when i is transient. But then

∞> E[M|X0 = i]=
∞∑

n=1

E[1{Xn = i}|X0 = i]

=

∞∑
n=1

P(n)ii ,

as claimed. �
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Conversely, suppose
∑
∞

n=1 P(n)ii <∞. Then, M is a random variable whose mean
is finite, and thus, M must be finite. That is, starting from state i, the process returns
to state i only a finite number of times. Then, there must be a positive probability that,
starting from state i, the process never returns to that state. In other words, 1− fii > 0
or fii < 1, as claimed.

Corollary 4.1. If i↔ j and if i is recurrent, then j is recurrent.

Proof. Since i↔ j, there exists m,n≥ 1 such that

P(n)ij > 0 and P(m)ji > 0.

Let ν > 0. We obtain, by the usual argument (see Section 4.3.1), P(m+n+ν)
jj ≥

P(m)ji P(ν)ii P(n)ij and, on summing,

∞∑
ν=0

P(m+n+ν)
jj ≥

∞∑
ν=0

P(m)ji P(ν)ii P(n)ij = P(m)ji P(n)ij

∞∑
ν=0

P(ν)ii .

Hence, if
∑
∞

ν=0 P(ν)ii diverges, then
∑
∞

ν=0 P(ν)jj also diverges. �

This corollary proves that recurrence, like periodicity, is a class property; that is, all
states in an equivalence class are either recurrent or nonrecurrent.

Example Consider the one-dimensional random walk on the positive and negative
integers, where at each transition the particle moves with probability p one unit to the
right and with probability q one unit to the left (p+ q= 1). Hence,

P(2n+1)
00 = 0, n= 0,1,2, . . . ,

and

P(2n)
00 =

(
2n
n

)
pnqn
=
(2n)!

n!n!
pnqn. (4.20)

We appeal now to Stirling’s formula (see Chapter 1, (1.60)),

n!∼ nn+1/2e−n
√

2π . (4.21)

Applying (4.21) to (4.20), we obtain

P(2n)
00 ∼

(pq)n22n

√
πn

=
(4pq)n
√
πn

.
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It is readily verified that p(1− p)= pq≤ 1
4 , with equality holding if and only if p=

q= 1
2 . Hence,

∑
∞

n=0 P(n)00 =∞ if and only if p= 1
2 . Therefore, from Theorem 4.2, the

one-dimensional random walk is recurrent if and only if p= q= 1
2 . Remember that

recurrence is a class property. Intuitively, if p 6= q, there is positive probability that a
particle initially at the origin will drift to +∞ if p> q (to −∞ if p< q) without ever
returning to the origin.

Exercises

4.3.1 A Markov chain has a transition probability matrix

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4 5 6 7

0 0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0

2 0 0 0 1 0 0 0 0

3 0 0 0 0 1 0 0 0

4 0.5 0 0 0 0 0.5 0 0

5 0 0 0 0 0 0 1 0

6 0 0 0 0 0 0 0 1

7 1 0 0 0 0 0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

Find the equivalence classes. For which integers n= 1,2, . . . ,20, is it true that

P(n)00 > 0?

What is the period of the Markov chain?

Hint: One need not compute the actual probabilities. See Section 4.1.1.
4.3.2 Which states are transient and which are recurrent in the Markov chain whose

transition probability matrix is

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4 5

0
1

3
0

1

3
0 0

1

3

1
1

2

1

4

1

4
0 0 0

2 0 0 0 0 1 0

3
1

4

1

4

1

4
0 0

1

4
4 0 0 1 0 0 0

5 0 0 0 0 0 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

?
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4.3.3 A Markov chain on states {0,1,2,3,4,5} has transition probability matrix

(a)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1

3
0

2

3
0 0 0

0
1

4
0

3

4
0 0

2

3
0

1

3
0 0 0

0
1

5
0

4

5
0 0

1

4

1

4
0 0

1

4

1

4
1

6

1

6

1

6

1

6

1

6

1

6

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

(b)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 0 0 0 0 0

0
3

4

1

4
0 0 0

0
1

8

7

8
0 0 0

1

4

1

4
0

1

8

3

8
0

1

3
0

1

6

1

4

1

4
0

0 0 0 0 0 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

Find all communicating classes; which classes are transient and which are
recurrent?

4.3.4 Determine the communicating classes and period for each state of the Markov
chain whose transition probability matrix is

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4 5

0
1

2
0 0 0

1

2
0

1 0 0 1 0 0 0

2 0 0 0 1 0 0

3 0 0 0 0 1 0

4 0 0 0 0 0 1

5 0 0
1

3

1

3
0

1

3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.
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Problems

4.3.1 A two-state Markov chain has the transition probability matrix

P=

∥∥∥∥∥
0 1

0 1− a a

1 b 1− b

∥∥∥∥∥.
(a) Determine the first return distribution

f (n)00 = Pr{X1 6= 0, . . . ,Xn−1 6= 0,Xn = 0|X0 = 0}.

(b) Verify equation (4.16) when i= 0. (Refer to Chapter 3, (4.40).)
4.3.2 Show that a finite-state aperiodic irreducible Markov chain is regular and

recurrent.
4.3.3 Recall the first return distribution (Section 4.3.3),

f (n)ii = Pr{X1 6= i,X2 6= j . . . ,Xn−1 6= i,Xn = i|X0 = i} for n= 1,2, . . . ,

with f (0)ii = 0 by convention. Using equation (4.16), determine f (n)00 ,n=
1,2,3,4,5, for the Markov chain whose transition probability matrix is

∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0
1

2
0

1

2
1 0 0 1 0

2 0 0 0 1

3
1

2
0 0

1

2

∥∥∥∥∥∥∥∥∥∥∥∥∥
.

4.4 The Basic Limit Theorem of Markov Chains

Consider a recurrent state i. Then,

f (n)ii = Pr{Xn = i,Xν 6= i for ν = 1, . . . ,n− 1|X0 = i} (4.22)

is the probability distribution of the first return time

Ri =min{n≥ 1;Xn = i}. (4.23)

This is

f (n)ii = Pr{Ri = n|X0 = i} for n= 1,2, . . . . (4.24)



204 An Introduction to Stochastic Modeling

Since state i is recurrent by assumption, then fii =
∑
∞

n=1 = f (n)ii = 1, and Ri is a finite-
valued random variable. The mean duration between visits to state i is

mi = E[Ri|X0 = i]=
∞∑

n=1

nf (n)ii . (4.25)

After starting in i, then, on the average, the process is in state i once every mi =

E[Ri|X0 = i] units of time. The basic limit theorem of Markov chains states this result
in a sharpened form.

Theorem 4.3. The basic limit theorem of Markov chains
(a) Consider a recurrent irreducible aperiodic Markov chain. Let P(n)ii be the prob-

ability of entering state i at the nth transition, n= 0,1,2, . . . , given that X0 = i (the
initial state is i). By our earlier convention P(0)ii = 1. Let f (n)ii be the probability of first

returning to state i at the nth transition, n= 0,1,2, . . . , where f (0)ii = 0. Then,

lim
n→∞

P(n)ii =
1∑

∞

n=0 nf (n)ii

=
1

mi
. (4.26)

(b) under the same conditions as in (a), limn→∞P(n)ji = limn→∞P(n)ii for all states j.

Remark Let C be a recurrent class. Then, P(n)ij = 0 for i ∈ C, j 6∈ C, and every n.
Hence, once in C, it is not possible to leave C. It follows that the submatrix ‖Pij‖, i,
j ∈ C, is a transition probability matrix and the associated Markov chain is irreducible
and recurrent. The limit theorem, therefore, applies verbatim to any aperiodic recurrent
class.

If limn→∞P(n)ii > 0 for one i in an aperiodic recurrent class, then πj > 0 for all j
in the class of i. In this case, we call the class positive recurrent or strongly ergodic.
If each πi=0 and the class is recurrent, we speak of the class as null recurrent or
weakly ergodic. In terms of the first return time Ri =min{n≥ 1;Xn = i}, state i is pos-
itive recurrent if mi = E[Ri|X0 = i]<∞ and null recurrent if mi =∞. This statement
is immediate from the equality limn→∞P(n)ii = πi = 1/mi. An alternative method for
determining the limiting distribution πi for a positive recurrent aperiodic class is given
in Theorem 4.4.

Theorem 4.4. In a positive recurrent aperiodic class with states j= 0,1,2, . . . ,

lim
n→∞

P(n)jj = πj =

∞∑
i=0

πiPij,

∞∑
i=0

πi = 1,

and the π ’s are uniquely determined by the set of equations

πi ≥ 0,
∞∑

i=0

πi = 1, and πj =

∞∑
i=0

πiPij for j= 0,1, . . . . (4.27)
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Any set (πi)
∞

i=0 satisfying (4.27) is called a stationary probability distribution of the
Markov chain. The term “stationary” derives from the property that a Markov chain
started according to a stationary distribution will follow this distribution at all points of
time. Formally, if Pr{X0 = i} = πi, then Pr{Xn = i} = πi for all n= 1,2, . . . .We check
this for the case n= 1; the general case follows by induction. We write

Pr{X1 = i} =
∞∑

k=0

Pr{X0 = k} Pr{X1 = i|X0 = k}

=

∞∑
k=0

πkPki = πi,

where the last equality follows because π = (π0,π1, . . .) is a stationary distribu-
tion. When the initial state X0 is selected according to the stationary distribution, then
the joint probability distribution of (Xn,Xn+1) is given by

Pr{Xn = i,Xn+1 = j} = πiPij.

The reader should supply the proof.
A limiting distribution, when it exists, is always a stationary distribution, but the

converse is not true. There may exist a stationary distribution but no limiting distri-
bution. For example, there is no limiting distribution for the periodic Markov chain
whose transition probability matrix is

P=

∥∥∥∥0 1
1 0

∥∥∥∥,
but π = ( 1

2 ,
1
2 ) is a stationary distribution, since(

1

2
,

1

2

)∥∥∥∥0 1
1 0

∥∥∥∥= (1

2
,

1

2

)
.

Example Consider the class of random walks whose transition matrices are given by

P= ‖Pij‖ =

∥∥∥∥∥∥∥∥∥
0 1 0 · · ·

q1 0 p1 · · ·

0 q2 0 p2 · · ·

...

∥∥∥∥∥∥∥∥∥.
This Markov chain has period 2. Nevertheless, we investigate the existence of a sta-
tionary probability distribution; that is, we wish to determine the positive solutions of

xi =

∞∑
j=0

xjPji = pi−1xi−1+ qi+1xi+1, i= 0,1, . . . , (4.28)
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under the normalization

∞∑
i=0

xi = 1,

where p−1 = 0 and p0 = 1, and thus, x0 = q1xl. Using equation (4.28) for i= 1, we
could determine x2 in terms of x0. Equation (4.28) for i= 2 determines x3 in terms of
x0, and so forth. It is immediately verified that

xi =
pi−1pi−2 · · ·p1

qiqi−1 · · ·q1
x0 = x0

i−1∏
k=0

pk

qk+1
, i≥ 1,

is a solution of (4.28), with x0 still to be determined. Now, since

1= x0+

∞∑
i=1

x0

i−1∏
k=0

pk

qk+1
,

we have

x0 =
1

1+
∑
∞

i=1
∏ı−1

k=0
pk

qk+1

,

and so

x0 > 0 if and only if
∞∑

i=1

i−1∏
k=0

pk

qk+1
<∞.

In particular, if pk = p and qk = q= 1− p for k ≥ 1, the series

∞∑
i=1

i−1∏
k=0

pk

qk+1
=

1

p

∞∑
i=1

(
p

q

)i

converges only when p< q, and then

1

p

∞∑
i=1

(
p

q

)i

=
1

p

p/q

1− p/q
=

1

q− p
,

and

x0 =
1

1+ 1/(q− p)
=

q− p

1+ q− p
=

1

2

(
1−

p

q

)
,

xk =
1

p

(
p

q

)k

x0 =
1

2p

(
1−

p

q

)(
p

q

)k

for k = 1,2, . . . .
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Example Consider now the Markov chain that represents the success runs of binomial
trials. The transition probability matrix is∥∥∥∥∥∥∥∥∥

p0 1− p0 0 0 · · ·

p1 0 1− p1 0 · · ·

p1 0 0 1− p2 · · ·

...
...

...
...

∥∥∥∥∥∥∥∥∥ (0< pk < 1).

The states of this Markov chain all belong to the same equivalence class (any state
can be reached from any other state). Since recurrence is a class property (see
Corollary 4.1), we will investigate recurrence for the zeroth state.

Let R0 =min{n≥ 1;Xn = 0} be the time of first return to state 0. It is easy to
evaluate

Pr{R0 > 1|X0 = 0} = (1− p0),

Pr{R0 > 2|X0 = 0} = (1− p0)(1− p1),

Pr{R0 > 3|X0 = 0} = (1− p0)(1− p1)(1− p2),

...

Pr{R0 > k|X0 = 0} = (1− p0)(1− p1) · · ·(1− pk−1)=

k−1∏
i=0

(1− pi).

In terms of the first return distribution

f (n)00 = Pr{R0 = n|X0 = 0},

we have

Pr{R0 > k|X0 = 0} = 1−
k∑

n=1

f (n)00 ,

or

k∑
n=1

f (n)00 = 1−Pr{R0 > k|X0 = 0} = 1−
k−1∏
i=0

(1− pi).

By definition, state 0 is recurrent provided
∑
∞

n=1 f (n)00 = 1. In terms of p0,p1, . . . then,
state 0 is recurrent whenever limk→∞5

k−1
i=0 (1− pi)=5

∞

i=0(1− pi)= 0. Lemma 4.1
shows that 5∞i=0(1− pi)= 0 is equivalent, in this case, to the condition

∑
∞

i=0 pi =∞.

Lemma 4.1. If 0< pi < 1, i= 0,1,2, . . . , then um =5
m
i=0(1− pl)→ 0 as m→∞ if

and only if
∑
∞

i=0 pi =∞.
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Proof. Assume
∑
∞

i=0 pi =∞. Since the series expansion for exp(−pi) is an alternat-
ing series with terms decreasing in absolute value, we can write

1− pi < 1− pi+
p2

i

2!
−

p3
i

3!
+ ·· · = exp(−pi), i= 0,1,2, . . . . (4.29)

Since (4.29) holds for all i, we obtain5m
i=0(1− pi) < exp

(
−
∑m

i=0 pi
)
. But by assump-

tion,

lim
m→∞

m∑
i=0

pi =∞;

hence,

lim
m→∞

m∏
i=0

(1− pi)= 0.

To prove necessity, observe that from a straightforward induction,

m∏
i=j

(1− pi) > (1− pj− pj+1− ·· ·− pm)

for any j and all m= j+ 1, j+ 2, . . . . Assume now that
∑
∞

i=1 pi <∞; then, 0<∑
∞

i=j pi < 1 for some j> 1. Thus,

lim
m→∞

m∏
i=j

(1− pi) > lim
m→∞

1−
m∑

i=j

pi

> 0,

which contradicts um→ 0. �

State 0 is recurrent when 5∞i=0 (1− pi)= 0, or equivalently, when
∑
∞

i=0 pi =∞.
The state is positive recurrent when m0 = E[R0|X0 = 0]<∞. But

m0 =

∞∑
k=0

Pr{R0 > k|X0 = 0}

= 1+
∞∑

k=1

k−1∏
i=0

(1− pi).

Thus, positive recurrence requires the stronger condition that
∑
∞

k=15
k−1
i=0(1− pi)<∞,

and in this case, the stationary probability π0 is given by

π0 =
1

m0
=

1

1+
∑
∞

k=15
k−1
i=0 (1− pi)

.
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From the equations for the stationary distribution, we have

(1− p0)π0 = π1,

(1− p1)π1 = π2,

(1− p2)π2 = π3,

...

or

π1 = (1− p0)π0,

π2 = (1− p1)π1 = (1− p1)(1− p0)π0,

π3 = (1− p2)π2 = (1− p2)(1− p1)(1− p0)π0,

and, in general,

πk = π0

k−1∏
i=0

(1− pi) for k ≥ 1.

In the special case where pi = p= 1− q for i= 0,1, . . . , then 5k−1
i=0 (1− pi)= qk,

m0 = 1+
∞∑

k=1

qk
=

1

p

so that πk = pqk for k = 0,1, . . . .

Remark Suppose a0,a1,a2, . . . is a convergent sequence of real numbers where
an→ a as n→∞. Then, it can be proved by elementary methods that the partial
averages of the sequence also converge in the form

lim
n→∞

1

n

n−1∑
k=0

ak = a. (4.30)

Applying (4.30) with an = P(n)ii , where i is a member of a positive recurrent aperiodic
class, we obtain

lim
n→∞

1

n

n−1∑
m=0

P(m)ii = πi =
1

mi̇
> 0, (4.31)

where π = (π0,π1, . . .) is the stationary distribution and where mi is the mean return
time for state i. Let M(n)

i be the random variable that counts the total number of visits
to state i during time periods 0,1, . . . ,n− 1. We may write

M(n)
i =

n−1∑
k=0

1{Xk = i}, (4.32)
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where

1{Xk = i} =

{
1 if Xk = i

0 if Xk 6= i
(4.33)

and then see that

E
[
M(n)

i |X0 = i
]
=

n−1∑
k=0

E[1{Xk = i}|X0 = i]=
n−1∑
k=0

P(k)ii . (4.34)

Then, referring to (4.31), we have

lim
n→∞

1

n
E
[
M(n)

i |X0 = i
]
=

1

mi
. (4.35)

In words, the long run (n→∞) mean visits to state i per unit time equals πi, the
probability of state i under the stationary distribution.

Next, let r(i) define a cost or rate to be accumulated upon each visit to state i. The
total cost accumulated during the first n stages is

R(n−1)
=

n−1∑
k=0

r(Xk)=

n−1∑
k=0

∑
i

1{Xk = i}r(i)

=

∞∑
i=0

M(n)
i r(i).

(4.36)

This leads to the following derivation showing that the long run mean cost per unit
time equals the mean cost evaluated over the stationary distribution:

lim
n→∞

1

n
E[R(n−1)

|X0 = i]= lim
n→∞

∞∑
i=0

1

n
E
[
M(n)

i |X0 = i
]

r(i)

=

∞∑
i=0

πir(i).

(4.37)

(When the Markov chain has an infinite number of states, then the derivation requires
that a limit and infinite sum be interchanged. A sufficient condition to justify this
interchange is that r(i) be a bounded function of i.)

Remark The Periodic Case If i is a member of a recurrent periodic irreducible
Markov chain with period d, one can show that Pm

ii = 0 if m is not a multiple of d
(i.e., if m 6= nd for any n), and that

lim
n→∞

Pnd
ii =

d

mi
.
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These last two results are easily combined with (4.30) to show that (4.31) also holds
in the periodic case. If mi <∞, then the chain is positive recurrent and

lim
n→∞

1

n

n−1∑
m=0

P(m)ii = πi =
1

mi
, (4.38)

where π = (π0,π1, . . .) is given as the unique nonnegative solution to

πj =
∑
k=0

πkPkj, j= 0,1, . . . ,

and

∞∑
j=0

πj = 1.

That is, a unique stationary distribution π = (π0,π1, . . .) exists for a positive recurrent
periodic irreducible Markov chain, and the mean fraction of time in state i converges
to πi as the number of stages n grows to infinity.

The convergence of (4.38) does not require the chain to start in state i. Under the
same conditions,

lim
n→∞

1

n

n−1∑
m=0

P(m)ki = πi =
1

mi

holds for all states k = 0,1, . . . as well.

Exercises

4.4.1 Determine the limiting distribution for the Markov chain whose transition prob-
ability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4

0 q p 0 0 0

1 q 0 p 0 0

2 q 0 0 p 0

3 q 0 0 0 p

4 1 0 0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥
,

where p> 0,q> 0, and p+ q= 1.
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4.4.2 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0 1 0 0

1 0.1 0.4 0.2 0.3

2 0.2 0.2 0.5 0.1

3 0.3 0.3 0.4 0

∥∥∥∥∥∥∥∥∥
(a) Determine the limiting probability π0 that the process is in state 0.
(b) By pretending that state 0 is absorbing, use a first step analysis (Chapter 3,

Section 3.4) and calculate the mean time m10 for the process to go from
state 1 to state 0.

(c) Because the process always goes directly to state 1 from state 0, the mean
return time to state 0 is m0 = 1+m10. Verify equation (4.26), π0 = 1/m0.

4.4.3 Determine the stationary distribution for the periodic Markov chain whose tran-
sition probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0
1

2
0

1

2

1
1

4
0

3

4
0

2 0
1

3
0

2

3

3
1

2
0

1

2
0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Problems

4.4.1 Consider the Markov chain on {0,1} whose transition probability matrix is

∥∥∥∥∥
0 1

0 1−α α

1 β 1−β

∥∥∥∥∥, 0< α,β < 1.

(a) Verify that (π0,π1)= (β/(α+β),α/(α+β)) is a stationary distribution.
(b) Show that the first return distribution to state 0 is given by f (1)00 = (1−α)

and f (n)00 = αβ(1−β)
n−2 for n= 2,3, . . . .

(c) Calculate the mean return time m0 =
∑
∞

n=1 nf (n)00 and verify that π0 = 1/m0.
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4.4.2 Determine the stationary distribution for the Markov chain whose transition
probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0 0
1

2

1

2

1 0 0
1

3

2

3

2
1

4

3

4
0 0

3
1

3

2

3
0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

4.4.3 Consider a random walk Markov chain on state 0,1, . . . ,N with transition prob-
ability matrix

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4 5 N− 1 N

0 0 1 0 0 0 0 · · · 0 0

1 q1 0 p1 0 0 0 · · · 0 0

2 0 q2 0 p2 0 0 · · · 0 0

3 0 0 q3 0 p3 0 · · · 0 0
...

...
...

...
...

...
...
...
...
...

...
...

N− 1 0 0 0 0 0 0 · · · 0 pN−1

N 0 0 0 0 0 0 · · · 1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
,

where pi+ qi = 1,pi > 0,qi > 0 for all i.
The transition probabilities from state 0 and N “reflect” the process back into

state 1,2, . . . ,N− 1. Determine the limiting distribution.
4.4.4 Let {αi : i= 1,2, . . .} be a probability distribution, and consider the Markov

chain whose transition probability matrix is

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4 5 · · ·

0 α1 α2 α3 α4 α5 α6 · · ·

1 1 0 0 0 0 0 · · ·

2 0 1 0 0 0 0 · · ·

3 0 0 1 0 0 0 · · ·

4 0 0 0 1 0 0 · · ·

...
...

...
...

...
...

...
...
...
...

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

What condition on the probability distribution {αi : i= 1,2, . . .} is necessary and
sufficient in order that a limiting distribution exist, and what is this limiting
distribution? Assume α1 > 0 and α2 > 0 so that the chain is aperiodic.
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4.4.5 Let P be the transition probability matrix of a finite-state regular Markov chain.
Let M= ‖mij‖ be the matrix of mean return times.
(a) Use a first step argument to establish that

mij = 1+
∑
k 6=j

Pikmkj.

(b) Multiply both sides of the preceding by πi and sum to obtain∑
i

πimij =
∑

i

πi+
∑
k 6=j

∑
i

πiPikmkj.

Simplify this to show (see equation (4.26))

πjmjj = 1, or πj = 1/mjj.

4.4.6 Determine the period of state 0 in the Markov chain whose transition probability
matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

3 2 1 0 −1 −2 −3 −4

3 0 0 0 1 0 0 0 0

2 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

0 0 0
1

2
0

1

2
0 0 0

−1 0 0 0 0 0 1 0 0

−2 0 0 0 0 0 0 1 0

−3 0 0 0 0 0 0 0 1

−4 0 0 0 1 0 0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

4.4.7 An individual either drives his car or walks in going from his home to his office
in the morning, and from his office to his home in the afternoon. He uses the
following strategy: If it is raining in the morning, then he drives the car, provided
it is at home to be taken. Similarly, if it is raining in the afternoon and his car is at
the office, then he drives the car home. He walks on any morning or afternoon
that it is not raining or the car is not where he is. Assume that, independent
of the past, it rains during successive mornings and afternoons with constant
probability p. In the long run, on what fraction of days does our man walk in the
rain? What if he owns two cars?

4.4.8 A Markov chain on states 0,1, . . . has transition probabilities

Pij =
1

i+ 2
for j= 0,1, . . . , i, i+ 1.

Find the stationary distribution.
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4.5 Reducible Markov Chains∗

Recall that states i and j communicate if it is possible to reach state j starting from
state i, and vice versa, and a Markov chain is irreducible if all pairs of states com-
municate. In this section, we show, mostly by example, how to analyze more general
Markov chains.

Consider first the Markov chain whose transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1

2

1

2
0 0

1

4

3

4
0 0

0 0
1

3

2

3

0 0
2

3

1

3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Which we write in the form

P=

∥∥∥∥P1 0
0 P2

∥∥∥∥ ,
where

P=

∥∥∥∥∥∥∥∥
1

2

1

2
1

4

3

4

∥∥∥∥∥∥∥∥ and P=

∥∥∥∥∥∥∥∥
1

3

2

3
2

3

1

3

∥∥∥∥∥∥∥∥
The chain has two communicating classes, the first two states forming one class and
the last two states forming the other. Then,

P2
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1

2

1

2
0 0

1

4

3

4
0 0

0 0
1

3

2

3

0 0
2

3

1

3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
×

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1

2

1

2
0 0

1

4

3

4
0 0

0 0
1

3

2

3

0 0
2

3

1

3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∗ The overwhelming majority of Markov chains encountered in stochastic modeling are irreducible.

Reducible Markov chains form a specialized topic.
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=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

3

8

5

8
0 0

5

16

11

16
0 0

0 0
5

9

4

9

0 0
4

9

5

9

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥P2
1 0

0 P2
2

∥∥∥∥∥ ,

and, in general,

Pn
=

∥∥∥∥Pn
1 0

0 Pn
2

∥∥∥∥ , n≥ 1. (4.39)

Equation (4.39) is the mathematical expression of the property that it is not possible to
communicate back and forth between distinct communicating classes; once in the first
class, the process remains there thereafter; and similarly, once in the second class, the
process remains there. In effect, two completely unrelated processes have been labeled
together. The transition probability matrix P is reducible to the irreducible matrices P1
and P2. It follows from (4.39) that

lim
n→∞

Pn
=

∥∥∥∥∥∥∥∥∥∥∥

π
(1)
0 π

(1)
1 0 0

π
(1)
0 π

(1)
1 0 0

0 0 π
(2)
0 π

(2)
1

0 0 π
(2)
0 π

(2)
1

∥∥∥∥∥∥∥∥∥∥∥
,

where

lim
n→∞

Pn
1 =

∥∥∥∥∥∥
π
(1)
0 π

(1)
1

π
(1)
0 π

(1)
1

∥∥∥∥∥∥ and lim
n→∞

Pn
2 =

∥∥∥∥∥∥
π
(2)
0 π

(2)
1

π
(2)
0 π

(2)
1

∥∥∥∥∥∥.
We solve for π (1) =

(
π
(1)
0 ,π

(1)
1

)
and π (2) =

(
π
(2)
0 ,π

(2)
1

)
in the usual way:

1

2
π
(1)
0 +

1

4
π
(1)
1 = π

(1)
0 ,

1

2
π
(1)
0 +

3

4
π
(1)
1 = π

(1)
1 ,

π
(1)
0 +π

(1)
1 = 1,
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or

π
(1)
0 =

1

3
, π

(1)
1 =

2

3
, (4.40)

and because P2 is doubly stochastic (see Section 4.1.1), it follows that π (2)0 =
1
2 ,

π
(2)
1 =

1
2 .

The basic limit theorem of Markov chains, Theorem 4.3, referred to an irreducible
Markov chain. The limit theorem applies verbatim to any aperiodic recurrent class
in a reducible Markov chain. If i, j are in the same aperiodic recurrent class, then
P(n)ij → 1/mj ≥ 0 as n→∞. If i, j are in the same periodic recurrent class, then

n−1∑n−1
m=0 P(m)ij → 1/mj ≥ 0 as n→∞.

If j is a transient state, then P(n)jj → 0 as n→∞, and, more generally, P(n)ij → 0 as
n→∞ for all initial states i.

In order to complete the discussion of the limiting behavior of P(n)ij , we still must
consider the case where i is transient and j is recurrent. Consider the transition proba-
bility matrix

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3

0
1

2

1

2
0 0

1
1

4

3

4
0 0

2
1

4

1

4

1

4

1

4
3 0 0 0 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

There are three classes: {0,1}, {2}, and {3}, and of these, {0,1} and {3} are recurrent,
while {2} is transient. Starting from state 2, the process ultimately gets absorbed in
one of the other classes. The question is, Which one? or more precisely, What are the
probabilities of absorption in the two recurrent classes starting from state 2?

A first step analysis answers the question. Let u denote the probability of absorption
in class {0,1} starting from state 2. Then, 1− u is the probability of absorption in
class {3}. Conditioning on the first step, we have

u=

(
1

4
+

1

4

)
1+

1

4
u+

1

4
(0)=

1

2
+

1

4
u,

or u= 2
3 . With probability 2

3 , the process enters {0,1} and remains there ever after.
The stationary distribution for the recurrent class {0,1}, computed in (5.2), is π0 =
1
3 ,π1 =

2
3 . Therefore, limn→∞P(n)20 =

2
3 ×

1
3 =

2
9 , limn→∞P(n)21 =

2
3 ×

2
3 =

4
9 . That is,

we multiply the probability of entering the class {0,1} by the appropriate probabilities
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under the stationary distribution for the various states in the class. In matrix form, the
limiting behavior of Pn is given by

lim
n→∞

Pn
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1

3

2

3
0 0

1

3

2

3
0 0

2

9

4

9
0

1

3
0 0 0 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

To firm up the principles, consider one last example:

Pn
=

0 1 2 3 4 5

0

1

2

3

4
5

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1

2

1

2
0 0 0 0

1

3

2

3
0 0 0 0

1

3
0 0

1

3

1

6

1

6
1

6

1

6

1

6
0

1

3

1

6

0 0 0 0 0 1
0 0 0 0 1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

There are three classes: C1 = {0,1},C2 = {2,3}, and C3 = {4,5}. The stationary dis-
tribution in C1 is (π0,π1), where

1

2
π0+

1

3
π1 = π0,

1

2
π0+

2

3
π1 = π1,

π0+π1 = 1.

Then, π0 =
2
5 and π1 =

3
5 .

Class C3 is periodic, and P(n)ij does not converge for i, j in C3 = {4,5}. The time

averages do converge, however; and limn→∞ n−1∑n−1
m=0 P(m)ij =

1
2 for i= 3,4 and

j= 3,4.
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For the transient class C2 = {2,3}, let ui be the probability of ultimate absorption
in class C1 = {0,1} starting from state i for i= 2,3. From a first step analysis, then

u2 =
1

3
(1)+ 0(1)+ 0u2+

1

3
u3+

1

6
(0)+

1

6
(0),

u3 =
1

6
(1)+

1

6
(1)+

1

6
u2+ 0u3+

1

3
(0)+

1

6
(0),

or

u2 =
1

3

1

3
u3; u3 =

1

3
+

1

6
u2.

The solution is u2 =
8
17 and u3 =

7
17 . Combining these partial answers in matrix form,

we have

lim
n→∞

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4 5

0
2

5

3

5
0 0 0 0

1
2

5

3

5
0 0 0 0

2

(
8

17

)(
2

5

) (
8

17

)(
3

5

)
0 0 X X

3

(
7

17

)(
2

5

) (
7

17

)(
3

5

)
0 0 X X

4 0 0 0 0 X X

5 0 0 0 0 X X

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

,

where X denotes that the limit does not exist. For the time average, we have

lim
n→∞

1

n

n−1∑
m=0

Pm
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4 5

0
2

5

3

5
0 0 0 0

1
2

5

3

5
0 0 0 0

2

(
8

17

)(
2

5

) (
8

17

)(
3

5

)
0 0

(
9

17

)(
1

2

) (
9

17

)(
1

2

)
3

(
7

17

)(
2

5

) (
7

17

)(
3

5

)
0 0

(
10

17

)(
1

2

) (
10

17

)(
1

2

)
4 0 0 0 0

1

2

1

2

5 0 0 0 0
1

2

1

2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.



220 An Introduction to Stochastic Modeling

One possible behavior remains to be illustrated. It can occur only when there are an
infinite number of states. In this case, it is possible that all states are transient or null
recurrent and limn→∞P(n)ij = 0 for all states i, j. For example, consider the determinis-
tic Markov chain described by Xn = X0+ n. The transition probability matrix is

Pn
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0 1 0 0 · · ·

1 0 0 1 0 · · ·

2 0 0 0 1 · · ·

3 0 0 0 0 · · ·

...
...

...
...

...

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Then, all states are transient, and limn→∞P(n)ij = limn→∞Pr{Xn = j|X0 = i} = 0 for all
states i, j.

If there is only a finite number M of states, then there are no null recurrent states
and not all states can be transient. In fact, since

∑M−1
j=0 P(n)ij = 1 for all n, it cannot

happen that limn→∞P(n)ij = 0 for all j.

Exercises

4.5.1 Given the transition matrix

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4

0
1

4

3

4
0 0 0

1
1

2

1

2
0 0 0

2 0 0 1 0 0

3 0 0
1

3

2

3
0

4 1 0 0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

,

determine the limits, as n→∞, of P(n)i0 for i= 0,1, . . . ,4.



The Long Run Behavior of Markov Chains 221

4.5.2 Given the transition matrix

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 2 3 4 5 6 7

1
1

3

2

3
0 0 0 0 0

2
1

4

3

4
0 0 0 0 0

3 0 0 0
2

3

1

3
0 0

4 0 0 1 0 0 0 0

5 0 0 1 0 0 0 0

6
1

6
0

1

6

1

6
0

1

4

1

4
7 0 0 0 0 0 0 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

,

derive the following limits, where they exist:

(a) limn→∞P(n)11 (e) limn→∞P(n)21

(b) limn→∞P(n)31 (f) limn→∞P(n)33

(c) limn→∞P(n)61 (g) limn→∞P(n)67

(d) limn→∞P(n)63 (h) limn→∞P(n)64

Problems

4.5.1 Describe the limiting behavior of the Markov chain whose transition probability
matrix is

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4 5 6 7

0 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1

1 0 0.1 0.1 0.1 0 0.3 0.2 0.2

2 0.6 0 0 0.1 0.1 0.1 0.1 0.0

3 0 0 0 0.3 0.7 0 0 0

4 0 0 0 0.7 0.3 0 0 0

5 0 0 0 0 0 0.3 0.4 0.3

6 0 0 0 0 0 0.1 0 0.9

7 0 0 0 0 0 0.8 0.2 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

Hint: First consider the matrices
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PA =

∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3−4 5−7

0 0.1 0.1 0.2 0.3 0.3

1 0 0.1 0.1 0.1 0.7

2 0.6 0 0 0.2 0.2

3−4 0 0 0 1 0

5−7 0 0 0 0 1

∥∥∥∥∥∥∥∥∥∥∥∥
and

PB =

∥∥∥∥∥
3 4

3 0.3 0.7

4 0.7 0.3

∥∥∥∥∥, PC =

∥∥∥∥∥∥∥∥
5 6 7

0.3 0.4 0.3
0.1 0 0.9
0.8 0.2 0

∥∥∥∥∥∥∥∥ .
4.5.2 Determine the limiting behavior of the Markov chain whose transition probabil-

ity matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4 5 6 7

0 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1

1 0 0.1 0.2 0.1 0 0.3 0.1 0.2

2 0.5 0 0 0.2 0.1 0.1 0.1 0

3 0 0 0.3 0.7 0 0 0 0

4 0 0 0.6 0.4 0 0 0 0

5 0 0 0 0 0 0.3 0.4 0.3

6 0 0 0 0 0 0.2 0.2 0.6

7 0 0 0 0 0 0.9 0.1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.
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5.1 The Poisson Distribution and the Poisson Process

Poisson behavior is so pervasive in natural phenomena and the Poisson distribution
is so amenable to extensive and elaborate analysis as to make the Poisson process a
cornerstone of stochastic modeling.

5.1.1 The Poisson Distribution

The Poisson distribution with parameter µ > 0 is given by

pk =
e−µµk

k!
for k = 0,1, . . . . (5.1)

Let X be a random variable having the Poisson distribution in (5.1). We evaluate the
mean, or first moment, via

E[X]=
∞∑

k=0

kpk =

∞∑
k=1

ke−µµk

k!

= µe−µ
∞∑

k=1

µ(k−1)

(k− 1)!

= µ.

To evaluate the variance, it is easier first to determine

E[X(X− 1)]=
∞∑

k=2

k(k− 1)pk

= µ2e−µ
∞∑

k=2

µ(k−2)

(k− 2)!

= µ2.

Then

E
[
X2]
= E[X(X− 1)]+E[X]

= µ2
+µ,

An Introduction to Stochastic Modeling. DOI: 10.1016/B978-0-12-381416-6.00005-8
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while

σ 2
X = Var[X]= E

[
X2]
−{E[X]}2

= µ2
+µ−µ2

= µ.

Thus, the Poisson distribution has the unusual characteristic that both the mean and
the variance are given by the same value µ.

Two fundamental properties of the Poisson distribution, which will arise later in a
variety of forms, concern the sum of independent Poisson random variables and certain
random decompositions of Poisson phenomena. We state these properties formally as
Theorems 5.1 and 5.2.

Theorem 5.1. Let X and Y be independent random variables having Poisson distri-
butions with parameters µ and ν, respectively. Then the sum X+Y has a Poisson
distribution with parameter µ+ ν.

Proof. By the law of total probability,

Pr{X+Y = n} =
n∑

k=0

Pr{X = k,Y = n− k}

=

n∑
k=0

Pr{X = k} Pr{Y = n− k}

(X and Y are independent)

=

n∑
k=0

{
µke−µ

k!

}{
νn−ke−ν

(n− k)!

}
(5.2)

=
e−(µ+ν)

n!

n∑
k=0

n!

k!(n− k)!
µkνn−k.

The binomial expansion of (µ+ ν)n is, of course,

(µ+ ν)n =

n∑
k=0

n!

k!(n− k)!
µkνn−k,

and so (5.2) simplifies to

Pr{X+Y = n} =
e−(µ+ν)(µ+ ν)n

n!
, n= 0,1, . . . ,

the desired Poisson distribution.
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To describe the second result, we consider first a Poisson random variable N where
the parameter is µ > 0. Write N as a sum of ones in the form

N = 1+ 1+ ·· ·+ 1︸ ︷︷ ︸
N ones

,

and next, considering each one separately and independently, erase it with probability
1− p and keep it with probability p. What is the distribution of the resulting sum M,
of the form M = 1+ 0+ 0+ 1+ ·· ·+ 1?

The next theorem states and answers the question in a more precise wording. �

Theorem 5.2. Let N be a Poisson random variable with parameter µ, and condi-
tional on N, let M have a binomial distribution with parameters N and p. Then the
unconditional distribution of M is Poisson with parameter µp.

Proof. The verification proceeds via a direct application of the law of total probability.
Then

Pr{M = k} =
∞∑

n=0

Pr{M = k|N = n} Pr{N = n}

=

∞∑
n=k

{
n!

k!(n− k)!
pk(1− p)n−k

}{
µne−µ

n!

}

=
e−µ(µp)k

k!

∞∑
n=k

[µ(1− p)]n−k

(n− k)!

=
e−µ(µp)k

k!
eµ(1−p)

=
e−µp(µp)k

k!
for k = 0,1, . . . ,

which is the claimed Poisson distribution. �

5.1.2 The Poisson Process

The Poisson process entails notions of both independence and the Poisson distribution.

Definition A Poisson process of intensity, or rate, λ > 0 is an integer-valued stochastic
process {X(t); t ≥ 0} for which

1. for any time points t0 = 0< t1 < t2 < · · ·< tn, the process increments

X(t1)−X(t0), X(t2)−X(t1), . . . ,X(tn)−X(tn−1)

are independent random variables;
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2. for s≥ 0 and t > 0, the random variable X(s+ t)−X(s) has the Poisson distribution

Pr{X(s+ t)−X(s)= k} =
(λt)ke−λt

k!
for k = 0,1, . . . ;

3. X(0)= 0.

In particular, observe that if X(t) is a Poisson process of rate λ > 0, then the
moments are

E[X(t)]= λt and Var[X(t)]= σ 2
X(t) = λt.

Example Defects occur along an undersea cable according to a Poisson process of rate
λ= 0.1 per mile. (a) What is the probability that no defects appear in the first two miles
of cable? (b) Given that there are no defects in the first two miles of cable, what is the
conditional probability of no defects between mile points two and three? To answer
(a) we observe that X(2) has a Poisson distribution whose parameter is (0.1)(2)=
0.2. Thus, Pr{X(2)= 0} = e−0.2

= 0.8187. In part (b), we use the independence of
X(3)−X(2) and X(2)−X(0)= X(2). Thus, the conditional probability is the same as
the unconditional probability, and

Pr{X(3)−X(2)= 0} = Pr{X(1)= 0} = e−0.1
= 0.9048.

Example Customers arrive in a certain store according to a Poisson process of rate
λ= 4 per hour. Given that the store opens at 9:00 a.m., what is the probability that
exactly one customer has arrived by 9:30 and a total of five have arrived by 11:30 a.m.?

Measuring time t in hours from 9:00 a.m., we are asked to determine Pr
{
X
( 1

2

)
= 1,

X
( 5

2

)
= 5

}
. We use the independence of X

( 5
2

)
−X

( 1
2

)
and X

( 1
2

)
to reformulate the

question thus:

Pr

{
X

(
1

2

)
= 1, X

(
5

2

)
= 5

}
= Pr

{
X

(
1

2

)
= 1, X

(
5

2

)
−X

(
1

2

)
= 4

}

=

e−4(1/2)4
(

1
2

)
1!


{

e−4(2)[4(2)]4

4!

}

=

(
2e−2

)(512

3
e−8

)
= 0.0154965.

5.1.3 Nonhomogeneous Processes

The rate λ in a Poisson process X(t) is the proportionality constant in the probability of
an event occurring during an arbitrarily small interval. To explain this more precisely,

Pr{X(t+ h)−X(t)= 1} =
(λh)e−λh

1!

= (λh)

(
1− λh+

1

2
λ2h2
− ·· ·

)
= λh+ o(h),

where o(h) denotes a general and unspecified remainder term of smaller order than h.
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It is pertinent in many applications to consider rates λ= λ(t) that vary with time.
Such a process is termed a nonhomogeneous or nonstationary Poisson process to
distinguish it from the stationary, or homogeneous, process that we primarily con-
sider. If X(t) is a nonhomogeneous Poisson process with rate λ(t), then an increment
X(t)−X(s), giving the number of events in an interval (s, t], has a Poisson distribu-
tion with parameter

∫ t
s λ(u)du, and increments over disjoint intervals are independent

random variables.

Example Demands on a first aid facility in a certain location occur according to a
nonhomogeneous Poisson process having the rate function

λ(t)=

2t for 0≤ t < 1,
2 for 1≤ t < 2,
4− t for 2≤ t ≤ 4,

where t is measured in hours from the opening time of the facility. What is the probabil-
ity that two demands occur in the first 2 h of operation and two in the second 2 h? Since
demands during disjoint intervals are independent random variables, we can answer
the two questions separately. The mean for the first 2 h is µ=

∫ 1
0 2t dt+

∫ 2
1 2dt = 3,

and thus

Pr{X(2)= 2} =
e−3(3)2

2!
= 0.2240.

For the second 2 h, µ=
∫ 4

2 (4− t)dt = 2, and

Pr{X(4)−X(2)= 2} =
e−2(2)2

2!
= 0.2707.

Let X(t) be a nonhomogeneous Poisson process of rate λ(t) > 0 and define 3(t)=∫ t
0 λ(u)du. Make a deterministic change in the time scale and define a new process

Y(s)= X(t), where s=3(t). Observe that 1s= λ(t)1t+ o(1t). Then

Pr{Y(s+1s)−Y(s)= 1} = Pr{X(t+1t)−X(t)= 1}

= λ(t)1t+ o(1t)

=1s+ o(1s),

so that Y(s) is a homogeneous Poisson process of unit rate. By this means, ques-
tions about nonhomogeneous Poisson processes can be transformed into correspond-
ing questions about homogeneous processes. For this reason, we concentrate our expo-
sition on the latter.

5.1.4 Cox Processes

Suppose that X(t) is a nonhomogeneous Poisson process, but where the rate function
{λ(t), t ≥ 0} is itself a stochastic process. Such processes were introduced in 1955
as models for fibrous threads by Sir David Cox, who called them doubly stochastic
Poisson processes. Now they are most often referred to as Cox processes in honor of
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their discoverer. Since their introduction, Cox processes have been used to model a
myriad of phenomena, e.g., bursts of rainfall, where the likelihood of rain may vary
with the season; inputs to a queueing system, where the rate of input varies over time,
depending on changing and unmeasured factors; and defects along a fiber, where the
rate and type of defect may change due to variations in material or manufacture. As
these applications suggest, the process increments over disjoint intervals are, in gen-
eral, statistically dependent in a Cox process, as contrasted with their postulated inde-
pendence in a Poisson process.

Let {X(t); t ≥ 0} be a Poisson process of constant rate λ= 1. The very simplest
Cox process, sometimes called a mixed Poisson process, involves choosing a single
random variable2, and then observing the process X′(t)= X(2t). Given2, then X′ is,
conditionally, a Poisson process of constant rate λ=2, but2 is random, and typically,
unobservable. If 2 is a continuous random variable with probability density function
f (θ), then, upon removing the condition via the law of total probability, we obtain the
marginal distribution

Pr{X′(t)= k} =

∞∫
0

(θ t)ke−θ t

k!
f (θ)dθ. (5.3)

Problem 5.1.12 calls for carrying out the integration in (5.3) in the particular instance
in which 2 has an exponential density.

Chapter 6, Section 6.7 develops a model for defects along a fiber in which a Markov
chain in continuous time is the random intensity function for a Poisson process. A vari-
ety of functionals are evaluated for the resulting Cox process.

Exercises

5.1.1 Defects occur along the length of a filament at a rate of λ= 2 per foot.
(a) Calculate the probability that there are no defects in the first foot of the

filament.
(b) Calculate the conditional probability that there are no defects in the second

foot of the filament, given that the first foot contained a single defect.
5.1.2 Let pk = Pr{X = k} be the probability mass function corresponding to a Poisson

distribution with parameter λ. Verify that p0 = exp{−λ}, and that pk may be
computed recursively by pk = (λ/k)pk−1.

5.1.3 Let X and Y be independent Poisson distributed random variables with param-
eters α and β, respectively. Determine the conditional distribution of X, given
that N = X+Y = n.

5.1.4 Customers arrive at a service facility according to a Poisson process of rate λ
customer/hour. Let X(t) be the number of customers that have arrived up to
time t.
(a) What is Pr{X(t)= k} for k = 0,1, . . .?
(b) Consider fixed times 0< s< t. Determine the conditional probability

Pr{X(t)= n+ k|X(s)= n} and the expected value E[X(t)X(s)].
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5.1.5 Suppose that a random variable X is distributed according to a Poisson distribu-
tion with parameter λ. The parameter λ is itself a random variable, exponentially
distributed with density f (x)= θe−θx for x≥ 0. Find the probability mass func-
tion for X.

5.1.6 Messages arrive at a telegraph office as a Poisson process with mean rate of
3 messages per hour.
(a) What is the probability that no messages arrive during the morning hours

8:00 a.m. to noon?
(b) What is the distribution of the time at which the first afternoon message

arrives?
5.1.7 Suppose that customers arrive at a facility according to a Poisson process having

rate λ= 2. Let X(t) be the number of customers that have arrived up to time t.
Determine the following probabilities and conditional probabilities:
(a) Pr{X(1)= 2}.
(b) Pr{X(1)= 2 and X(3)= 6}.
(c) Pr{X(1)= 2|X(3)= 6}.
(d) Pr{X(3)= 6|X(1)= 2}.

5.1.8 Let {X(t); t ≥ 0} be a Poisson process having rate parameter λ= 2. Determine
the numerical values to two decimal places for the following probabilities:
(a) Pr{X(1)≤ 2}.
(b) Pr{X(1)= 1 and X(2)= 3}.
(c) Pr{X(1)≥ 2|X(1)≥ 1}.

5.1.9 Let {X(t); t ≥ 0} be a Poisson process having rate parameter λ= 2. Determine
the following expectations:
(a) E[X(2)].
(b) E

[
{X(1)}2

]
.

(c) E[X(1)X(2)].

Problems

5.1.1 Let ξ1, ξ2, . . . be independent random variables, each having an exponential
distribution with parameter λ. Define a new random variable X as follows: If
ξ1 > 1, then X = 0; if ξ1 ≤ 1 but ξ1+ ξ2 > 1, then set X = 1; in general, set
X = k if

ξ1+ ·· ·+ ξk ≤ 1< ξ1+ ·· ·+ ξk+ ξk+1.

Show that X has a Poisson distribution with parameter λ. (Thus, the method
outlined can be used to simulate a Poisson distribution.)

Hint: ξ1+ ·· ·+ ξk has a gamma density

fk(x)=
λkxk−1

(k− 1)!
e−λx for x> 0.
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Condition on ξ1+ ·· ·+ ξk and use the law of total probability to show

Pr{X = k} =

1∫
0

[1−F(1− x)] fk(x)dx,

where F(x) is the exponential distribution function.
5.1.2 Suppose that minor defects are distributed over the length of a cable as a Pois-

son process with rate α, and that, independently, major defects are distributed
over the cable according to a Poisson process of rate β. Let X(t) be the number
of defects, either major or minor, in the cable up to length t. Argue that X(t)
must be a Poisson process of rate α+β.

5.1.3 The generating function of a probability mass function pk = Pr{X = k}, for
k = 0,1, . . . , is defined by

gX(s)= E
[
sX]
=

∞∑
k=0

pksk for |s|< 1.

Show that the generating function for a Poisson random variable X with mean
µ is given by

gX(s)= e−µ(1−s).

5.1.4 (Continuation) Let X and Y be independent random variables, Poisson dis-
tributed with parameters α and β, respectively. Show that the generating func-
tion of their sum N = X+Y is given by

gN(s)= e−(α+β)(1−s).

Hint: Verify and use the fact that the generating function of a sum of indepen-
dent random variables is the product of their respective generating functions.
See Chapter 3, Section 3.9.2.

5.1.5 For each value of h> 0, let X(h) have a Poisson distribution with parameter
λh. Let pk(h)= Pr{X(h)= k} for k = 0,1, . . . . Verify that

lim
h→0

1− p0(h)

h
= λ, or p0(h)= 1− λh+ o(h);

lim
h→0

p1(h)

h
= λ, or p1(h)= λh+ o(h);

lim
h→0

p2(h)

h
= 0, or p2(h)= o(h).

Here o(h) stands for any remainder term of order less than h as h→ 0.
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5.1.6 Let {X(t); t ≥ 0} be a Poisson process of rate λ. For s, t > 0, determine the
conditional distribution of X(t), given that X(t+ s)= n.

5.1.7 Shocks occur to a system according to a Poisson process of rate λ. Suppose
that the system survives each shock with probability α, independently of other
shocks, so that its probability of surviving k shocks is αk. What is the proba-
bility that the system is surviving at time t?

5.1.8 Find the probability Pr{X(t)= 1,3,5, . . .} that a Poisson process having rate λ
is odd.

5.1.9 Arrivals of passengers at a bus stop form a Poisson process X(t)with rate λ= 2
per unit time. Assume that a bus departed at time t = 0 leaving no customers
behind. Let T denote the arrival time of the next bus. Then, the number of
passengers present when it arrives is X(T). Suppose that the bus arrival time
T is independent of the Poisson process and that T has the uniform probability
density function

fT(t)=

{
1 for 0≤ t ≤ 1,
0 elsewhere.

(a) Determine the conditional moments E[X(T)|T = t] and E
[
{X(T)}2|T = t

]
.

(b) Determine the mean E[X(T)] and variance Var[X(T)].
5.1.10 Customers arrive at a facility at random according to a Poisson process of

rate λ. There is a waiting time cost of c per customer per unit time. The cus-
tomers gather at the facility and are processed or dispatched in groups at fixed
times T,2T,3T, . . . . There is a dispatch cost of K. The process is depicted in
the following graph.
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Figure 5.1 The number of customers in a dispatching system as a function of time.

(a) What is the total dispatch cost during the first cycle from time 0 to time T?
(b) What is the mean total customer waiting cost during the first cycle?
(c) What is the mean total customer waiting + dispatch cost per unit time

during the first cycle?
(d) What value of T minimizes this mean cost per unit time?
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5.1.11 Assume that a device fails when a cumulative effect of k shocks occurs. If
the shocks happen according to a Poisson process of parameter λ, what is the
density function for the life T of the device?

5.1.12 Consider the mixed Poisson process of Section 5.1.4, and suppose that the
mixing parameter 2 has the exponential density f (θ)= e−θ for θ > 0.
(a) Show that equation (5.3) becomes

Pr{X′(t)= j} =

(
t

1+ t

)j( 1

1+ t

)
, for j= 0,1, . . . .

(b) Show that

Pr{X′(t)= j, X′(t+ s)= j+ k} =

(
j+ k

j

)
t jsk

(
1

1+ s+ t

)j+k+1

,

so that X′(t) and the increment X′(t+ s)−X′(t) are not independent random
variables, in contrast to the simple Poisson process as defined in Section 5.1.2.

5.2 The Law of Rare Events

The common occurrence of the Poisson distribution in nature is explained by the law
of rare events. Informally, this law asserts that where a certain event may occur in any
of a large number of possibilities, but where the probability that the event does occur
in any given possibility is small, then the total number of events that do happen should
follow, approximately, the Poisson distribution.

A more formal statement in a particular instance follows. Consider a large number
N of independent Bernoulli trials where the probability p of success on each trial is
small and constant from trial to trial. Let XN,p denote the total number of successes in
the N trials, where XN,p follows the binomial distribution

Pr
{
XN,p = k

}
=

N!

k!(N− k)!
pk(1− p)N−k for k = 0, . . . ,N. (5.4)

Now let us consider the limiting case in which N→∞ and p→ 0 in such a way
that Np= µ > 0 where µ is constant. It is a familiar fact (see Chapter 1, Section 1.3)
that the distribution for XN,p becomes, in the limit, the Poisson distribution

Pr
{
Xµ = k

}
=

e−µµk

k!
for k = 0,1, . . . . (5.5)

This form of the law of rare events is stated as a limit. In stochastic modeling,
the law is used to suggest circumstances under which one might expect the Poisson
distribution to prevail, at least approximately. For example, a large number of cars may
pass through a given stretch of highway on any particular day. The probability that any
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specified car is in an accident is, we hope, small. Therefore, one might expect that the
actual number of accidents on a given day along that stretch of highway would be, at
least approximately, Poisson distributed.

While we have formally stated this form of the law of rare events as a mathematical
limit, in older texts, (5.5) is often called “the Poisson approximation” to the binomial,
the idea being that when N is large and p is small, the binomial probability (5.4) may be
approximately evaluated by the Poisson probability (5.5) with µ= Np. With today’s
computing power, exact binomial probabilities are not difficult to obtain, so there is
little need to approximate them with Poisson probabilities. Such is not the case if the
problem is altered slightly by allowing the probability of success to vary from trial to
trial. To examine this proposal in detail, let ε1,ε2, . . . be independent Bernoulli random
variables, where

Pr{εi = 1} = pi and Pr{εi = 0} = 1− pi,

and let Sn = ε1+ ·· ·+ εn. When p1 = p2 = ·· · = p, then Sn has a binomial distribu-
tion, and the probability Pr{Sn = k} for some k = 0,1, . . . is easily computed. It is not
so easily evaluated when the p’s are unequal, with the binomial formula generalizing
to

Pr{Sn = k} =6(k)
n∏

i=1

pxi
i (1− pi)

1−xi , (5.6)

where 6(k) denotes the sum over all 0,1 valued xi’s such that x1+ ·· ·+ xn = k.
Fortunately, Poisson approximation may still prove accurate and allow the compu-

tational challenges presented by equation (5.6) to be avoided.

Theorem 5.3. Let ε1,ε2, . . . be independent Bernoulli random variables, where

Pr{εi = 1} = pi and Pr{εi = 0} = 1− pi,

and let Sn = ε1+ ·· ·+ εn. The exact probabilities for Sn, determined using (5.6), and
Poisson probabilities with µ= pl+ ·· ·+ pn differ by at most∣∣∣∣Pr{Sn = k}−

µke−µ

k!

∣∣∣∣≤ n∑
i=1

p2
i . (5.7)

Not only does the inequality of Theorem 5.3 extend the law of rare events to the
case of unequal p’s, it also directly confronts the approximation issue by providing a
numerical measure of the approximation error. Thus, the Poisson distribution provides
a good approximation to the exact probabilities whenever the pi’s are uniformly small
as measured by the right side of (5.7). For instance, when p1 = p2 = ·· · = µ/n, then
the right side of (5.7) reduces to µ2/n, which is small when n is large, and thus (5.7)
provides another means of obtaining the Poisson distribution (5.5) as a limit of the
binomial probabilities (5.4).



234 An Introduction to Stochastic Modeling

We defer the proof of Theorem 5.3 to the end of this section, choosing to concen-
trate now on its implications. As an immediate consequence, e.g., in the context of the
earlier car accident vignette, we see that the individual cars need not all have the same
accident probabilities in order for the Poisson approximation to apply.

5.2.1 The Law of Rare Events and the Poisson Process

Consider events occurring along the positive axis [0,∞) in the manner shown in
Figure 5.2. Concrete examples of such processes are the time points of the X-ray
emissions of a substance undergoing radioactive decay, the instances of telephone calls
originating in a given locality, the occurrence of accidents at a certain intersection, the
location of faults or defects along the length of a fiber or filament, and the successive
arrival times of customers for service.

Let N((a,b]) denote the number of events that occur during the interval (a,b]. That
is, if t1 < t2 < t3 < · · · denote the times (or locations, etc.) of successive events, then
N((a,b]) is the number of values ti for which a< ti ≤ b.

We make the following postulates:

1. The numbers of events happening in disjoint intervals are independent random variables.
That is, for every integer m= 2,3, . . . and time points t0 = 0< t1 < t2 < · · ·< tm, the ran-
dom variables

N((t0, t1]),N((t1, t2]), . . . ,N((tm−1, tm])

are independent.
2. For any time t and positive number h, the probability distribution of N((t, t+ h]), the number

of events occurring between time t and t+ h, depends only on the interval length h and not
on the time t.

3. There is a positive constant λ for which the probability of at least one event happening in a
time interval of length h is

Pr{N((t, t+ h])≥ 1} = λh+ o(h) as h ↓ 0.

(Conforming to a common notation, here o(h) as h ↓ 0 stands for a general and unspecified
remainder term for which o(h)/h→ 0 as h ↓ 0. That is, a remainder term of smaller order
than h as h vanishes.)

N((a, b])=3

a b tt1 t2
( ]

Figure 5.2 A Poisson point process.
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4. The probability of two or more events occurring in an interval of length h is o(h), or

Pr{N((t, t+ h])≥ 2} = o(h), h ↓ 0.

Postulate 3 is a specific formulation of the notion that events are rare. Postulate 4
is tantamount to excluding the possibility of the simultaneous occurrence of two or
more events. In the presence of Postulates 1 and 2, Postulates 3 and 4 are equivalent
to the apparently weaker assumption that events occur singly and discretely, with only
a finite number in any finite interval. In the concrete illustrations cited earlier, this
requirement is usually satisfied.

Disjoint intervals are independent by 1, and 2 asserts that the distribution of
N((s, t]) is the same as that of N((0, t− s]). Therefore, to describe the probability
law of the system, it suffices to determine the probability distribution of N((0, t]) for
an arbitrary value of t. Let

Pk(t)= Pr{N((0, t])= k}.

We will show that Postulates 1 through 4 require that Pk(t) be the Poisson distribution

Pk(t)=
(λt)ke−λt

k!
for k = 0,1, . . . . (5.8)

To establish (5.8), divide the interval (0, t] into n subintervals of equal length h=
t/n, and let

εi =

{
1 if there is at least one event in the interval ((i− 1)t/n, it/n],
0 otherwise.

Then, Sn = ε1+ ·· ·+ εn counts the total number of subintervals that contain at least
one event, and

pi = Pr{εi = 1} = λt/n+ o(t/n) (5.9)

according to Postulate 3. Upon applying (5.7), we see that∣∣∣∣Pr{Sn = k}−
µke−µ

k!

∣∣∣∣≤ n[λt/n+ o(t/n)]2

=
(λt)2

n
+ 2λto

(
t

n

)
+ no

(
t

n

)2

,

where

µ=

n∑
i=1

pi = λt+ no(t/n). (5.10)
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Because o(h)= o(t/n) is a term of order smaller than h= t/n for large n, it follows
that

no(t/n)= t
o(t/n)

t/n
= t

o(h)

h

vanishes for arbitrarily large n. Passing to the limit as n→∞, then, we deduce that

lim
n→∞

Pr{Sn = k} =
µke−µ

k!
, with µ= λt.

To complete the demonstration, we need only show that

lim
n→∞

Pr{Sn = k} = Pr{N((0, t])= k} = Pk(t).

But Sn differs from N((0, t]) only if at least one of the subintervals contains two or
more events, and Postulate 4 precludes this because

|Pk(t)−Pr{Sn = k}| ≤ Pr{N((0, t]) 6= Sn}

≤

n∑
i=1

Pr

{
N

((
(i− 1)t

n
,

it

n

])
≥ 2

}
≤ no(t/n) (by Postulate 4)

→ 0 as n→∞.

By making n arbitrarily large, or equivalently, by dividing the interval (0, t] into arbi-
trarily small subintervals, we see that it must be the case that

Pr{N((0, t])= k} =
(λt)ke−λt

k!
for k ≥ 0,

and Postulates 1 through 4 imply the Poisson distribution.
Postulates 1 through 4 arise as physically plausible assumptions in many circum-

stances of stochastic modeling. The postulates seem rather weak. Surprisingly, they
are sufficiently strong to force the Poisson behavior just derived. This motivates the
following definition.

Definition Let N((s, t]) be a random variable counting the number of events occurring
in an interval (s, t]. Then, N((s, t]) is a Poisson point process of intensity λ > 0 if

1. for every m= 2,3, . . . and distinct time points t0 = 0< t1 < t2 < · · ·< tm, the random
variables

N((t0, t1]),N((t1, t2]), . . . ,N((tm−1, tm])

are independent; and
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2. for any times s< t the random variable N((s, t]) has the Poisson distribution

Pr{N((s, t])= k} =
[λ(t− s)]ke−λ(t−s)

k!
, k = 0,1, . . . .

Poisson point processes often arise in a form where the time parameter is replaced
by a suitable spatial parameter. The following formal example illustrates this vein of
ideas. Consider an array of points distributed in a space E (E is a Euclidean space of
dimension d ≥ 1). Let N(A) denote the number of points (finite or infinite) contained
in the region A of E. We postulate that N(A) is a random variable. The collection
{N(A)} of random variables, where A varies over all possible subsets of E, is said to
be a homogeneous Poisson process if the following assumptions are fulfilled:

1. The numbers of points in nonoverlapping regions are independent random variables.
2. For any region A of finite volume, N(A) is Poisson distributed with mean λ|A|, where |A| is

the volume of A. The parameter λ is fixed and measures in a sense the intensity component
of the distribution, which is independent of the size or shape. Spatial Poisson processes arise
in considering such phenomena as the distribution of stars or galaxies in space, the spatial
distribution of plants and animals, and the spatial distribution of bacteria on a slide. These
ideas and concepts will be further studied in Section 5.5.

5.2.2 Proof of Theorem 5.3

First, some notation. Let ε(p) denote a Bernoulli random variable with success prob-
ability p, and let X(θ) be a Poisson distributed random variable with parameter θ .
We are given probabilities p1, . . . ,pn and let µ= p1+ ·· ·+ pn. With ε(p1), . . . ,ε(pn)

assumed to be independent, we have Sn = ε(p1)+ ·· ·+ ε(pn), and according to
Theorem 5.1, we may write X(µ) as the sum of independent Poisson distributed ran-
dom variables in the form X(µ)= X(p1)+ ·· ·+X(pn). We are asked to compare
Pr{Sn = k} with Pr{X(µ)= k}, and, as a first step, we observe that if Sn and X(µ)
are unequal, then at least one of the pairs ε(pk) and X(pk) must differ, whence

|Pr{Sn = k}−Pr{X(µ)= k}| ≤
n∑

k=1

Pr{ε(pk) 6= X(pk)}. (5.11)

As the second step, observe that the quantities that are compared on the left of (5.11)
are the marginal distributions of Sn and X(µ), while the bound on the right is a joint
probability. This leaves us free to choose the joint distribution that makes our task the
easiest. That is, we are free to specify the joint distribution of each ε(pk) and X(pk),
as we please, provided only that the marginal distributions are Bernoulli and Poisson,
respectively.

To complete the proof, we need to show that Pr{ε(p) 6= X(p)} ≤ p2 for some
Bernoulli random variable ε(p) and Poisson random variable X(p), since this reduces
the right side of (5.11) to that of (5.7). Equivalently, we want to show that 1− p2

≤

Pr{ε(p)= X(p)} = Pr{ε(p)= X(p)= 0}+Pr{ε(p)= X(p)= 1}, and we are free to
choose the joint distribution, provided that the marginal distributions are correct.



238 An Introduction to Stochastic Modeling

Let U be a random variable that is uniformly distributed over the interval (0,1].
Define

ε(p)=

{
1 if 0< U ≤ p,
0 if p< U ≤ 1,

and for k = 0,1, . . . , set

X(p)= k when
k−1∑
i=0

pie−p

i!
< U ≤

k∑
i=0

pie−p

i!
.

It is elementary to verify that ε(p) and X(p) have the correct marginal distribu-
tions. Furthermore, because 1− p≤ e−p, we have ε(p)= X(p)= 0 only for U ≤
1− p, whence Pr{ε(p)= X(p)= 0} = 1− p. Similarly, ε(p)= X(p)= 1 only when
e−p < U ≤ (1+ p)e−p, whence Pr{ε(p)= X(p)= 1} = pe−p. Upon summing these
two evaluations, we obtain

Pr{ε(p)= X(p)} = 1− p+ pe−p
= 1− p2

+ p3/2 · · · ≥ 1− p2

as was to be shown. This completes the proof of (5.7).
Problem 2.10 calls for the reader to review the proof and to discover the single line

that needs to be changed in order to establish the stronger result

|Pr{Sn in I}−Pr{X(µ) in I}| ≤
n∑

k=1

p2
i

for any set of nonnegative integers I.

Exercises

5.2.1 Determine numerical values to three decimal places for Pr{X = k}, k = 0,1,2,
when
(a) X has a binomial distribution with parameters n= 20 and p= 0.06.
(b) X has a binomial distribution with parameters n= 40 and p= 0.03.
(c) X has a Poisson distribution with parameter λ= 1.2.

5.2.2 Explain in general terms why it might be plausible to assume that the following
random variables follow a Poisson distribution:
(a) The number of customers that enter a store in a fixed time period.
(b) The number of customers that enter a store and buy something in a fixed

time period.
(c) The number of atomic particles in a radioactive mass that disintegrate in a

fixed time period.
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5.2.3 A large number of distinct pairs of socks are in a drawer, all mixed up. A small
number of individual socks are removed. Explain in general terms why it might
be plausible to assume that the number of pairs among the socks removed might
follow a Poisson distribution.

5.2.4 Suppose that a book of 600 pages contains a total of 240 typographical errors.
Develop a Poisson approximation for the probability that three particular suc-
cessive pages are error-free.

Problems

5.2.1 Let X(n,p) have a binomial distribution with parameters n and p. Let n→∞
and p→ 0 in such a way that np= λ. Show that

lim
n→∞

Pr{X(n,p)= 0} = e−λ

and

lim
n→∞

Pr{X(n,p)= k+ 1}

Pr{X(n,p)= k}
=

λ

k+ 1
for k = 0,1, . . . .

5.2.2 Suppose that 100 tags, numbered 1,2, . . . ,100, are placed into an urn, and 10
tags are drawn successively, with replacement. Let A be the event that no tag
is drawn twice. Show that

Pr{A} =

(
1−

1

100

)(
1−

2

100

)
· · ·

(
1−

9

100

)
= 0.6282.

Use the approximation

1− x≈ e−x for x≈ 0

to get

Pr{A} ≈ exp

{
−

1

100
(1+ 2+ ·· ·+ 9)

}
= e−0.45

= 0.6376.

Interpret this in terms of the law of rare events.
5.2.3 Suppose that N pairs of socks are sent to a laundry, where they are washed and

thoroughly mixed up to create a mass of unmatched socks. Then, n socks are
drawn at random without replacement from the pile. Let A be the event that no
pair is among the n socks so selected. Show that

Pr{A} =
2n
(

N
n

)
(

2N
n

) = n−1∏
i=1

(
1−

i

2N− i

)
.
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Use the approximation

1− x≈ e−x for x≈ 0

to get

Pr{A} ≈ exp

{
−

n−1∑
i=1

i

2N− i

}
≈ exp

{
−

n(n− 1)

4N

}
,

the approximations holding when n is small relative to N, which is large. Eval-
uate the exact expression and each approximation when N = 100 and n= 10.
Is the approximation here consistent with the actual number of pairs of socks
among the n socks drawn having a Poisson distribution?

Answer: Exact 0.7895; Approximate 0.7985.
5.2.4 Suppose that N points are uniformly distributed over the interval [0,N). Deter-

mine the probability distribution for the number of points in the interval [0,1)
as N→∞.

5.2.5 Suppose that N points are uniformly distributed over the surface of a circular
disk of radius r. Determine the probability distribution for the number of points
within a distance of one of the origin as N→∞, r→∞, N/

(
πr2

)
= λ.

5.2.6 Certain computer coding systems use randomization to assign memory stor-
age locations to account numbers. Suppose that N =Mλ different accounts
are to be randomly located among M storage locations. Let Xi be the num-
ber of accounts assigned to the ith location. If the accounts are distributed
independently and each location is equally likely to be chosen, show that
Pr{Xi = k} → e−λλk/k! as N→∞. Show that Xi and Xj are independent ran-
dom variables in the limit, for distinct locations i 6= j. In the limit, what fraction
of storage locations have two or more accounts assigned to them?

5.2.7 N bacteria are spread independently with uniform distribution on a microscope
slide of area A. An arbitrary region having area a is selected for observation.
Determine the probability of k bacteria within the region of area a. Show that as
N→∞ and a→ 0 such that (a/A)N→ c(0< c<∞), then p(k)→ e−cck/k!.

5.2.8 Using (5.6), evaluate the exact probabilities for Sn and the Poisson approxima-
tion and error bound in (5.7) when n= 4 and p1 = 0.1, p2 = 0.2, p3 = 0.3, and
p4 = 0.4.

5.2.9 Using (5.6), evaluate the exact probabilities for Sn and the Poisson approxima-
tion and error bound in (5.7) when n= 4 and p1 = 0.1, p2 = 0.1, p3 = 0.1, and
p4 = 0.2.

5.2.10 Review the proof of Theorem 5.3 in Section 5.2.2 and establish the stronger
result

|Pr{Sn in I}−Pr{X(µ) in I}| ≤
n∑

k=1

p2
i

for any set of nonnegative integers I.
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5.2.11 Let X and Y be jointly distributed random variables and B an arbitrary set. Fill
in the details that justify the inequality |Pr{X in B}−Pr{Y in B}| ≤ Pr{X 6= Y}.

Hint: Begin with

{X in B} = {X in B and Y in B} or {X in B and Y not in B}

⊂ {Y in B} or {X 6= Y}.

5.2.12 Computer Challenge Most computers have available a routine for simulat-
ing a sequence U0,U1, . . . of independent random variables, each uniformly
distributed on the interval (0,1). Plot, say, 10,000 pairs (U2n, U2n+1) on the
unit square. Does the plot look like what you would expect? Repeat the exper-
iment several times. Do the points in a fixed number of disjoint squares of area
1/10,000 look like independent unit Poisson random variables?

5.3 Distributions Associated with the Poisson Process

A Poisson point process N((s, t]) counts the number of events occurring in an interval
(s, t]. A Poisson counting process, or more simply a Poisson process X(t), counts the
number of events occurring up to time t. Formally, X(t)= N((0, t]).

Poisson events occurring in space can best be modeled as a point process. For
Poisson events occurring on the positive time axis, whether we view them as a Poisson
point process or Poisson counting process is largely a matter of convenience, and we
will freely do both. The two descriptions are equivalent for Poisson events occurring
along a line. The Poisson process is the more common and traditional description in
this case because it allows a pictorial representation as an increasing integer-valued
random function taking unit steps.

Figure 5.3 shows a typical sample path of a Poisson process where Wn is the time
of occurrence of the nth event, the so-called waiting time. It is often convenient to set
W0 = 0. The differences Sn =Wn+1−Wn are called sojourn times; Sn measures the
duration that the Poisson process sojourns in state n.

W0
t

S0

W1 W2 W3

0

1

2

3

X(t)

S1 S2

Figure 5.3 A typical sample path of a Poisson process showing the waiting times Wn and the
sojourn times Sn.
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In this section, we will determine a number of probability distributions associated
with the Poisson process X(t), the waiting times Wn, and the sojourn times Sn.

Theorem 5.4. The waiting time Wn has the gamma distribution whose probability
density function is

fWn(t)=
λntn−1

(n− 1)!
e−λt, n= 1,2, . . . , t ≥ 0. (5.12)

In particular, W1, the time to the first event, is exponentially distributed:

fW1(t)= λe−λt, t ≥ 0. (5.13)

Proof. The event Wn ≤ t occurs if and only if there are at least n events in the interval
(0, t], and since the number of events in (0, t] has a Poisson distribution with mean λt
we obtain the cumulative distribution function of Wn via

FWn(t)= Pr{Wn ≤ t} = Pr{X(t)≥ n}

=

∞∑
k=n

(λt)ke−λt

k!

= 1−
n−1∑
k=0

(λt)ke−λt

k!
, n= 1,2, . . . , t ≥ 0.

We obtain the probability density function fWn(t) by differentiating the cumulative
distribution function. Then

fWn(t)=
d

dt
FWn(t)

=
d

dt

{
1− e−λt

[
1−

λt

1!
+
(λt)2

2!
+ ·· ·+

(λt)n−1

(n− 1)!

]}
=−e−λt

[
λ+

λ(λt)

1!
+ λ

(λt)2

2!
+ ·· ·+ λ

(λt)n−2

(n− 2)!

]
+ λe−λt

[
1+

λt

1!
+
(λt)2

2!
+ ·· ·+

(λt)n−1

(n− 1)!

]
=
λntn−1

(n− 1)!
e−λt, n= 1,2, . . . , t ≥ 0.

There is an alternative derivation of the density in (5.12) that uses the Poisson
point process N((s, t]) and proceeds directly without differentiation. The event t <
Wn ≤ t+1t corresponds exactly to n− 1 occurrences in (0, t] and one in (t, t+1t],
as depicted in Figure 5.4.
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N((0, t]) = n−1 N((t, t + Δt]) = 1

t + Δtt

Wn

]( ]

Figure 5.4

S1

S1

ΔS1 S2

S2

ΔS2

Figure 5.5

Then

fWn(t)1t ≈ Pr{t <Wn ≤ t+1t}+ o(1t) [see Chapter 1, equation (1.5)]

= Pr{N((0, t])= n− 1}Pr {N((t, t+1t])= 1}+ o(1t)

=
(λt)n−1e−λt

(n− 1)!
λ(1t)+ o(1t).

Dividing by 1t and passing to the limit as 1t→ 0 we obtain (5.13).
Observe that Pr{N((t, t+1t])≥ 1} = Pr {N((t, t+1t])= 1}+ o(1t)= λ(1t)+

o(1t). �

Theorem 5.5. The sojourn times S0,S1, . . . ,Sn−1 are independent random variables,
each having the exponential probability density function

fSk(s)= λe−λs, s≥ 0. (5.14)

Proof. We are being asked to show that the joint probability density function of
S0,S1, . . . ,Sn−1 is the product of the exponential densities given by

fS0,S1,...,Sn−1(s0,s1, . . . ,sn−1)=
(
λe−λs0

)(
λe−λs1

)
· · ·
(
λe−λsn−1

)
. (5.15)

We give the proof only in the case n= 2, the general case being entirely similar. Refer-
ring to Figure 5.5 we see that the joint occurrence of

s1 < S1 < s1+1s1 and s2 < S2 < s2+1s2
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corresponds to no events in the intervals (0,s1] and (s1+1s1,s1+1s1+ s2] and
exactly one event in each of the intervals (s1,s1+1s1] and (s1+1s1+ s2,s1+

1s1+ s2+1s2]. Thus

fs1,s2(s1,s2)1s11s2 = Pr {s1 < S1 < s1+1s1,s2 < S2 < s2+1s2}

+ o(1s11s2)

= Pr {N((0,s1])= 0}

×Pr {N((s1+1s1,s1+1s1+ s2])= 0}

×Pr {N((s1,s1+1s1])= 1}

×Pr {N((s1+1s1+ s2,s1+1s1+ s2+1s2])= 1}

+ o(1s11s2)

= e−λs1e−λs2e−λ1s1 e−λ1s2λ(1s1)λ(1s2)+ o(1s11s2)

= (λe−λs1)(λe−λs2)(1s1)(1s2)+ o(1s11s2).

Upon dividing both sides by (1s1)(1s2) and passing to the limit as 1s1→ 0 and
1s2→ 0, we obtain (5.15) in the case n= 2. �

The binomial distribution also arises in the context of Poisson processes.

Theorem 5.6. Let {X(t)} be a Poisson process of rate λ > 0. Then for 0< u< t and
0≤ k ≤ n,

Pr{X(u)= k|X(t)= n} =
n!

k!(n− k)!

(u

t

)k (
1−

u

t

)n−k
. (5.16)

Proof. Straightforward computations give

Pr {X(u)= k|X(t)= n} =
Pr {X(u)= k and X(t)= n}

Pr {X(t)= n}

=
Pr {X(u)= k and X(t)−X(u)= n− k}

Pr {X(t)= n}

=

{
e−λu(λu)k/k!

}{
e−λ(t−u)[λ(t− u)]n−k/(n− k)!

}
e−λt(λt)n/n!

=
n!

k!(n− k)!

uk(t− u)n−k

tn
,

which establishes (5.16). �

Exercises

5.3.1 A radioactive source emits particles according to a Poisson process of rate λ= 2
particles per minute. What is the probability that the first particle appears after
3 min?
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5.3.2 A radioactive source emits particles according to a Poisson process of rate λ= 2
particles per minute.
(a) What is the probability that the first particle appears some time after 3 min

but before 5 min?
(b) What is the probability that exactly one particle is emitted in the interval

from 3 to 5 min?
5.3.3 Customers enter a store according to a Poisson process of rate λ= 6 per hour.

Suppose it is known that only a single customer entered during the first hour.
What is the conditional probability that this person entered during the first
15 min?

5.3.4 Let X(t) be a Poisson process of rate ξ = 3 per hour. Find the conditional prob-
ability that there were two events in the first hour, given that there were five
events in the first 3 h.

5.3.5 Let X(t) be a Poisson process of rate θ per hour. Find the conditional probability
that there were m events in the first t hours, given that there were n events in the
first T hours. Assume 0≤ m≤ n and 0< t < T .

5.3.6 For i= 1, . . . ,n, let {Xi(t); t ≥ 0} be independent Poisson processes, each with
the same parameter λ. Find the distribution of the first time that at least one
event has occurred in every process.

5.3.7 Customers arrive at a service facility according to a Poisson process of rate λ
customers/hour. Let X(t) be the number of customers that have arrived up to
time t. Let W1,W2, . . . be the successive arrival times of the customers. Deter-
mine the conditional mean E[W5|X(t)= 3].

5.3.8 Customers arrive at a service facility according to a Poisson process of rate
λ= 5 per hour. Given that 12 customers arrived during the first two hours of
service, what is the conditional probability that 5 customers arrived during the
first hour?

5.3.9 Let X(t) be a Poisson process of rate λ. Determine the cumulative distribution
function of the gamma density as a sum of Poisson probabilities by first verify-
ing and then using the identity Wr ≤ t if and only if X(t)≥ r.

Problems

5.3.1 Let X(t) be a Poisson process of rate λ. Validate the identity

{W1 > w1,W2 > w2}

if and only if

{X(w1)= 0,X(w2)−X(w1)= 0 or 1} .

Use this to determine the joint upper tail probability

Pr {W1 > w1,W2 > w2} = Pr {X(w1)= 0,X(w2)−X(w1)= 0 or 1}

= e−λw1 [1+ λ(w2−w1)]e
−λ(w2−w1).
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Finally, differentiate twice to obtain the joint density function

f (w1,w2)= λ
2 exp {−λw2} for 0< w1 < w2.

5.3.2 The joint probability density function for the waiting times W1 and W2 is
given by

f (w1,w2)= λ
2 exp {−λw2} for 0< w1 < w2.

Determine the conditional probability density function for W1, given that
W2 = w2. How does this result differ from that in Theorem 5.6 when n= 2
and k = 1?

5.3.3 The joint probability density function for the waiting times W1 and W2 is
given by

f (w1,w2)= λ
2 exp {−λw2} for 0< w1 < w2.

Change variables according to

S0 =W1 and S1 =W2−W1

and determine the joint distribution of the first two sojourn times. Compare
with Theorem 5.5.

5.3.4 The joint probability density function for the waiting times W1 and W2 is
given by

f (w1,w2)= λ
2 exp {−λw2} for 0< w1 < w2.

Determine the marginal density functions for W1 and W2, and check your work
by comparison with Theorem 5.4.

5.3.5 Let X(t) be a Poisson process with parameter λ. Independently, let T be a
random variable with the exponential density

fT(t)= θe−θ t for t > 0.

Determine the probability mass function for X(T).

Hint: Use the law of total probability and Chapter 1, (1.54). Alternatively,
use the results of Chapter 1, Section 1.5.2.

5.3.6 Customers arrive at a holding facility at random according to a Poisson process
having rate λ. The facility processes in batches of size Q. That is, the first Q− 1
customers wait until the arrival of the Qth customer. Then, all are passed simul-
taneously, and the process repeats. Service times are instantaneous. Let N(t) be
the number of customers in the holding facility at time t. Assume that N(0)= 0
and let T =min {t ≥ 0 : N(t)= Q} be the first dispatch time. Show that E[T]=

Q/λ and E
[∫ T

0 N(t)dt
]
= [1+ 2+ ·· ·+ (Q− 1)]/λ= Q(Q− 1)/2λ.
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5.3.7 A critical component on a submarine has an operating lifetime that is expo-
nentially distributed with mean 0.50 years. As soon as a component fails, it is
replaced by a new one having statistically identical properties. What is the
smallest number of spare components that the submarine should stock if it is
leaving for a one-year tour and wishes the probability of having an inoperable
unit caused by failures exceeding the spare inventory to be less than 0.02?

5.3.8 Consider a Poisson process with parameter λ. Given that X(t)= n events occur
in time t, find the density function for Wr, the time of occurrence of the rth
event. Assume that r ≤ n.

5.3.9 The following calculations arise in certain highly simplified models of learn-
ing processes. Let X1(t) and X2(t) be independent Poisson processes having
parameters λ1 and λ2, respectively.
(a) What is the probability that X1(t)= 1 before X2(t)= 1?
(b) What is the probability that X1(t)= 2 before X2(t)= 2?

5.3.10 Let {Wn} be the sequence of waiting times in a Poisson process of intensity
λ= 1. Show that Xn = 2n exp {−Wn} defines a nonnegative martingale.

5.4 The Uniform Distribution and Poisson Processes

The major result of this section, Theorem 5.7, provides an important tool for comput-
ing certain functionals on a Poisson process. It asserts that, conditioned on a fixed total
number of events in an interval, the locations of those events are uniformly distributed
in a certain way.

After a complete discussion of the theorem and its proof, its application in a wide
range of problems will be given.

In order to completely understand the theorem, consider first the following exper-
iment. We begin with a line segment t units long and a fixed number n of darts and
throw darts at the line segment in such a way that each dart’s position upon landing
is uniformly distributed along the segment, independent of the location of the other
darts. Let U1 be the position of the first dart thrown, U2 the position of the second, and
so on up to Un. The probability density function is the uniform density

fU(u)=


1

t
for 0≤ u≤ t,

0 elsewhere.

Now let W1 ≤W2 ≤ ·· · ≤Wn denote these same positions, not in the order in which
the darts were thrown, but instead in the order in which they appear along the line.
Figure 5.6 depicts a typical relation between U1,U2, . . . ,Un and W1,W2, . . . ,Wn.

The joint probability density function for W1,W2, . . . ,Wn is

fW1,...,Wn(w1, . . . ,wn)= n! t−n for 0< w1 < w2 < · · ·< wn ≤ t. (5.17)
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Figure 5.6 W1,W2, . . . ,Wn are the values U1,U2, . . . ,Un arranged in increasing order.

For example, to establish (5.17) in the case n= 2 we have

fW1,W2(w1,w2)1w11w2

= Pr {w1 <W1 ≤ w1+1w1,w2 <W2 ≤ w2+1w2}

= Pr {w1 < U1 ≤ w1+1w1,w2 < U2 < w2+1w2}

+Pr {w1 < U2 ≤ w1+1w1,w2 < U1 ≤ w2+1w2}

= 2

(
1w1

t

)(
1w2

t

)
= 2t−21w11w2.

Dividing by1w11w2 and passing to the limit gives (5.17). When n= 2, there are two
ways that U1 and U2 can be ordered; either U1 is less than U2, or U2 is less than U1. In
general, there are n! arrangements of U1, . . . ,Un that lead to the same ordered values
W1 ≤ ·· · ≤Wn, thus giving (5.17).

Theorem 5.7. Let W1,W2, . . . be the occurrence times in a Poisson process of rate
λ > 0. Conditioned on N(t)= n, the random variables W1,W2, . . . ,Wn have the joint
probability density function

fW1,...,Wn|X(t)=n(w1, . . . ,wn)= n! t−n for 0< w1 < · · ·< wn ≤ t. (5.18)

Proof. The event wi <Wi ≤ wi+1wi for i= 1, . . . ,n and N(t)= n corresponds to
no events occurring in any of the intervals (0,w1], (w1+1w1,w2], . . . , (wn−1+

1wn−1,wn], (wn+1wn, t], and exactly one event in each of the intervals (w1,w1+

1w1], (w2,w2+1w2], . . . , (wn,wn+1wn]. These intervals are disjoint, and

Pr {N((0,w1])= 0, . . . ,N((wn+1wn, t])= 0}

= e−λw1e−λ(w2−w1−1w1) · · ·e−λ(wn−wn−1−1wn−1)e−λ(t−wn−1wn)

= e−λt
[
eλ(1w1+···+1wn)

]
= e−λt[1+ o(max {1wi})],

while

Pr {N((w1,w1+1w1])= 1, . . . ,N((wn,wn+1wn])= 1}

= λ(1w1) · · ·λ(1wn)[1+ o(max{1wi})].



Poisson Processes 249

Thus

fW1,...,Wn|X(t)=n(w1, . . . ,wn)1w1 · · ·1wn

= Pr {w1 <W1 ≤ w1+1w1, . . . ,wn <Wn ≤ wn+1wn|N(t)= n}

+ o(1w1 · · ·1wn)

=
Pr {wi <Wi ≤ wi+1wi, i= 1, . . . ,n,N(t)= n}

Pr {N(t)= n}

+ o(1w1 · · ·1w1)

=
e−λtλ(1w1) · · ·λ(1wn)

e−λt(λt)n/n!
[1+ o(max {1wi})]

= n! t−n(1w1) · · ·(1wn)[1+ o(max{1wi})].

Dividing both sides by (1w1) · · ·(1wn) and letting 1w1→ 0, . . . ,1wn→ 0 estab-
lishes (5.18). �

Theorem 5.7 has important applications in evaluating certain symmetric function-
als on Poisson processes. Some sample instances follow.

Example Customers arrive at a facility according to a Poisson process of rate λ. Each
customer pays $1 on arrival, and it is desired to evaluate the expected value of the
total sum collected during the interval (0, t] discounted back to time 0. This quantity
is given by

M = E

X(t)∑
k=1

e−βWk

,
where β is the discount rate, W1,W2, . . . are the arrival times, and X(t) is the total
number of arrivals in (0, t]. The process is shown in Figure 5.7.

We evaluate the mean total discounted sum M by conditioning on X(t)= n. Then

M =
∞∑

n=1

E

[
n∑

k=1

e−βWk
∣∣X(t)= n

]
Pr {X(t)= n}. (5.19)

Let U1, . . . ,Un denote independent random variables that are uniformly distributed in
(0, t]. Because of the symmetry of the functional 6n

k=1 exp{−βWk} and Theorem 5.7,
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Figure 5.7 A dollar received at time Wk is discounted to a present value at time 0 of
exp {−βWk}.

we have

E

[
n∑

k=1

e−βWk
∣∣X(t)= n

]
= E

[
n∑

k=1

e−βUk

]

= nE
[
e−βU1

]
= nt−1

t∫
0

e−βu du

=
n

βt

[
1− e−βt] .

Substitution into (5.19) then gives

M =
1

βt

[
1− e−βt] ∞∑

n=1

nPr{X(t)= n}

=
1

βt

[
1− e−βt]E[X(t)]

=
λ

β

[
1− e−βt].

Example Viewing a fixed mass of a certain radioactive material, suppose that alpha
particles appear in time according to a Poisson process of intensity λ. Each parti-
cle exists for a random duration and is then annihilated. Suppose that the successive
lifetimes Y1,Y2, . . . of distinct particles are independent random variables having the
common distribution function G(y)= Pr{Yk ≤ y}. Let M(t) count the number of alpha
particles existing at time t. The process is depicted in Figure 5.8.
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Figure 5.8 A particle created at time Wk ≤ t still exists at time t if Wk +Yk ≥ t.

We will use Theorem 5.7 to evaluate the probability distribution of M(t) under the
condition that M(0)= 0.

Let X(t) be the number of particles created up to time t, by assumption a Pois-
son process of intensity λ. Observe that M(t)≤ X(t); the number of existing parti-
cles cannot exceed the number of particles created. Condition on X(t)= n and let
W1, . . . ,Wn ≤ t be the times of particle creation. Then, particle k exists at time t if and
only if Wk+Yk ≥ t. Let

1 {Wk+Yk ≥ t} =

{
1 if Wk+Yk ≥ t,

0 if Wk+Yk < t.

Then, 1 {Wk+Yk ≥ t} = 1 if and only if the kth particle is alive at time t. Thus

Pr{M(t)= m|X(t)= n} = Pr

{
n∑

k=1

1 {Wk+Yk ≥ t} = m|X(t)= n

}
.

Invoking Theorem 5.7 and the symmetry among particles, we have

Pr

{
n∑

k=1

1 {Wk+Yk ≥ t} = m|X(t)= n

}
(5.20)

= Pr

{
n∑

k=1

1 {Uk+Yk ≥ t} = m

}
,
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where U1,U2, . . . ,Un are independent and uniformly distributed on (0, t]. The right-
hand side of (5.20) is readily recognized as the binomial distribution in which

p= Pr{Uk+Yk ≥ t} =
1

t

t∫
0

Pr {Yk ≥ t− u}du

=
1

t

t∫
0

[1−G(t− u)]du (5.21)

=
1

t

t∫
0

[1−G(z)]dz.

Thus, explicitly writing the binomial distribution, we have

Pr {M(t)= m|X(t)= n} =
n!

m!(n−m)!
pm(1− p)n−m,

with pn given by (5.21). Finally,

Pr {M(t)= m} =
∞∑

n=m

Pr {M(t)= m|X(t)= n}Pr {X(t)= n}

=

∞∑
n=m

n!

m!(n−m)!
pm(1− p)n−m (λt)ne−λt

n!
(5.22)

= e−λt (λpt)m

m!

∞∑
n=m

(1− p)n−m(λt)n−m

(n−m)!
.

The infinite sum is an exponential series and reduces according to

∞∑
n=m

(1− p)n−m(λt)n−m

(n−m)!
=

∞∑
j=0

[λt(1− p)] j

j!
= eλt(1−p),

and this simplifies (5.22) to

Pr{M(t)= m} =
e−λpt(λpt)m

m!
for m= 0,1, . . . .

In words, the number of particles existing at time t has a Poisson distribution with
mean

λpt = λ

t∫
0

[1−G(y)]dy. (5.23)
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It is often relevant to let t→∞ in (5.23) and determine the corresponding long
run distribution. Let µ= E[Yk]=

∫
∞

0 [1−G(y)]dy be the mean lifetime of an alpha
particle. It is immediate from (5.23) that as t→∞, the distribution of M(t) converges
to the Poisson distribution with parameter λµ. A great simplification has taken place.
In the long run, the probability distribution for existing particles depends only on the
mean lifetimeµ, and not otherwise on the lifetime distribution G(y). In practical terms,
this statement implies that in order to apply this model, only the mean lifetime µ need
be known.

5.4.1 Shot Noise

The shot noise process is a model for fluctuations in electrical currents that are due to
chance arrivals of electrons to an anode. Variants of the phenomenon arise in physics
and communication engineering. Assume:

1. Electrons arrive at an anode according to a Poisson process {X(t); t ≥ 0} of constant rate λ;
2. An arriving electron produces a current whose intensity x time units after arrival is given by

the impulse response function h(x).

The intensity of the current at time t is, then, the shot noise

I(t)=
X(t)∑
k=1

h(t−Wk), (5.24)

where W1,W2 are the arrival times of the electrons.
Common impulse response functions include triangles, rectangles, decaying expo-

nentials of the form

h(x)= e−θx, x> 0,

where θ > 0 is a parameter, and power law shot noise for which

h(x)= x−θ , for x> 0.

We will show that for a fixed time point t, the shot noise I(t) has the same proba-
bility distribution as a certain random sum that we now describe. Independent of the
Poisson process X(t), let U1,U2, . . . be independent random variables, each uniformly
distributed over the interval (0, t], and define εk = h(Uk) for k = 1,2, . . . . The claim is
that I(t) has the same probability distribution as the random sum

S(t)= ε1+ ·· ·+ εX(t). (5.25)

With this result in hand, the mean, variance, and distribution of the shot noise I(t)
may be readily obtained using the results on random sums developed in Chapter 2,
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Section 2.3. For example, Chapter 2, equation (2.30) immediately gives us

E[I(t)]= E[S(t)]= λtE[h(U1)]= λ

t∫
0

h(u)du

and

Var[I(t)]= λt
{

Var[h(U1)]+E[h(U1)]
2
}

= λtE
[
h(U1)

2
]
= λ

t∫
0

h(u)2du.

In order to establish that the shot noise I(t) and the random sum S(t) share the same
probability distribution, we need to show that Pr{I(t)≤ x} = Pr {S(t)≤ x} for a fixed
t > 0. Begin with

Pr {I(t)≤ x} = Pr


X(t)∑
k=1

h(t−Wk)≤ x


=

∞∑
n=0

Pr


X(t)∑
k=1

h(t−Wk)≤ x|X(t)= n

Pr {X(t)= n}

=

∞∑
n=0

Pr

{
n∑

k=1

h(t−Wk)≤ x|X(t)= n

}
Pr {X(t)= n},

and now invoking Theorem 5.7,

=

∞∑
n=0

Pr

{
n∑

k=1

h(t−Uk)≤ x

}
Pr {X(t)= n}

=

∞∑
n=0

Pr

{
n∑

k=1

h(Uk)≤ x

}
Pr {X(t)= n}

(because Uk and t−Uk have the same distribution)

=

∞∑
n=0

Pr {ε1+ ·· ·+ εn ≤ x}Pr {X(t)= n}

= Pr
{
ε1+ ·· ·+ εX(t) ≤ x

}
= Pr {S(t)≤ x} ,

which completes the claim.
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5.4.2 Sum Quota Sampling

A common procedure in statistical inference is to observe a fixed number n of inde-
pendent and identically distributed random variables X1, . . . ,Xn and use their sample
mean

Xn =
X1+ ·· ·+Xn

n

as an estimate of the population mean or expected value E[X1]. But suppose we are
asked to advise an airline that wishes to estimate the failure rate in service of a par-
ticular component, or, what is nearly the same thing, to estimate the mean service
life of the part. The airline monitors a new plane for two years and observes that the
original component lasted 7 months before failing. Its replacement lasted 5 months,
and the third component lasted 9 months. No further failures were observed during the
remaining 3 months of the observation period. Is it correct to estimate the mean life in
service as the observed average (7+ 5+ 9)/3= 7 months?

This airline scenario provides a realistic example of a situation in which the sample
size is not fixed in advance but is determined by a preassigned quota t > 0. In sum
quota sampling, a sequence of independent and identically distributed nonnegative
random variables X1,X2, . . . is observed sequentially, with the sampling continuing as
long as the sum of the observations is less than the quota t. Let this random sample
size be denoted by N(t). Formally,

N(t)=max {n≥ 0;X1+ ·· ·+Xn < t} .

The sample mean is

XN(t) =
WN(t)

N(t)
=

X1+ ·· ·+XN(t)

N(t)
.

Of course it is possible that X1 ≥ t, and then N(t)= 0, and the sample mean is
undefined. Thus, we must assume, or condition on, the event that N(t)≥ 1. An impor-
tant question in statistical theory is whether or not this sample mean is unbiased. That
is, how does the expected value of this sample mean relate to the expected value of,
say, X1?

In general, the determination of the expected value of the sample mean under sum
quota sampling is very difficult. It can be carried out, however, in the special case in
which the individual X summands are exponentially distributed with common param-
eter λ, so that N(t) is a Poisson process. One hopes that the results in the special case
will shed some light on the behavior of the sample mean under other distributions.

The key is the use of Theorem 5.7 to evaluate the conditional expectation

E[WN(t)|N(t)= n]= E[max {U1, . . . ,Un}]

= t

(
n

n+ 1

)
,
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where U1, . . . ,Un are independent and uniformly distributed over the interval (0, t].
Note also that

Pr {N(t)= n|N(t) > 0} =
(λt)ne−λt

n!(1− e−λt)
.

Then

E

[
WN(t)

N(t)

∣∣∣∣N(t) > 0

]
=

∞∑
n=1

E

[
Wn

n

∣∣∣∣N(t)= n

]
Pr {N(t)= n|N(t) > 0}

=

∞∑
n=1

t

(
n

n+ 1

)(
1

n

){
(λt)ne−λt

n!(1− e−λt)

}

=
1

λ

(
1

eλt− 1

) ∞∑
n=1

(λt)n+1

(n+ 1)!

=
1

λ

(
1

eλt− 1

)(
eλt
− 1− λt

)
=

1

λ

(
1−

λt

eλt− 1

)
.

We can perhaps more clearly see the effect of the sum quota sampling if we express the
preceding calculation in terms of the ratio of the bias to the true mean E[X1]= 1/λ.
We then have

E[X1]−E[XN(t)]

E[X1]
=

λt

eλt− 1
=

E [N(t)]

eE[N(t)]− 1
.

The left side is the fraction of bias, and the right side expresses this fraction bias as a
function of the expected sample size under sum quota sampling. The following table
relates some values:

Fraction Bias E[N(t)]

0.58 1
0.31 2
0.16 3
0.17 4
0.03 5
0.015 6
0.0005 10

In the airline example, we observed N(t)= 3 failures in the two-year period, and
upon consulting the above table, we might estimate the fraction bias to be something
on the order of −16%. Since we observed XN(t) = 7, a more accurate estimate of the
mean time between failures (MTBF = E[X1]) might be 7/.84= 8.33, an estimate that
attempts to correct, at least on average, for the bias due to the sampling method.
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Looking once again at the table, we may conclude in general, that the bias due to
sum quota sampling can be made acceptably small by choosing the quota t sufficiently
large so that, on average, the sample size so selected is reasonably large. If the indi-
vidual observations are exponentially distributed, the bias can be kept within 0.05%
of the true value, provided that the quota t is large enough to give an average sample
size of 10 or more.

Exercises

5.4.1 Let {X(t); t ≥ 0} be a Poisson process of rate λ. Suppose it is known that
X(1)= n. For n= 1,2, . . . , determine the mean of the first arrival time W1.

5.4.2 Let {X(t); t ≥ 0} be a Poisson process of rate λ. Suppose it is known that
X(1)= 2. Determine the mean of W1W2, the product of the first two arrival
times.

5.4.3 Customers arrive at a certain facility according to a Poisson process of rate λ.
Suppose that it is known that five customers arrived in the first hour. Determine
the mean total waiting time E[W1+W2+ ·· ·+W5].

5.4.4 Customers arrive at a service facility according to a Poisson process of inten-
sity λ. The service times Y1,Y2, . . . of the arriving customers are indepen-
dent random variables having the common probability distribution function
G(y)= Pr {Yk ≤ y}. Assume that there is no limit to the number of customers
that can be serviced simultaneously; i.e., there is an infinite number of servers
available. Let M(t) count the number of customers in the system at time t. Argue
that M(t) has a Poisson distribution with mean λpt, where

p= t−1

t∫
0

[1−G(y)]dy.

5.4.5 Customers arrive at a certain facility according to a Poisson process of rate λ.
Suppose that it is known that five customers arrived in the first hour. Each cus-
tomer spends a time in the store that is a random variable, exponentially dis-
tributed with parameter α and independent of the other customer times, and
then departs. What is the probability that the store is empty at the end of this
first hour?

Problems

5.4.1 Let W1,W2, . . . be the event times in a Poisson process {X(t); t ≥ 0} of rate λ.
Suppose it is known that X(1)= n. For k < n, what is the conditional density
function of W1, . . . ,Wk−1,Wk+1, . . . ,Wn, given that Wk = w?

5.4.2 Let {N(t); t ≥ 0} be a Poisson process of rate λ, representing the arrival process
of customers entering a store. Each customer spends a duration in the store that
is a random variable with cumulative distribution function G. The customer
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durations are independent of each other and of the arrival process. Let X(t)
denote the number of customers remaining in the store at time t, and let Y(t) be
the number of customers who have arrived and departed by time t. Determine
the joint distribution of X(t) and Y(t).

5.4.3 Let W1,W2, . . . be the waiting times in a Poisson process {X(t); t ≥ 0} of
rate λ. Under the condition that X(1)= 3, determine the joint distribution of
U =W1/W2 and V = (1−W3)/(1−W2).

5.4.4 Let W1,W2, . . . be the waiting times in a Poisson process {X(t); t ≥ 0} of
rate λ. Independent of the process, let Z1,Z2, . . . be independent and identi-
cally distributed random variables with common probability density function
f (x),0< x<∞. Determine Pr{Z > z}, where

Z =min {W1+Z1,W2+Z2, . . .}.

5.4.5 Let W1,W2, . . . be the waiting times in a Poisson process {N(t); t ≥ 0} of rate
λ. Determine the limiting distribution of W1, under the condition that N(t)= n
as n→∞ and t→∞ in such a way that n/t = β > 0.

5.4.6 Customers arrive at a service facility according to a Poisson process of rate λ
customers/hour. Let X(t) be the number of customers that have arrived up to
time t. Let W1,W2, . . . be the successive arrival times of the customers.
(a) Determine the conditional mean E[W1|X(t)= 2].
(b) Determine the conditional mean E[W3|X(t)= 5].
(c) Determine the conditional probability density function for W2, given that

X(t)= 5.
5.4.7 Let W1,W2, . . . be the event times in a Poisson process {X(t); t ≥ 0} of rate λ,

and let f (w) be an arbitrary function. Verify that

E

X(t)∑
i=1

f (Wi)

= λ t∫
0

f (w)dw.

5.4.8 Electrical pulses with independent and identically distributed random ampli-
tudes ξ1,ξ2, . . . arrive at a detector at random times W1,W2, . . . according to a
Poisson process of rate λ. The detector output θk(t) for the kth pulse at time t is

θk(t)=

{
0 for t <Wk,

ξk exp {−α(t−Wk)} for t ≥Wk.

That is, the amplitude impressed on the detector when the pulse arrives is ξk,
and its effect thereafter decays exponentially at rate α. Assume that the detector
is additive, so that if N(t) pulses arrive during the time interval [0, t], then the
output at time t is

Z(t)=
N(t)∑
k=1

θk(t).
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Determine the mean output E[Z(t)] assuming N(0)= 0. Assume that the
amplitudes ξ1,ξ2, . . . are independent of the arrival times W1,W2, . . . .

5.4.9 Customers arrive at a service facility according to a Poisson process of rate λ
customers per hour. Let N(t) be the number of customers that have arrived up
to time t, and let W1,W2, . . . be the successive arrival times of the customers.
Determine the expected value of the product of the waiting times up to time t.
(Assume that W1W2 · · ·WN(t) = 1 when N(t)= 0.)

5.4.10 Compare and contrast the example immediately following Theorem 5.7, the
shot noise process of Section 5.4.1, and the model of Problem 4.8. Can you
formulate a general process of which these three examples are special cases?

5.4.11 Computer Challenge Let U0,U1, . . . be independent random variables, each
uniformly distributed on the interval (0,1). Define a stochastic process {Sn}

recursively by setting

S0 = 0 and Sn+1 = Un(1+ Sn) for n> 0.

(This is an example of a discrete-time, continuous-state, Markov process.)
When n becomes large, the distribution of Sn approaches that of a random vari-
able S= S∞, and S must have the same probability distribution as U(1+ S),
where U and S are independent. We write this in the form

S
D
= U(1+ S),

from which it is easy to determine that E[S]= 1,Var[S]= 1
2 , and even (the

Laplace transform)

E
[
e−θS

]
= exp

−
θ∫

0+

1− e−u

u
du

, θ > 0.

The probability density function f (s) satisfies

f (s)= 0 for s≤ 0, and

df

ds
=

1

s
f (s− 1), for s> 0.

What is the 99th percentile of the distribution of S? (Note: Consider the shot
noise process of Section 5.4.1. When the Poisson process has rate λ= 1 and
the impulse response function is the exponential h(x)= exp{−x}, then the shot
noise I(t) has, in the limit for large t, the same distribution as S.)

5.5 Spatial Poisson Processes

In this section, we define some versions of multidimensional Poisson processes and
describe some examples and applications.
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Let S be a set in n-dimensional space and let A be a family of subsets of S. A point
process in S is a stochastic process N(A) indexed by the sets A in A and having the
set of nonnegative integers {0,1,2, . . .} as its possible values. We think of “points”
being scattered over S in some random manner and of N(A) as counting the number
of points in the set A. Because N(A) is a counting function, there are certain obvious
requirements that it must satisfy. For example, if A and B are disjoint sets in A whose
union A∪B is also in A , then it must be that N(A∪B)= N(A)+N(B). In words, the
number of points in A or B equals the number of points in A plus the number of points
in B when A and B are disjoint.

The one-dimensional case, in which S is the positive half line and A comprises
all intervals of the form A= (s, t], for 0≤ s< t, was introduced in Section 5.3. The
straightforward generalization to the plane and three-dimensional space that is now
being discussed has relevance when we consider the spatial distribution of stars or
galaxies in astronomy, of plants or animals in ecology, of bacteria on a slide in
medicine, and of defects on a surface or in a volume in reliability engineering.

Let S be a subset of the real line, two-dimensional plane, or three-dimensional
space; let A be the family of subsets of S and for any set A in A ; let |A| denote the size
(length, area, or volume, respectively) of A. Then, {N(A);A in A } is a homogeneous
Poisson point process of intensity λ > 0 if

1. for each A in A , the random variable N(A) has a Poisson distribution with parameter λ|A|;
2. for every finite collection {A1, . . . ,An} of disjoint subsets of S, the random variables N(A1),

. . . ,N(An) are independent.

In Section 5.2, the law of rare events was invoked to derive the Poisson process
as a consequence of certain physically plausible postulates. This implication serves to
justify the Poisson process as a model in those situations where the postulates may
be expected to hold. An analogous result is available in the multidimensional case at
hand. Given an arbitrary point process {N(A);A in A }, the required postulates are as
follows:

1. The possible values for N(A) are the nonnegative integers {0,1,2, . . .} and 0< Pr{N(A)=
0}< 1 if 0< |A|<∞.

2. The probability distribution of N(A) depends on the set A only through its size (length, area,
or volume) |A|, with the further property that Pr{N(A)≥ 1} = λ|A| + o(|A|) as |A| ↓ 0.

3. For m= 2,3, . . . , if A1,A2, . . . ,Am are disjoint regions, then N(A1), N(A2), . . . ,N(Am) are
independent random variables and N(A1 ∪A2 ∪ ·· · ∪Am)= N(A1)+N(A2)+ ·· ·+N(Am).

4.
lim
|A|→0

Pr{N(A)≥ 1}

Pr{N(A)= 1}
= 1.

The motivation and interpretation of these postulates is quite evident. Postulate 2
asserts that the probability distribution of N(A) does not depend on the shape or loca-
tion of A, but only on its size. Postulate 3 requires that the outcome in one region not
influence or be influenced by the outcome in a second region that does not overlap the
first. Postulate 4 precludes the possibility of two points occupying the same location.

If a random point process N(A) defined with respect to subsets A of Euclidean
n-space satisfies Postulates 1 through 4, then N(A) is a homogeneous Poisson point
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process of intensity λ > 0, and

Pr{N(A)= k} =
e−λ|A|(λ|A|)k

k!
for k = 0,1, . . . . (5.26)

As in the one-dimensional case, homogeneous Poisson point processes in n-
dimensions are highly amenable to analysis, and many results are known for them.
We elaborate a few of these consequences next, beginning with the uniform distri-
bution of a single point. Consider a region A of positive size |A|> 0, and suppose it
is known that A contains exactly one point; i.e., N(A)= 1. Where in A is this point
located? We claim that the point is uniformly distributed in the sense that

Pr{N(B)= 1|N(A)= 1} =
|B|

|A|
for any set B⊂ A. (5.27)

In words, the probability of the point being in any subset B of A is proportional to
the size of B; i.e., the point is uniformly distributed in A. The uniform distribution
expressed in (5.27) is an immediate consequence of elementary conditional probability
manipulations. We write A= B∪C, where B is an arbitrary subset of A and C is the
portion of A not included in B. Then, B and C are disjoint, so that N(B) and N(C) are
independent Poisson random variables with respective means λ|B| and λ|C|. Then

Pr{N(B)= 1|N(A)= 1} =
Pr{N(B)= 1,N(C)= 0}

Pr{N(A)= 1}

=
λ|B|e−λ|B|e−λ|c|

λ|A|e−λ|A|

=
|B|

|A|
(because |B| + |C| = |A|),

and the proof is complete.
The generalization to n points in a region A is stated as follows. Consider a set A

of positive size |A|> 0 and containing N(A)= n≥ 1 points. Then, these n points are
independent and uniformly distributed in A in the sense that for any disjoint partition
A1, . . . ,Am of A, where A1 ∪ ·· · ∪Am = A, and any positive integers k1, . . . ,km, where
k1+ ·· ·+ km = n, we have

Pr{N(A1)= k1, . . . ,N(Am)= km|N(A)= n} (5.28)

=
n!

k1! · · ·km!

(
|A1|

|A|

)k1

· · ·

(
|Am|

|A|

)km

.

Equation (5.28) expresses the multinomial distribution for the conditional distribution
of N(A1), . . . ,N(Am) given that N(A)= n.

Example An Application in Astronomy Consider stars distributed in space in
accordance with a three-dimensional Poisson point process of intensity λ > 0.
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Let x and y designate general three-dimensional vectors, and assume that the
light intensity exerted at x by a star located at y is f (x,y,α)= α/‖x− y‖2 =
α/
[
(x1− y1)

2
+ (x2− y2)

2
+ (x3− y3)

2
]
, where α is a random parameter depending

on the intensity of the star at y. We assume that the intensities α associated with differ-
ent stars are independent, identically distributed random variables possessing a com-
mon mean µα and variance σ 2

α . We also assume that the combined intensity exerted at
the point x due to light created by different stars accumulates additively. Let Z(x,A)
denote the total light intensity at the point x due to signals emanating from all sources
located in region A. Then

Z(x,A)=
N(A)∑
r=1

f (x,yr,αr)

(5.29)

=

N(A)∑
r=1

αr

‖x− yr‖
2
,

where yr is the location of the rth star in A. We recognize (5.29) as a random sum, as
discussed in Chapter 2, Section 2.3.2. Accordingly, we have the mean intensity at x
given by

E[Z(x,A)]= (E[N(A)])(E[ f (x,y,α)]). (5.30)

Note that E[N(A)]= λ|A|, while because we have assumed α and y to be independent,

E[ f (x,y,α)]= E[α]E
[
‖x− y‖−2

]
.

But as a consequence of the Poisson distribution of stars in space, we may take y to be
uniformly distributed in A. Thus

E
[
‖x− y‖−2

]
=

1

|A|

∫
A

dy
‖x− y‖2

.

With µα = E[α], then (5.30) reduces to

E[Z(x,A)]= λµα

∫
A

dy

‖x− y‖2
.

Exercises

5.5.1 Bacteria are distributed throughout a volume of liquid according to a Poisson
process of intensity θ = 0.6 organisms per mm3. A measuring device counts the
number of bacteria in a 10 mm3 volume of the liquid. What is the probability
that more than two bacteria are in this measured volume?
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5.5.2 Customer arrivals at a certain service facility follow a Poisson process of
unknown rate. Suppose it is known that 12 customers have arrived during the
first 3 h. Let Ni be the number of customers who arrive during the ith hour,
i= 1,2,3. Determine the probability that N1 = 3,N2 = 4, and N3 = 5.

5.5.3 Defects (air bubbles, contaminants, chips) occur over the surface of a varnished
tabletop according to a Poisson process at a mean rate of one defect per top. If
two inspectors each check separate halves of a given table, what is the probabil-
ity that both inspectors find defects?

Problems

5.5.1 A piece of a fibrous composite material is sliced across its circular cross section
of radius R, revealing fiber ends distributed across the circular area according to
a Poisson process of rate 100 fibers per cross section. The locations of the fibers
are measured, and the radial distance of each fiber from the center of the circle
is computed. What is the probability density function of this radial distance X
for a randomly chosen fiber?

5.5.2 Points are placed on the surface of a circular disk of radius one according
to the following scheme. First, a Poisson distributed random variable N is
observed. If N = n, then n random variables θ1, . . . , θn are independently gen-
erated, each uniformly distributed over the interval [0,2π), and n random vari-
ables R1, . . . ,Rn are independently generated, each with the triangular density
f (r)= 2r,0< r < 1. Finally, the points are located at the positions with polar
coordinates (Ri,θi), i= 1, . . . ,n. What is the distribution of the resulting point
process on the disk?

5.5.3 Let
{
N(A); A ∈ R2

}
be a homogeneous Poisson point process in the plane,

where the intensity is λ. Divide the (0, t]× (0, t] square into n2 boxes of side
length d = t/n. Suppose there is a reaction between two or more points when-
ever they are located within the same box. Determine the distribution for the
number of reactions, valid in the limit as t→∞ and d→ 0 in such a way that
td→ µ > 0.

5.5.4 Consider spheres in three-dimensional space with centers distributed according
to a Poisson distribution with parameter λ|A|, where |A| now represents the
volume of the set A. If the radii of all spheres are distributed according to F(r)
with density f (r) and finite third moment, show that the number of spheres that
cover a point t is a Poisson random variable with parameter 4

3λπ
∫
∞

0 r3f (r)dr.
5.5.5 Consider a two-dimensional Poisson process of particles in the plane with inten-

sity parameter ν. Determine the distribution FD(x) of the distance between a
particle and its nearest neighbor. Compute the mean distance.

5.5.6 Suppose that stars are distributed in space following a Poisson point process of
intensity λ. Fix a star alpha and let R be the distance from alpha to its nearest
neighbor. Show that R has the probability density function

fR(x)= (4λπx2)exp

{
−4λπx3

3

}
, x> 0.
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5.5.7 Consider a collection of circles in the plane whose centers are distributed
according to a spatial Poisson process with parameter λ|A|, where |A| denotes
the area of the set A. (In particular, the number of centers ξ(A) in the set A
follows the distribution law Pr{ξ(A)= k} = e−λ|A

[
(λ|A|)k/k!

]
.) The radius of

each circle is assumed to be a random variable independent of the location of
the center of the circle, with density function f (r) and finite second moment.
(a) Show that C(r), defined to be the number of circles that cover the origin and

have centers at a distance less than r from the origin, determines a variable-
time Poisson process, where the time variable is now taken to be the distance r.

Hint: Prove that an event occurring between r and r+ dr (i.e., there is
a circle that covers the origin and whose center is in the ring of radius r
to r+ dr) has probability λ2πr dr

∫
∞

r f (ρ)dρ+ o(dr), and events occurring
over disjoint intervals constitute independent random variables. Show that
C(r) is a variable-time (nonhomogeneous) Poisson process with parameter

λ(r)= 2πλr

∞∫
r

f (ρ)dρ.

(b) Show that the number of circles that cover the origin is a Poisson random
variable with parameter λ

∫
∞

0 πr2f (r)dr.

5.6 Compound and Marked Poisson Processes

Given a Poisson process X(t) of rate λ > 0, suppose that each event has associated with
it a random variable, possibly representing a value or a cost. Examples will appear
shortly. The successive values Y1,Y2, . . . are assumed to be independent, independent
of the Poisson process, and random variables sharing the common distribution function

G(y)= Pr {Yk ≤ y} .

A compound Poisson process is the cumulative value process defined by

Z(t)=
X(t)∑
k=1

Yk for t ≥ 0. (5.31)

A marked Poisson process is the sequence of pairs (Wi,Y1), (W2,Y2), . . . , where
W1,W2, . . . are the waiting times or event times in the Poisson process X(t).

Both compound Poisson and marked Poisson processes appear often as models of
physical phenomena.

5.6.1 Compound Poisson Processes

Consider the compound Poisson process Z(t)=6x(t)
k=1Yk. If λ > 0 is the rate for the

process X(t) and µ= E[Y1] and ν2
= Var[Y1] are the common mean and variance for

Y1,Y2, . . . then the moments of Z(t) can be determined from the random sums formulas
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of Chapter 2, Section 2.3.2 and are

E[Z(t)]= λµt; Var[Z(t)]= λ
(
ν2
+µ2

)
t. (5.32)

Examples
(a) Risk Theory Suppose claims arrive at an insurance company in accordance with

a Poisson process having rate λ. Let Yk be the magnitude of the kth claim. Then,
Z(t)=6X(t)

k=1 Yk represents the cumulative amount claimed up to time t.
(b) Stock Prices Suppose that transactions in a certain stock take place according to

a Poisson process of rate λ. Let Yk denote the change in market price of the stock
between the kth and (k− 1)th transaction.

The random walk hypothesis asserts that Y1,Y2, . . . are independent random variables.
The random walk hypothesis, which has a history dating back to 1900, can be deduced
formally from certain assumptions describing a “perfect market.”

Then, Z(t)=6X(t)
k=1 Yk represents the total price change up to time t.

This stock price model has been proposed as an explanation for why stock price
changes do not follow a Gaussian (normal) distribution.

The distribution function for the compound Poisson process Z(t)=6X(t)
k=1Yk can be

represented explicitly after conditioning on the values of X(t). Recall the convolution
notation

G(n)(y)= Pr {Y1+ ·· ·+Yn ≤ y}

=

+∞∫
−∞

G(n−1)(y− z)dG(z) (5.33)

with

G(0)(y)=

{
1 for y≥ 0,
0 for y< 0.

Then

Pr{Z(t)≤ z} = Pr


X(t)∑
k=1

Yk ≤ z


=

∞∑
n=0

Pr


X(t)∑
k=1

Yk ≤ z|X(t)= n

 (λt)ne−λt

n!
(5.34)

=

∞∑
n=0

(λt)ne−λt

n!
G(n)(z) (since X(t) is independent

of Y1,Y2, . . .).

Example A Shock Model Let X(t) be the number of shocks to a system up to time t
and let Yk be the damage or wear incurred by the kth shock. We assume that damage
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is positive, i.e., that Pr{Yk ≥ 0} = 1, and that the damage accumulates additively, so
that Z(t)=6X(t)

k=1Yk represents the total damage sustained up to time t. Suppose that
the system continues to operate as long as this total damage is less than some critical
value a and fails in the contrary circumstance. Let T be the time of system failure.

Then

{T > t} if and only if {Z(t) < a} . (Why?) (5.35)

In view of (5.34) and (5.35), we have

Pr {T > t} =
∞∑

n=0

(λt)ne−λt

n!
G(n)(a).

All summands are nonnegative, so we may interchange integration and summation to
get the mean system failure time

E[T]=

∞∫
0

Pr{T > t}dt

=

∞∑
n=0

 ∞∫
0

(λt)ne−λt

n!
dt

G(n)(a)

= λ−1
∞∑

n=0

G(n)(a).

This expression simplifies greatly in the special case in which Y1,Y2, . . . are each
exponentially distributed according to the density gY(y)= µe−µy for y≥ 0. Then, the
sum Y1+ ·· ·+Yn has the gamma distribution

G(n)(z)= 1−
n−1∑
k=0

(µz)ke−µz

k!
=

∞∑
k=n

(µz)ke−µz

k!
,

and

∞∑
n=0

G(n)(a)=
∞∑

n=0

∞∑
k=n

(µa)ke−µa

k!

=

∞∑
k=0

k∑
n=0

(µa)ke−µa

k!

=

∞∑
k=0

(1+ k)
(µa)ke−µa

k!

= 1+µa.
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When Y1,Y2, . . . are exponentially distributed, then

E[T]=
1+µa

λ
.

5.6.2 Marked Poisson Processes

Again suppose that a random variable Yk is associated with the kth event in a Poisson
process of rate λ. We stipulate that Y1,Y2, . . . are independent, independent of the
Poisson process, and share the common distribution function

G(y)= Pr {Yk ≤ y} .

The sequence of pairs (W1,Y1), (W2,Y2), . . . is called a marked Poisson process.
We begin the analysis of marked Poisson processes with one of the simplest cases.

For a fixed value p(0< p< 1), suppose

Pr {Yk = 1} = p, Pr {Yk = 0} = q= 1− p.

Now consider separately the processes of points marked with ones and of points
marked with zeros. In this case, we can define the relevant Poisson processes explic-
itly by

X1(t)=
X(t)∑
k=1

Yk and X0(t)= X(t)−X1(t).

Then, nonoverlapping increments in X1(t) are independent random variables,
X1(0)= 0, and finally, Theorem 5.2 applies to assert that X1(t) has a Poisson distribu-
tion with mean λpt. In summary, X1(t) is a Poisson process with rate λp, and the par-
allel argument shows that X0(t) is a Poisson process with rate λ(1− p). What is even
more interesting and surprising is that X0(t) and X1(t) are independent processes!
The relevant property to check is that Pr{X0(t)= j and X1(t)= k} = Pr {X0(t)= j}×
Pr{X1(t)= k} for j,k = 0,1, . . . . We establish this independence by writing

Pr {X0(t)= j,X1(t)= k} = Pr {X0(t)= j+ k,X1(t)= k}

= Pr {X1(t)= k|X(t)= j+ k}Pr {X(t)= j+ k}

=
( j+ k)!

j!k!
pk(1− p) j (λt) j+ke−λt

( j+ k)!

=

[
e−λpt(λpt)k

k!

][
e−λ(1−p)t(λ(1− p)t) j

j!

]
= Pr {X1(t)= k}Pr {X0(t)= j}

for j,k = 0,1, . . . .
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Example Customers enter a store according to a Poisson process of rate λ= 10
per hour. Independently, each customer buys something with probability p= 0.3 and
leaves without making a purchase with probability q= 1− p= 0.7. What is the prob-
ability that during the first hour 9 people enter the store and that 3 of these people
make a purchase and 6 do not?

Let X1 = X1(1) be the number of customers who make a purchase during the
first hour and X0 = X0(1) be the number of people who do not. Then, X1 and X0
are independent Poisson random variables having respective rates 0.3(10)= 3 and
0.7(10)= 7. According to the Poisson distribution,

Pr {X1 = 3} =
33e−3

3!
= 0.2240,

Pr {X0 = 6} =
76e−7

6!
= 0.1490,

and

Pr {X1 = 3,X0 = 6} = Pr {X1 = 3}Pr {X0 = 6} = (0.2240)(0.1490)= 0.0334.

In our study of marked Poisson processes, let us next consider the case where the value
random variables Y1,Y2, . . . are discrete, with possible values 0,1,2, . . . and

Pr {Yn = k} = ak > 0 for k = 0,1, . . . , with
∑

k

ak = 1.

In Figure 5.9, the original Poisson event times W1,W2, . . . are shown on the bottom
axis. Then, a point is placed in the (t,y) plane at (Wn,Yn) for every n. For every integer
k = 0,1,2, . . . , one obtains a point process that corresponds to the times Wn for which
Yn = k. The same reasoning as in the zero–one case applies to imply that each of these

W1

Y2= 3

Y1= 2

0

1

2

3

W2 W3 W4

Figure 5.9 A marked Poisson process. W1,W2, . . . are the event times in a Poisson process
of rate λ. The random variables Y1,Y2, . . . are the markings, assumed to be independent and
identically distributed, and independent of the Poisson process.
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processes is Poisson, the rate for the kth process being λak, and that processes for
distinct values of k are independent.

To state the corresponding decomposition result when the values Y1,Y2, . . . are
continuous random variables requires a higher level of sophistication, although the
underlying ideas are basically the same. To set the stage for the formal statement, we
first define what we mean by a nonhomogeneous Poisson point process in the plane,
thus extending the homogeneous processes of the previous section. Let θ = θ(x,y) be
a nonnegative function defined on a region S in the (x,y) plane. For each subset A
of S, let µ(A)=

∫∫
A θ(x,y)dxdy be the volume under θ(x,y) enclosed by A. A non-

homogeneous Poisson point process of intensity function θ(x,y) is a point process
{N(A);A⊂ S} for which

1. for each subset A of S, the random variable N(A) has a Poisson distribution with mean µ(A);
2. for disjoint subsets A1, . . . ,Am of S, the random variables N(A1), . . . ,N(Am) are independent.

It is easily seen that the homogeneous Poisson point process of intensity λ corre-
sponds to the function θ(x,y) being constant, and θ(x,y)= λ for all x,y.

With this definition in hand, we state the appropriate decomposition result for
general marked Poisson processes.

Theorem 5.8. Let (W1,Y1), (W2,Y2), . . . be a marked Poisson process where W1,

W2, . . . are the waiting times in a Poisson process of rate λ and Y1,Y2, . . . are indepen-
dent identically distributed continuous random variables having probability density
function g(y). Then (W1,Y1), (W2,Y2), . . . form a two-dimensional nonhomogeneous
Poisson point process in the (t,y) plane, where the mean number of points in a region
A is given by

µ(A)=
∫∫
A

λg(y)dydt. (5.36)

Figure 5.10 diagrams the scene.

W1 W3 W4 W5W2

Y3
Y1

Y2

t

y

Figure 5.10 A marked Poisson process.
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Theorem 5.8 asserts that the numbers of points in disjoint intervals are independent
random variables. For example, the waiting times corresponding to positive values
Y1,Y2, . . . form a Poisson process, as do the times associated with negative values,
and these two processes are independent.

Example Crack Failure The following model is proposed to describe the failure time
of a sheet or volume of material subjected to a constant stress σ . The failure time is
viewed in two parts, crack initiation and crack propagation.

Crack initiation occurs according to a Poisson process whose rate per unit time and
unit volume is a constant λσ > 0 depending on the stress level σ . Then, crack initiation
per unit time is a Poisson process of rate λσ |V|, where |V| is the volume of material
under consideration. We let W1,W2, . . . be the times of crack initiation.

Once begun, a crack grows at a random rate until it reaches a critical size, at which
instant structural failure occurs. Let Yk be the time to reach critical size for the kth
crack. The cumulative distribution function Gσ (y)= Pr {Yk ≤ y} depends on the con-
stant stress level σ .

We assume that crack initiations are sufficiently sparse as to make Y1,Y2, . . . inde-
pendent random variables. That is, we do not allow two small cracks to join and form
a larger one.

The structural failure time Z is the smallest of W1+Y1,W2+Y2, . . . . It is not nec-
essarily the case that the first crack to appear will cause system failure. A later crack
may grow to critical size faster.

In the (t,y) plane, the event {min {Wk+Yk}> z} corresponds to no points falling in
the triangle 4= {(t,y) : t+ y≤ z, t ≥ 0,y≥ 0}, as shown in Figure 5.11.

The number of points N(4) falling in the triangle4 has a Poisson distribution with
mean µ(4) given, according to (5.36), by

µ(4)=

∫∫
4

λσ |V|dsgσ (u)du

=

z∫
0

λσ |V|


z−s∫
0

gσ (u)du

ds

W1 W2 W3
z

z

t

y

t + y = z

Figure 5.11 A crack failure model.
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= λσ |V|

z∫
0

Gσ (z− s)ds

= λσ |V|

z∫
0

Gσ (ν)dν.

From this we obtain the cumulative distribution function for structural failure time,

Pr{Z ≤ z} = 1−Pr {Z > z} = 1−Pr {N(4)= 0}

= 1− exp

−λσ |V|
z∫

0

Gσ (ν)dν

.
Observe the appearance of the so-called size effect in the model, wherein the struc-

ture volume |V| affects the structural failure time even at constant stress level σ .
The parameter λσ and distribution function Gσ (y) would require experimental
determination.

Example The Strength Versus Length of Filaments It was noted that the logarithm
of mean tensile strength of brittle fibers, such as boron filaments, in general varies
linearly with the logarithm of the filament length, but that this relation did not hold for
short filaments. It was suspected that the breakdown in the log linear relation might
be due to testing or measurement problems, rather than being an inherent property of
short filaments. Evidence supporting this idea was the observation that short filaments
would break in the test clamps, rather than between them as desired, more often than
would long filaments. Some means of correcting observed mean strengths to account
for filaments breaking in, rather than between, the clamps was desired. It was decided
to compute the ratio between the actual mean strength and an ideal mean strength,
obtained under the assumption that there was no stress in the clamps, as a correction
factor.

Since the molecular bonding strength is several orders of magnitude higher than
generally observed strengths, it was felt that failure typically was caused by flaws.
There are a number of different types of flaws, both internal flaws such as voids, inclu-
sions, and weak grain boundaries, and external, or surface, flaws such as notches and
cracks that cause stress concentrations. Let us suppose that flaws occur independently
in a Poisson manner along the length of the filament. We let Yk be the strength of
the filament at the kth flaw and suppose Yk has the cumulative distribution function
G(y),y> 0. We have plotted this information in Figure 5.12. The flaws reduce the
strength. Opposing the strength is the stress in the filament. Ideally, the stress should
be constant along the filament between the clamp faces and zero within the clamp. In
practice, the stress tapers off to zero over some positive length in the clamp. As a first
approximation it is reasonable to assume that the stress decreases linearly. Let l be the
length of the clamp and t the distance between the clamps, called the gauge length, as
illustrated in Figure 5.12 on the next page.
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The filament holds as long as the stress has not exceeded the strength as determined
by the weakest flaw. That is, the filament will support a stress of y as long as no flaw
points fall in the stress trapezoid of Figure 5.12. The number of points in this trapezoid
has a Poisson distribution with mean µ(B)+ 2µ(A). In particular, no points fall there
with probability e−[µ(B)+2µ(A)]. If we let S be the strength of the filament, then

Pr{S> y} = e−2µ(A)−µ(B).

We compute

µ(A)=

l∫
0

G
(xy

l

)
λdx

and

µ(B)= λtG(y).
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Figure 5.12 The stress versus strength of a filament under tension. Flaws reducing the strength
of a filament below its theoretical maximum y∗ are distributed randomly along its length. The
stress in the filament is constant at the level y between clamps and tapers off to zero within the
clamps. The filament fails if at any point along its length a flaw reduces its strength below its
stress.
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Finally, the mean strength of the filament is

E[S]=

∞∫
0

Pr {S> y}dy=

∞∫
0

exp

−λ
tG(y)+ 2

l∫
0

c
(xy

l

)
dx

dy.

For an ideal filament, we use the same expression but with l= 0.

Exercises

5.6.1 Customers demanding service at a central processing facility arrive according
to a Poisson process of intensity θ = 8 per unit time. Independently, each cus-
tomer is classified as high priority with probability α = 0.2, or low priority with
probability 1−α = 0.8. What is the probability that three high priority and five
low priority customers arrive during the first unit of time?

5.6.2 Shocks occur to a system according to a Poisson process of intensity λ. Each
shock causes some damage to the system, and these damages accumulate. Let
N(t) be the number of shocks up to time t, and let Yi be the damage caused by
the ith shock. Then

X(t)= Y1+ ·· ·+YN(t)

is the total damage up to time t. Determine the mean and variance of the total
damage at time t when the individual shock damages are exponentially dis-
tributed with parameter θ .

5.6.3 Let {N(t); t ≥ 0} be a Poisson process of intensity λ, and let Y1,Y2, . . . be inde-
pendent and identically distributed nonnegative random variables with cumula-
tive distribution function G(y)= Pr {Y ≤ y}. Determine Pr{Z(t) > z|N(t) > 0},
where

Z(t)=min
{
Y1,Y2, . . . ,YN(t)

}
.

5.6.4 Men and women enter a supermarket according to independent Poisson pro-
cesses having respective rates of two and four per minute.
(a) Starting at an arbitrary time, what is the probability that at least two men

arrive before the first woman arrives?
(b) What is the probability that at least two men arrive before the third woman

arrives?
5.6.5 Alpha particles are emitted from a fixed mass of material according to a Pois-

son process of rate λ. Each particle exists for a random duration and is then
annihilated. Suppose that the successive lifetimes Y1,Y2, . . . of distinct parti-
cles are independent random variables having the common distribution func-
tion G(y)= Pr{Yk ≤ y}. Let M(t) be the number of particles existing at time t.
By considering the lifetimes as markings, identify the region in the lifetime,
arrival-time space that corresponds to M(t), and thereby deduce the probability
distribution of M(t).
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Problems

5.6.1 Suppose that points are distributed over the half line [0,∞) according to a Pois-
son process of rate λ. A sequence of independent and identically distributed
nonnegative random variables Y1,Y2, . . . is used to reposition the points so that
a point formerly at location Wk is moved to the location Wk+Yk. Completely
describe the distribution of the relocated points.

5.6.2 Suppose that particles are distributed on the surface of a circular region accord-
ing to a spatial Poisson process of intensity λ particles per unit area. The
polar coordinates of each point are determined, and each angular coordinate
is shifted by a random amount, with the amounts shifted for distinct points
being independent random variables following a fixed probability distribution.
Show that at the end of the point movement process, the points are still Poisson
distributed over the region.

5.6.3 Shocks occur to a system according to a Poisson process of intensity λ. Each
shock causes some damage to the system, and these damages accumulate. Let
N(t) be the number of shocks up to time t, and let Yi be the damage caused by
the ith shock. Then

X(t)= Y1+ ·· ·+YN(t)

is the total damage up to time t. Suppose that the system continues to operate as
long as the total damage is strictly less than some critical value a, and fails in
the contrary circumstance. Determine the mean time to system failure when the
individual damages Yi have a geometric distribution with Pr{Y = k} = p(1−
p)k,k = 0,1, . . . .

5.6.4 Let {X(t); t ≥ 0} and {Y(t); t ≥ 0} be independent Poisson processes with
respective parameters λ andµ. For a fixed integer a, let Ta =min{t ≥ 0;Y(t)=
a} be the random time that the Y process first reaches the value a. Determine
Pr {X(Ta)= k} for k = 0,1, . . . .

Hint: First consider ξ = X(T1) in the case in which a= 1. Then, ξ has a
geometric distribution. Then, argue that X(Ta) for general a has the same dis-
tribution as the sum of a independent ξs and hence has a negative binomial
distribution.

5.6.5. Let {X(t); t ≥ 0} and {Y(t); t ≥ 0} be independent Poisson processes with
respective parameters λ and µ. Let T =min {t ≥ 0;Y(t)= 1} be the random
time of the first event in the Y process. Determine Pr {X(T/2)= k} for k =
0,1, . . . .

5.6.6 Let W1,W2, . . . be the event times in a Poisson process {X(t); t ≥ 0} of rate λ. A
new point process is created as follows: Each point Wk is replaced by two new
points located at Wk+Xk and Wk+Yk, where X1,Y1, X2,Y2, . . . are indepen-
dent and identically distributed nonnegative random variables, independent of
the Poisson process. Describe the distribution of the resulting point process.

5.6.7 Let {N(t); t ≥ 0} be a Poisson process of intensity λ, and let Y1,Y2, . . . be
independent and identically distributed nonnegative random variables with
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cumulative distribution function

G(y)= yα for 0< y< 1.

Determine Pr{Z(t) > z|N(t) > 0}, where

Z(t)=min
{
Y1,Y2, . . . ,YN(t)

}
.

Describe the behavior for large t.
5.6.8 Let {N(t); t ≥ 0} be a nonhomogeneous Poisson process of intensity λ(t),

t > 0, and let Y1,Y2, . . . be independent and identically distributed nonnega-
tive random variables with cumulative distribution function

G(y)= yα for 0< y< 1.

Suppose that the intensity process averages out in the sense that

lim
t→∞

1

t

t∫
0

λ(u)du= θ.

Let

Z(t)=min
{
Y1,Y2, . . . ,YN(t)

}
.

Determine

lim
t→∞

Pr
{

t1/αZ(t) > z
}
.

5.6.9 Let W1,W2, . . . be the event times in a Poisson process of rate λ, and let N(t)=
N((0, t]) be the number of points in the interval (0, t]. Evaluate

E

N(t)∑
k=1

(Wk)
2

.
Note: 60

k=1(Wk)
2
= 0.

5.6.10 A Bidding Model Let U1,U2, . . . be independent random variables, each uni-
formly distributed over the interval (0,1]. These random variables represent
successive bids on an asset that you are trying to sell, and that you must sell
by time t = 1, when the asset becomes worthless. As a strategy, you adopt a
secret number θ , and you will accept the first offer that is greater than θ . For
example, you accept the second offer if U1 ≤ θ while U2 > θ . Suppose that the
offers arrive according to a unit rate Poisson process (λ= 1).
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(a) What is the probability that you sell the asset by time t = 1?
(b) What is the value for θ that maximizes your expected return? (You get

nothing if you don’t sell the asset by time t = 1.)
(c) To improve your return, you adopt a new strategy, which is to accept

an offer at time t if it exceeds θ(t)= (1− t)/(3− t). What are your new
chances of selling the asset, and what is your new expected return?



6 Continuous Time Markov Chains

6.1 Pure Birth Processes

In this chapter, we present several important examples of continuous time, discrete
state, and Markov processes. Specifically, we deal here with a family of random vari-
ables {X(t);0≤ t <∞}where the possible values of X(t) are the nonnegative integers.
We shall restrict attention to the case where {X(t)} is a Markov process with stationary
transition probabilities. Thus, the transition probability function for t > 0,

Pij(t)= Pr{X(t+ u)= j|X(u)= i}, i, j= 0,1,2, . . . ,

is independent of u≥ 0.
It is usually more natural in investigating particular stochastic models based on

physical phenomena to prescribe the so-called infinitesimal probabilities relating to
the process and then derive from them an explicit expression for the transition proba-
bility function. For the case at hand, we will postulate the form of Pij(h) for h small,
and, using the Markov property, we will derive a system of differential equations sat-
isfied by Pij(t) for all t > 0. The solution of these equations under suitable boundary
conditions gives Pij(t).

By way of introduction to the general pure birth process, we review briefly the
axioms characterizing the Poisson process.

6.1.1 Postulates for the Poisson Process

The Poisson process is the prototypical pure birth process. Let us point out the relevant
properties. The Poisson process is a Markov process on the nonnegative integers for
which

(i) Pr{X(t+ h)−X(t)= 1|X(t)= x} = λh+ o(h) as h ↓ 0
(x= 0,1,2, . . .).

(ii) Pr{X(t+ h)−X(t)= 0|X(t)= x} = 1− λh+ o(h) as h ↓ 0.
(iii) X(0)= 0.

The precise interpretation of (i) is the relationship

lim
h→0+

Pr{X(t+ h)−X(t)= 1|X(t)= x}

h
= λ.

The o(h) symbol represents a negligible remainder term in the sense that if we divide
the term by h, then the resulting value tends to zero as h tends to zero. Notice that the
right side of (i) is independent of x.

An Introduction to Stochastic Modeling. DOI: 10.1016/B978-0-12-381416-6.00006-X
c© 2011 Elsevier Inc. All rights reserved.
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These properties are easily verified by direct computation, since the explicit formu-
las for all the relevant properties are available. Problem 6.1.13 calls for showing that
these properties, in fact, define the Poisson process.

6.1.2 Pure Birth Process

A natural generalization of the Poisson process is to permit the chance of an event
occurring at a given instant of time to depend upon the number of events that have
already occurred. An example of this phenomenon is the reproduction of living organ-
isms (and hence the name of the process), in which under certain conditions—e.g.,
sufficient food, no mortality, no migration—the infinitesimal probability of a birth at a
given instant is proportional (directly) to the population size at that time. This example
is known as the Yule process and will be considered in detail later.

Consider a sequence of positive numbers, {λk}. We define a pure birth process as a
Markov process satisfying the following postulates:

1. Pr{X(t+ h)−X(t)= 1|X(t)= k} = λkh+ o1,k(h)(h→ 0+).
2. Pr{X(t+ h)−X(t)= 0|X(t)= k} = 1− λkh+ o2,k(h). (6.1)
3. Pr{X(t+ h)−X(t) < 0|X(t)= k} = 0 (k ≥ 0).

As a matter of convenience, we often add the postulate
4. X(0)= 0.

With this postulate, X(t) does not denote the population size but, rather, the number of
births in the time interval (0, t].

Note that the left sides of Postulates (1) and (2) are just Pk,k+1(h) and Pk,k(h),
respectively (owing to stationarity), so that o1,k(h) and o2,k(h) do not depend upon t.

We define Pn(t)= Pr{X(t)= n}, assuming X(0)= 0.
By analyzing the possibilities at time t just prior to time t+ h (h small), we will

derive a system of differential equations satisfied by Pn(t) for t ≥ 0, namely

P′0(t)=−λ0P0(t),

P′n(t)=−λnPn(t)+ λn−1Pn−1(t) for n≥ 1,
(6.2)

with initial conditions

P0(0)= 1, Pn(0)= 0, n> 0.

Indeed, if h> 0,n≥ 1, then by invoking the law of total probability, the Markov prop-
erty, and Postulate (3), we obtain

Pn(t+ h)=
∞∑

k=0

Pk(t)Pr{X(t+ h)= n|X(t)= k}

=

∞∑
k=0

Pk(t)Pr{X(t+ h)−X(t)= n− k|X(t)= k}

=

n∑
k=0

Pk(t)Pr{X(t+ h)−X(t)= n− k|X(t)= k}.
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Now for k = 0,1, . . . ,n− 2, we have

Pr{X(t+ h)−X(t)= n− k|X(t)= k}

≤ Pr{X(t+ h)−X(t)≥ 2|X(t)= k}

= o1,k(h)+ o2,k(h),

or

Pr{X(t+ h)−X(t)= n− k|X(t)= k} = o3,n,k(h), k = 0, . . . ,n− 2.

Thus,

Pn(t+ h)= Pn(t)
[
1− λnh+ o2,n(h)

]
+Pn−1(t)

[
λn−1h+ o1,n−1(h)

]
+

n−2∑
k=0

Pk(t)o3,n,k(h)k,

or

Pn(t+ h)−Pn(t) (6.3)
= Pn(t)

[
−λnh+ o2,n(h)

]
+Pn−1(t)

[
λn−1h+ o1,n−1(h)

]
+ on(h),

where, clearly, limh↓0 on(h)/h= 0 uniformly in t ≥ 0, since on(h) is bounded by the
finite sum 6n−2

k=0 o3,n,k(h), which does not depend on t.
Dividing by h and passing to the limit h ↓ 0, we validate the relations (6.2), where

on the left side we should, to be precise, write the derivative from the right. With a
little more care, however, we can derive the same relation involving the derivative
from the left. In fact, from (6.3), we see at once that the Pn(t) are continuous functions
of t. Replacing t by t− h in (6.3), dividing by h, and passing to the limit h ↓ 0, we find
that each Pn(t) has a left derivative that also satisfies equation (6.2).

The first equation of (6.2) can be solved immediately and yields

P0(t)= exp{−λ0t} for t > 0. (6.4)

Define Sk as the time between the kth and the (k+ 1)st birth, so that

Pn(t)= Pr

{
n−1∑
i=0

Si ≤ t <
n∑

i=0

Si

}
.

The random variables Sk are called the “sojourn times” between births, and

Wk =

k−1∑
i=0

Si = the time at which the kth birth occurs.
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We have already seen that P0(t)= exp{−λ0t}. Therefore,

Pr{S0 ≤ t} = 1−Pr{X(t)= 0} = 1− exp{−λ0t};

that is S0 has an exponential distribution with parameter λ0. It may be deduced from
Postulates (1) through (4) that Sk,k > 0, also has an exponential distribution with
parameter λk and that the Si’s are mutually independent.

This description characterizes the pure birth process in terms of its sojourn times,
in contrast to the infinitesimal description corresponding to (6.1).

To solve the differential equations of (6.2) recursively, introduce Qn(t)= eλntPn(t)
for n= 0,1, . . . . Then,

Q′n(t)= λneλntPn(t)+ eλntP′n(t)

= eλnt [λnPn(t)+P′n(t)
]

= eλntλn−1Pn−1(t) [using (6.2)].

Integrating both sides of these equations and using the boundary condition Qn(0)= 0
for n≥ 1 gives

Qn(t)=

t∫
0

eλnxλn−1Pn−1(x)dx,

or

Pn(t)= λn−1e−λnt

t∫
0

eλnxPn−1(x)dx, n= 1,2, . . . . (6.5)

It is now clear that all Pk(t)≥ 0, but there is still a possibility that

∞∑
n=0

Pn(t) < 1.

To secure the validity of the process, i.e., to assure that 6∞n=0Pn(t)= 1 for all t, we
must restrict the λk according to the following:

∞∑
n=0

Pn(t)= 1 if and only if
∞∑

n=0

1

λn
=∞. (6.6)

The intuitive argument for this result is as follows: The time Sk between consecutive
births is exponentially distributed with a corresponding parameter λk. Therefore, the
quantity 6n1/λn equals the expected time before the population becomes infinite. By
comparison, 1−6∞n=0Pn(t) is the probability that X(t)=∞.
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If6nλ
−1
n <∞, then the expected time for the population to become infinite is finite.

It is then plausible that for all t > 0, the probability that X(t)=∞ is positive.
When no two of the birth parameters λ0,λ1, . . . are equal, the integral equation (6.5)

may be solved to give the explicit formula

P0(t)= e−λ0t,
(6.7)

P1(t)= λ0

(
1

λ1− λ0
e−λ0t

+
1

λ0− λ1
e−λ1t

)
and

Pn(t)= Pr{X(t)= n|X(0)= 0}
(6.8)

= λ0 · · ·λn−1
[
B0,ne−λ0t

+ ·· ·+Bn,ne−λnt] for n> 1,

where

B0,n =
1

(λ1− λ0) · · ·(λn− λ0)
,

(6.9)
Bk,n =

1

(λ0− λk) · · ·(λk−1− λk)(λk+1− λk) · · ·(λn− λk)

for 0< k < n

and

Bn,n =
1

(λ0− λn) · · ·(λn−1− λn)
.

Because λj 6= λk when j 6= k by assumption, the denominator in (6.9) does not vanish,
and Bk,n is well defined.

We will verify that P1(t), as given by (6.7), satisfies (6.5). Equation (6.4) gives
P0(t)= e−λ0t. We next substitute this in (6.5) when n= 1, thereby obtaining

P1(t)= λ0e−λ1t

t∫
0

eλ1xe−λ0xdx

= λ0e−λ1t(λ0− λ1)
−1
[
1− e−(λ0−λ1)t

]
= λ0

(
1

λ1− λ0
e−λ0t

+
1

λ0− λ1
e−λ1t

)
,

in agreement with (6.7).
The induction proof for general n involves tedious and difficult algebra. The case

n= 2 is suggested as a problem.
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6.1.3 The Yule Process

The Yule process arises in physics and biology and describes the growth of a pop-
ulation in which each member has a probability βh+ o(h) of giving birth to a new
member during an interval of time of length h(β > 0). Assuming independence and
no interaction among members of the population, the binomial theorem gives

Pr{X(t+ h)−X(t)= 1|X(t)= n} =

(
n
1

)
[βh+ o(h)] [1−βh+ o(h)]n−1

= nβh+ on(h);

for the Yule process the infinitesimal parameters are λn = nβ. In words, the total pop-
ulation birth rate is directly proportional to the population size, the proportionality
constant being the individual birth rate β. As such, the Yule process forms a stochastic
analog of the deterministic population growth model represented by the differential
equation dy/dt = αy. In the deterministic model, the rate dy/dt of population growth
is directly proportional to population size y. In the stochastic model, the infinitesi-
mal deterministic increase dy is replaced by the probability of a unit increase during
the infinitesimal time interval dt. Similar connections between deterministic rates and
birth (and death) parameters arise frequently in stochastic modeling. Examples abound
in this chapter.

The system of equations (6.2) in the case that X(0)= 1 becomes

P′n(t)=−β [nPn(t)− (n− 1)Pn−1(t)] , n= 1,2, . . . ,

under the initial conditions

P1(0)= 1, Pn(0)= 0, n= 2,3, . . . .

Its solution is

Pn(t)= e−βt (1− e−βt)n−1
, n≥ 1, (6.10)

as may be verified directly. We recognize (6.10) as the geometric distribution in
Chapter 1, (1.26) with p= e−βt.

The general solution analogous to (6.8) but for pure birth processes starting from
X(0)= 1 is

Pn(t)= λ1 · · ·λn−1
[
B1,ne−λ1t

+ ·· ·+Bn,ne−λnt] , n> 1. (6.11)

When λn = βn, we will show that (6.11) reduces to the solution given in (6.10) for a
Yule process with parameter β. Then,

B1,n =
1

(λ2− λ1)(λ3− λ1) · · ·(λn− λ1)

=
1

βn−1(1)(2) · · ·(n− 1)

=
1

βn−1(n− 1)!
,
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B2,n =
1

(λ1− λ2)(λ3− λ2) · · ·(λn− λ2)

=
1

βn−1(−1)(1)(2) · · ·(n− 2)

=
−1

βn−1(n− 2)!
,

and

βk,n =
1

(λ1− λk) · · ·(λk−1− λk)(λk+1− λk) · · ·(λn− λk)

=
(−1)k−1

βn−1(k− 1)!(n− k)!
.

Thus, according to (6.11),

Pn(t)= β
n−1(n− 1)!

(
B1,ne−βt

+ ·· ·+Bn,ne−nβt)
=

n∑
k=1

(n− 1)!

(k− 1)!(n− k)!
(−1)k−1e−kβt

= e−βt
n−1∑
j=0

(n− 1)!

j!(n− 1− j)!

(
−e−βt)j

= e−βt (1− e−βt)n−1
[see Chapter 1, (1.67)],

which establishes (6.10).

Exercises

6.1.1 A pure birth process starting from X(0)= 0 has birth parameters λ0 = 1,
λ1 = 3,λ2 = 2, and λ3 = 5. Determine Pn(t) for n= 0,1,2,3.

6.1.2 A pure birth process starting from X(0)= 0 has birth parameters λ0 = 1,
λ1 = 3,λ2 = 2, and λ3 = 5. Let W3 be the random time that it takes the pro-
cess to reach state 3.
(a) Write W3 as a sum of sojourn times and thereby deduce that the mean time

is E[W3]= 11
6 .

(b) Determine the mean of W1+W2+W3.
(c) What is the variance of W3?

6.1.3 A population of organisms evolves as follows. Each organism exists, indepen-
dent of the other organisms, for an exponentially distributed length of time with
parameter θ , and then splits into two new organisms, each of which exists, inde-
pendent of the other organisms, for an exponentially distributed length of time
with parameter θ , and then splits into two new organisms, and so on. Let X(t)
denote the number of organisms existing at time t. Show that X(t) is a Yule
process.
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6.1.4 Consider an experiment in which a certain event will occur with probability αh
and will not occur with probability 1−αh, where α is a fixed positive parameter
and h is a small (h< 1/α) positive variable. Suppose that n independent trials
of the experiment are carried out, and the total number of times that the event
occurs is noted. Show that
(a) The probability that the event never occurs during the n trials is 1− nαh+

o(h);
(b) The probability that the event occurs exactly once is nαh+ o(h);
(c) The probability that the event occurs twice or more is o(h).

Hint: Use the binomial expansion

(1−αh)n = 1− nαh+
n(n− 1)

2
(αh)2− ·· · .

6.1.5 Using equation (6.10), calculate the mean and variance for the Yule process
where X(0)= 1.

6.1.6 Operations 1, 2, and 3 are to be performed in succession on a major piece of
equipment. Operation k takes a random duration Sk that is exponentially dis-
tributed with parameter λk for k = 1,2,3, and all operation times are inde-
pendent. Let X(t) denote the operation being performed at time t, with time
t = 0 marking the start of the first operation. Suppose that λ1 = 5,λ2 = 3, and
λ3 = 13. Determine
(a) P1(t)= Pr{X(t)= 1}.
(b) P2(t)= Pr{X(t)= 2}.
(c) P3(t)= Pr{X(t)= 3}.

Problems

6.1.1 Let X(t) be a Yule process that is observed at a random time U, where U is
uniformly distributed over [0,1). Show that Pr{X(U)= k} = pk/(βk) for k =
1,2, . . . , with p= 1− e−β .

Hint: Integrate (6.10) over t between 0 and 1.
6.1.2 A Yule process with immigration has birth parameters λk = α+kβ for k =

0,1,2, . . . . Here, α represents the rate of immigration into the population, and
β represents the individual birth rate. Supposing that X(0)= 0, determine Pn(t)
for n= 0,1,2, . . . .

6.1.3 Consider a population comprising a fixed number N of individuals. Suppose
that at time t = 0, there is exactly one infected individual and N− 1 susceptible
individuals in the population. Once infected, an individual remains in that state
forever. In any short time interval of length h, any given infected person will
transmit the disease to any given susceptible person with probability αh+ o(h).
(The parameter α is the individual infection rate.) Let X(t) denote the number
of infected individuals in the population at time t ≥ 0. Then, X(t) is a pure birth
process on the states 0,1, . . . , N. Specify the birth parameters.
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6.1.4 A new product (a “Home Helicopter” to solve the commuting problem)
is being introduced. The sales are expected to be determined by both
media (newspaper and television) advertising and word-of-mouth advertising,
wherein satisfied customers tell others about the product. Assume that media
advertising creates new customers according to a Poisson process of rate α = 1
customer per month. For the word-of-mouth advertising, assume that each pur-
chaser of a Home Helicopter will generate sales to new customers at a rate of
θ = 2 customers per month. Let X(t) be the total number of Home Helicopter
customers up to time t.
(a) Model X(t) as a pure birth process by specifying the birth parameters λk,

for k = 0,1, . . . .
(b) What is the probability that exactly two Home Helicopters are sold during

the first month?
6.1.5 Let Wk be the time to the kth birth in a pure birth process starting from

X(0)= 0. Establish the equivalence

Pr {W1 > t,W2 > t+ s} = P0(t)[P0(s)+P1(s)].

From this relation together with equation (6.7), determine the joint density for
W1 and W2, and then the joint density of S0 =W1 and S1 =W2−W1.

6.1.6 A fatigue model for the growth of a crack in a discrete lattice proposes that the
size of the crack evolves as a pure birth process with parameters

λk = (1+ k)ρ for k = 1,2, . . . .

The theory behind the model postulates that the growth rate of the crack is
proportional to some power of the stress concentration at its ends and that
this stress concentration is itself proportional to some power of 1+ k, where k
is the crack length. Use the sojourn time description to deduce that the mean
time for the crack to grow to infinite length is finite when ρ > 1 and that, there-
fore, the failure time of the system is a well-defined and finite-valued random
variable.

6.1.7 Let λ0,λ1, and λ2 be the parameters of the independent exponentially dis-
tributed random variables S0,S1, and S2. Assume that no two of the parameters
are equal.
(a) Verify that

Pr{S0 > t} = e−λ0t,

Pr{S0+ S1 > t} =
λ1

λ1− λ0
e−λ0t

+
λ0

λ0− λ1
e−λ1t,

and evaluate in similar terms

Pr{S0+ S1+ S2 > t}.
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(b) Verify equation (6.8) in the case that n= 2 by evaluating

P2(t)= Pr{X(t)= 2} = Pr{S0+ S1+ S2 > t}−Pr{S0+ S1 > t}.

6.1.8 Let N(t) be a pure birth process for which

Pr{an event happens in(t, t+ h)|N(t) is odd} = αh+ o(h),

Pr{an event happens in(t, t+ h)|N(t) is even} = βh+ o(h),

where o(h)/h→ 0 as h ↓ 0. Take N(0)= 0. Find the following probabilities:

P0(t)= Pr{N(t) is even}; P1(t)= Pr{N(t) is odd}.

Hint: Derive the differential equations

P′0(t)= αP1(t)−βP0(t) and P′1(t)=−αP1(t)+βP0(t)

and solve them by using P0(t)+P1(t)= 1.
6.1.9 Under the conditions of Problem 6.8, determine E[N(t)].

6.1.10 Consider a pure birth process on the states 0,1, . . . , N for which λk = (N− k)λ
for k = 0,1, . . . ,N. Suppose that X(0)= 0. Determine Pn(t)= Pr{X(t)= n} for
n= 0,1, and 2.

6.1.11 Beginning with P0(t)= e−λ0t and using equation (6.5), calculate P1(t),P2(t),
and P3(t) and verify that these probabilities conform with equation (6.7),
assuming distinct birth parameters.

6.1.12 Verify that P2(t), as given by (6.8), satisfies (6.5) by following the calculations
in the text that showed that P1(t) satisfies (6.5).

6.1.13 Using (6.5), derive Pn(t) when all birth parameters are the same constant λ and
show that

Pn(t)=
(λt)ne−λt

n!
, n= 0,1, . . . .

Thus, the postulates of Section 6.1.1 serve to define the Poisson processes.

6.2 Pure Death Processes

Complementing the increasing pure birth process is the decreasing pure death pro-
cess. It moves successively through states N,N− 1, . . . ,2,1 and ultimately is absorbed
in state 0 (extinction). The process is specified by the death parameters µk > 0 for
k = 1,2, . . . ,N, where the sojourn time in state k is exponentially distributed with
parameter µk, all sojourn times being independent. A typical sample path is depicted
in Figure 6.1.

Alternatively, we have the infinitesimal description of a pure death process as a
Markov process X(t) whose state space is 0,1, . . . ,N and for which
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tW1 WN−1

SN−1

SN

S1

S2

1

N

N−1
N−2

2

X(t)

W2 WN

Figure 6.1 A typical sample path of a pure death process, showing the sojourn times SN , . . . ,S1
and the waiting times W1,W2, . . . ,WN .

(i) Pr{X(t+ h)= k− 1|X(t)= k} = µkh+ o(h),k = 1, . . . ,N;
(ii) Pr{X(t+ h)= k|X(t)= k} = 1−µkh+ o(h),k = 1, . . . ,N; (6.12)

(iii) Pr{X(t+ h) > k|X(t)= k} = 0,k = 0,1, . . . ,N.

The parameter µk is the “death rate” operating or in effect while the process
sojourns in state k. It is a common and useful convention to assign µ0 = 0.

When the death parameters µ1,µ2, . . . ,µN are distinct, i.e., µj 6= µk if j 6= k, then
we have the explicit transition probabilities

PN(t)= e−µN t
;

and for n< N,

Pn(t)= Pr{X(t)= n|X(0)= N}
(6.13)

= µn+1µn+2 · · ·µN
[
An,ne−µnt

+ ·· ·+AN,ne−µN t] ,
where

Ak,n =
1

(µN −µk) · · ·(µk+1−µk)(µk−1−µk) · · ·(µn−µk)
.

6.2.1 The Linear Death Process

As an example, consider a pure death process in which the death rates are proportional
to population size. This process, which we will call the linear death process, comple-
ments the Yule, or linear birth, process. The parameters are µk = kα, where α is the
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individual death rate in the population. Then,

An,n =
1

(µN −µn)(µN−1−µn) · · ·(µn+1−µn)

=
1

αN−n−1(N− n)(N− n− 1) · · ·(2)(1)
,

An+1,n =
1

(µN −µn+1) · · ·(µn+2−µn+1)(µn−µn+1)

=
1

αN−n−1(N− n− 1) · · ·(1)(−1)
,

Ak,n =
1

(µN −µk) · · ·(µk+1−µk)(µk−1−µk) · · ·(µn−µk)

=
1

αN−n−1(N− k) · · ·(1)(−1)(−2) · · ·(n− k)

=
1

αN−n−1(−1)k−n(N− k)!(k− n)!
.

Then,

Pn(t)= µn+1µn+2 · · ·µN

N∑
k=n

Ak,ne−µkt

= αN−n−1 N!

n!

N∑
k=n

e−kαt

αN−n−1(−1)k−n(N− k)!(k− n)!
(6.14)

=
N!

n!
e−nαt

N−n∑
j=0

(−1) je−jαt

(N− n− j)! j!

=
N!

n!(N− n)!
e−nαt (1− e−αt)N−n

, n= 0, . . . ,N.

Let T be the time of population extinction. Formally, T =min{t ≥ 0;X(t)= 0}.
Then, T ≤ t if and only if X(t)= 0, which leads to the cumulative distribution function
of T via

FT(t)= Pr{T ≤ t} = Pr{X(t)= 0}
(6.15)

= P0(t)=
(
1− e−αt)N, t ≥ 0.

The linear death process can be viewed in yet another way, a way that again con-
firms the intimate connection between the exponential distribution and a continuous
time parameter Markov chain. Consider a population consisting of N individuals, each
of whose lifetimes is an independent exponentially distributed random variable with
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Figure 6.2 The linear death process. As depicted here, the third individual is the first to die, the
first individual is the second to die, etc.

parameter α. Let X(t) be the number of survivors in this population at time t. Then,
X(t) is the linear pure death process whose parameters are µk = kα for k = 0,1, . . . ,N.
To help understand this connection, let ξ1,ξ2, . . . , ξN denote the times of death of the
individuals labeled 1,2, . . . ,N, respectively. Figure 6.2 shows the relation between
the individual lifetimes ξ1,ξ2, . . . , ξN and the death process X(t).

The sojourn time in state N, denoted by SN , equals the time of the earliest death,
or SN =min{ξ1, . . . , ξN}. Since the lifetimes are independent and have the same expo-
nential distribution,

Pr{SN > t} = Pr{min{ξ1, . . . , ξN}> t}

= Pr{ξ1 > t, . . . , ξN > t}

= [Pr{ξ1 > t}]N

= e−Nαt.

That is, SN has an exponential distribution with parameter Nα. Similar reasoning
applies when there are k members alive in the population. The memoryless property of
the exponential distribution implies that the remaining lifetime of each of these k indi-
viduals is exponentially distributed with parameter α. Then, the sojourn time Sk is the
minimum of these k remaining lifetimes and hence is exponentially distributed with
parameter kα. To give one more approach in terms of transition rates, each individual
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in the population has a constant death rate of α in the sense that

Pr{t < ξ1 < t+ h|t < ξ1} =
Pr{t < ξ1 < t+ h}

Pr{t < ξ1}

=
e−αt
− e−α(t+h)

e−αt

= 1− e−αh

= αh+ o(h) as h ↓ 0.

If each of k individuals alive in the population at time t has a constant death rate
of α, then the total population death rate should be kα, directly proportional to the
population size. This shortcut approach to specifying appropriate death parameters is
a powerful and often-used tool of stochastic modeling. The next example furnishes
another illustration of its use.

6.2.2 Cable Failure Under Static Fatigue

A cable composed of parallel fibers under tension is being designed to support a high-
altitude weather balloon. With a design load of 1000 kg and a design lifetime of 100
years, how many fibers should be used in the cable?

The low-weight, high-strength fibers to be used are subject to static fatigue, or
eventual failure when subjected to a constant load. The higher the constant load, the
shorter the life, and experiments have established a linear plot on log–log axes between
average failure time and load that is shown in Figure 6.3.

The relation between mean life µT and load l that is illustrated in Figure 6.3 takes
the analytic form

log10µT = 2− 40log10 l.

Were the cable to be designed on the basis of average life, to achieve the 100 year
design target each fiber should carry 1 kg. Since the total load is 1000 kg, N = 1000

1 =

1000 fibers should be used in the cable.

Log (1 kg)

Log (100 yrs)

Log (Time)

Log (Load)

Slope = −β= −40

Figure 6.3 A linear relation between log mean failure time and log load.
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One might suppose that this large number (N = 1000) of fibers would justify
designing the cable based on average fiber properties. We shall see that such reasoning
is dangerously wrong.

Let us suppose, however, as is the case with many modern high-performance struc-
tural materials, that there is a large amount of random scatter of individual fiber life-
times about the mean. How does this randomness affect the design problem?

Some assumption must be made concerning the probability distribution governing
individual fiber lifetimes. In practice, it is extremely difficult to gather sufficient data
to determine this distribution with any degree of certainty. Most data do show, how-
ever, a significant degree of skewness, or asymmetry. Because it qualitatively matches
observed data and because it leads to a pure death process model that is accessible
to exhaustive analysis, we will assume that the probability distribution for the failure
time T of a single fiber subjected to the time-varying tensile load l(t) is given by

Pr{T ≤ t} = 1− exp

−
t∫

0

K[l(s)]ds

, t ≥ 0.

This distribution corresponds to a failure rate, or hazard rate, of r(t)= K[l(t)] wherein
a single fiber, having not failed prior to time t and carrying the load l(t), will fail during
the interval (t, t+1t] with probability

Pr{t < T ≤ t+1t|T > t} = K[l(t)]1t+ o(1t).

The function K[l], called the breakdown rule, expresses how changes in load affect
the failure probability. We are concerned with the power law breakdown rule in which
K[l]= lβ/A for some positive constants A and β. Assuming power law breakdown,
under a constant load l(t)= l, the single fiber failure time is exponentially distributed
with mean µT = E[T|l]= 1/K[l]= Al−β . A plot of mean failure time versus load is
linear on log–log axes, matching the observed properties of our fiber type. For the
design problem, we have β = 40 and A= 100.

Now, place N of these fibers in parallel and subject the resulting bundle or cable
to a total load, constant in time, of NL, where L is the nominal load per fiber. What is
the probability distribution of the time at which the cable fails? Since the fibers are in
parallel, this system failure time equals the failure time of the last fiber.

Under the stated assumptions governing single-fiber behavior, X(t), the number of
unfailed fibers in the cable at time t, evolves as a pure death process with parame-
ters µk = kK[NL/k] for k = 1,2, . . . ,N. Given X(t)= k surviving fibers at time t and
assuming that the total bundle load NL is shared equally among them, then each carries
load NL/k and has a corresponding failure rate of K[NL/k]. As there are k such sur-
vivors in the bundle, the bundle, or system, failure rate is µk = kK[NL/k] as claimed.

It was mentioned earlier that the system failure time was WN , the waiting time to
the Nth fiber failure. Then, Pr{WN ≤ t} = Pr{X(t)= 0} = P0(t), where Pn(t) is given
explicitly by (2.13) in terms of µ1, . . . ,µN . Alternatively, we may bring to bear the
sojourn time description of the pure death process and, following Figure 6.1, write

WN = SN + SN−1+ ·· ·+ S1,
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where SN,SN−1, . . . ,S1 are independent exponentially distributed random variables
and Sk has parameter µk = kK[NL/k]= k(NL/k)β/A. The mean system failure time is
readily computed to be

E[WN]= E[SN]+ ·· ·+E[S1]

= AL−β
N∑

k=1

1

k

(
k

N

)β
(6.16)

= AL−β
N∑

k=1

(
k

N

)β−1( 1

N

)
.

The sum in the expression for E[WN] seems formidable at first glance, but a very close
approximation is readily available when N is large. Figure 6.4 compares the sum to an
integral.

From Figure 6.4, we see that

N∑
k=1

(
k

N

)β−1( 1

N

)
≈

1∫
0

xβ−1dx=
1

β
.

Indeed, we readily obtain

1

β
=

1∫
0

xβ−1dx≤
N∑

k=1

(
k

N

)β−1( 1

N

)
≤

1+1/N∫
1/N

xβ−1dx

=

(
1

β

)[(
1+

1

N

)β
−

(
1

N

)β]
.

f(
x)

=
xβ

−1

1
N

1
N

N−1
N

2
N

3
N

k
N

0 1 x

β−1

Figure 6.4 The sum 6N
k=1(k/N)

β−1(1/N) is a Riemann approximation to
∫ 1

0 xβ−1dx= 1/β.
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When N = 1000 and β = 40, the numerical bounds are

(
1

40

)
≤

N∑
k=1

(
k

N

)β−1( 1

N

)
≤

(
1

40

)
(1.0408),

which shows that the integral determines the sum to within about 4%.
Substituting 1/β for the sum in (6.16) gives the average cable life

E[WN]≈
A

βLβ

to be compared with the average fiber life of

µT =
A

Lβ
.

That is, a cable lasts only about 1/β as long as an average fiber under an equivalent
load. With A= 100,β = 40, and N = 1000, the designed cable would last, on the aver-
age, 100

/[
40(1)40

]
= 2.5 years, far short of the desired life of 100 years. The cure is

to increase the number of fibers in the cable, thereby decreasing the per fiber load.
Increasing the number of fibers from N to N′ decreases the nominal load per fiber
from L to L′ = NL/N′. To achieve parity in fiber-cable lifetimes, we equate

A

Lβ
=

A

β(NL/N′)β
,

or

N′ = Nβ1/β .

For the given data, this calls for N′ = 1000(40)1/40
= 1097 fibers. That is, the design

lifetime can be restored by increasing the number of fibers in the cable by about 10%.

Exercises

6.2.1 A pure death process starting from X(0)= 3 has death parameters µ0 = 0,
µ1 = 3,µ2 = 2, and µ3 = 5. Determine Pn(t) for n= 0,1,2,3.

6.2.2 A pure death process starting from X(0)= 3 has death parameters µ0 = 0,
µ1 = 3,µ2 = 2, and µ3 = 5. Let W3 be the random time that it takes the process
to reach state 0.
(a) Write W3 as a sum of sojourn times and thereby deduce that the mean time

is E[W3]= 31
30 .

(b) Determine the mean of W1+W2+W3.
(c) What is the variance of W3?
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6.2.3 Give the transition probabilities for the pure death process described by
X(0)= 3,µ3 = 1,µ2 = 2, and µ1 = 3.

6.2.4 Consider the linear death process (Section 6.2.1) in which X(0)= N = 5 and
α = 2. Determine Pr{X(t)= 2}.

Hint: Use equation (6.14).

Problems

6.2.1 Let X(t) be a pure death process starting from X(0)= N. Assume that the
death parameters are µ1,µ2, . . . ,µN . Let T be an independent exponentially
distributed random variable with parameter θ . Show that

Pr{X(T)= 0} =
N∏

i=1

µi

µi+ θ
.

6.2.2 Let X(t) be a pure death process with constant death rates µk = θ for k =
1,2, . . . ,N. If X(0)= N, determine Pn(t)= Pr{X(t)= n} for n= 0,1, . . . ,N.

6.2.3 A pure death process X(t) with parameters µ1,µ2, . . . starts at X(0)= N and
evolves until it reaches the absorbing state 0. Determine the mean area under
the X(t) trajectory.

Hint: This is E[W1+W2+ ·· ·+WN].
6.2.4 A chemical solution contains N molecules of type A and M molecules of type

B. An irreversible reaction occurs between type A and B molecules in which
they bond to form a new compound AB. Suppose that in any small time interval
of length h, any particular unbonded A molecule will react with any particular
unbonded B molecule with probability θh+ o(h), where θ is a reaction rate. Let
X(t) denote the number of unbonded A molecules at time t.
(a) Model X(t) as a pure death process by specifying the parameters.
(b) Assume that N <M so that eventually all of the A molecules become

bonded. Determine the mean time until this happens.
6.2.5 Consider a cable composed of fibers following the breakdown rule K[l]=

sinh(l)= 1
2

(
el
− e−l

)
for l≥ 0. Show that the mean cable life is given by

E[WN]=
N∑

k=1

{k sinh(NL/k)}−1
=

N∑
k=1

{
k

N
sinh

(
L

k/N

)}−1( 1

N

)

≈

1∫
0

{xsinh(L/x)}−1dx.

6.2.6 Let T be the time to extinction in the linear death process with parameters
X(0)= N and α (see Section 6.2.1).
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(a) Using the sojourn time viewpoint, show that

E[T]=
1

α

[
1

N
+

1

N− 1
+ ·· ·+

1

1

]
.

(b) Verify the result of (a) by using equation (6.15) in

E[T]=

∞∫
0

Pr{T > t}dt =

∞∫
0

[1−FT(t)]dt.

Hint: Let y= 1− e−αt.

6.3 Birth and Death Processes

An obvious generalization of the pure birth and pure death processes discussed in
Sections 6.1 and 6.2 is to permit X(t) both to increase and to decrease. Thus, if at time
t the process is in state n, it may, after a random sojourn time, move to either of the
neighboring states n+ 1 or n− 1. The resulting birth and death process can then be
regarded as the continuous-time analog of a random walk (Chapter 3, Section 3.5.3).

Birth and death processes form a powerful tool in the kit of the stochastic mod-
eler. The richness of the birth and death parameters facilitates modeling a variety of
phenomena. At the same time, standard methods of analysis are available for deter-
mining numerous important quantities such as stationary distributions and mean first
passage times. This section and later sections contain several examples of birth and
death processes and illustrate how they are used to draw conclusions about phenom-
ena in a variety of disciplines.

6.3.1 Postulates

As in the case of the pure birth processes, we assume that X(t) is a Markov process on
the states 0,1,2, . . . and that its transition probabilities Pij(t) are stationary; that is

Pij(t)= Pr{X(t+ s)= j|X(s)= i} for all s≥ 0.

In addition, we assume that the Pij(t) satisfy

1. Pi,i+1(h)= λih+ o(h) as h ↓ 0, i≥ 0;
2. Pi,i−1(h)= µih+ o(h) as h ↓ 0, i≥ 1;
3. Pi,i(h)= 1− (λi+µi)h+ o(h) as h ↓ 0, i≥ 0;
4. Pij(0)= δij;
5. µ0 = 0,λ0 > 0,µi,λi > 0, i= 1,2, . . . .
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The o(h) in each case may depend on i. The matrix

A=

∥∥∥∥∥∥∥∥∥∥∥∥

−λ0 λ0 0 0 . . .

µ1 −(λ1+µ1) λ1 0 . . .

0 µ2 −(λ2+µ2) λ2 . . .

0 0 µ3 −(λ3+µ3) . . .

...
...

...
...

∥∥∥∥∥∥∥∥∥∥∥∥
(6.17)

is called the infinitesimal generator of the process. The parameters λi andµi are called,
respectively, the infinitesimal birth and death rates. In Postulates (1) and (2), we are
assuming that if the process starts in state i, then in a small interval of time the proba-
bilities of the population increasing or decreasing by 1 are essentially proportional to
the length of the interval.

Since the Pij(t) are probabilities, we have Pij(t)≥ 0 and

∞∑
j=0

Pij(t)≤ 1. (6.18)

Using the Markov property of the process, we may also derive the so-called Chapman–
Kolmogorov equation

Pij(t+ s)=
∞∑

k=0

Pik(t)Pkj(s). (6.19)

This equation states that in order to move from state i to state j in time t+ s,X(t)
moves to some state k in time t and then from k to j in the remaining time s. This is the
continuous-time analog of formula (3.11) in Chapter 3.

Thus far, we have mentioned only the transition probabilities Pij(t). In order to
obtain the probability that X(t)= n, we must specify where the process starts or more
generally the probability distribution for the initial state. We then have

Pr{X(t)= n} =
x∑

i=0

qiPin(t),

where

qi = Pr{X(0)= i}.

6.3.2 Sojourn Times

With the aid of the preceding assumptions, we may calculate the distribution of the
random variable Si, which is the sojourn time of X(t) in state i; that is, given that the
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process is in state i, what is the distribution of the time Si until it first leaves state i? If
we let

Pr{Si ≥ t} = Gi(t),

it follows easily by the Markov property that as h ↓ 0,

Gi(t+ h)= Gi(t)Gi(h)= Gi(t)[Pii(h)+ o(h)]

= Gi(t)[1− (λi+µi)h]+ o(h),

or

Gi(t+ h)−Gi(t)

h
=−(λi+µi)Gi(t)+ o(1)

so that

G′i(t)=−(λi+µi)Gi(t). (6.20)

If we use the conditions Gi(0)= 1, the solution of this equation is

Gi(t)= exp[−(λi+µi)t];

that is, Si follows an exponential distribution with mean (λi+µi)
−1. The proof pre-

sented here is not quite complete, since we have used the intuitive relationship

Gi(h)= Pii(h)+ o(h)

without a formal proof.
According to Postulates (1) and (2), during a time duration of length h, a transi-

tion occurs from state i to i+ 1 with probability λih+ o(h) and from state i to i− 1
with probability µih+ o(h). It follows intuitively that, given that a transition occurs
at time t, the probability that this transition is to state i+ 1 is λi/(λi+µi) and to state
i− 1 is µi/(λi+µi). The rigorous demonstration of this result is beyond the scope of
this book.

It leads to an important characterization of a birth and death process, however,
wherein the description of the motion of X(t) is as follows: The process sojourns in a
given state i for a random length of time whose distribution function is an exponential
distribution with parameter (λi+µi). When leaving state i the process enters either
state i+ 1 or state i− 1 with probabilities λi/(λi+µi) and µi/(λi+µi), respectively.
The motion is analogous to that of a random walk except that transitions occur at
random times rather than at fixed time periods.

The traditional procedure for constructing birth and death processes is to prescribe
the birth and death parameters {λi,µi}

∞

i=0 and build the path structure by utilizing
the preceding description concerning the waiting times and the conditional transition
probabilities of the various states. We determine realizations of the process as follows.
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Suppose X(0)= i; the particle spends a random length of time, exponentially distributed
with parameter (λi+µi), in state i and subsequently moves with probabilityλi/(λi+µi)

to state i+ 1 and with probabilityµi/(λi+µi) to state i− 1. Next, the particle sojourns
a random length of time in the new state and then moves to one of its neighboring states
and so on. More specifically, we observe a value t1 from the exponential distribution
with parameter (λi+µi) that fixes the initial sojourn time in state i. Then, we toss a coin
with probability of heads pi = λi/(λi+µi). If heads (tails) appear, we move the particle
to state i+ 1(i− 1). In state i+ 1, we observe a value t2 from the exponential distribution
with parameter (λi+1+µi+1) that fixes the sojourn time in the seconds state visited. If
the particle at the first transition enters state i− 1, the subsequent sojourn time t′2 is an
observation from the exponential distribution with parameter (λi−1+µi−1). After the
second wait is completed, a Bernoulli trial is performed that chooses the next state to
be visited, and the process continues in the same way.

A typical outcome of these sampling procedures determines a realization of the
process. Its form might be, e.g.,

X(t)=


i, for 0< t < t1,

i+ 1, for t1 < t < t1+ t2,

i, for t1+ t2 < t < t1+ t2+ t3,
...

...

Thus, by sampling from exponential and Bernoulli distributions appropriately, we con-
struct typical sample paths of the process. Now, it is possible to assign to this set of
paths (realizations of the process) a probability measure in a consistent way so that
Pij(t) is determined satisfying (6.18) and (6.19). This result is rather deep, and its
rigorous discussion is beyond the level of this book. The process obtained in this man-
ner is called the minimal process associated with the infinitesimal matrix A defined
in (6.17).

The preceding construction of the minimal process is fundamental, since the
infinitesimal parameters need not determine a unique stochastic process obeying
(6.18), (6.19), and Postulates 1 through 5 of Section 6.3.1. In fact, there could be
several Markov processes that possess the same infinitesimal generator. Fortunately,
such complications do not arise in the modeling of common phenomena. In the spe-
cial case of birth and death processes for which λ0 > 0, a sufficient condition that there
exists a unique Markov process with transition probability function Pij(t) for which the
infinitesimal relations (6.18) and (6.19) hold is that

∞∑
n=0

1

λnθn

n∑
k=0

θk =∞, (6.21)

where

θ0 = 1, θn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
, n= 1,2, . . . .
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In most practical examples of birth and death processes, the condition (6.21) is met,
and the birth and death process associated with the prescribed parameters is uniquely
determined.

6.3.3 Differential Equations of Birth and Death Processes

As in the case of the pure birth and pure death processes, the transition probabilities
Pij(t) satisfy a system of differential equations known as the backward Kolmogorov
differential equations. These are given by

P′0j(t)=−λ0P0j(t)+ λ0P1j(t), (6.22)

P′ij(t)= µiPi−1,j(t)− (λi+µi)Pij(t)+ λiPi+1,j(t), i≥ 1,

and the boundary condition Pij(0)= δij.
To derive these, we have, from equation (6.19),

Pij(t+ h)=
∞∑

k=0

Pik(h)Pkj(t)

= Pi,i−1(h)Pi−1,j(t)+Pi,i(h)Pij(t)+Pi,i+1(h)Pi+1,j(t) (6.23)

+

∑′

k
Pik(h)Pkj(t),

where the last summation is over all k 6= i− 1, i, i+ 1. Using Postulates (1), (2), and
(3) of Section 6.3.1, we obtain∑′

k
Pik(h)Pkj(t)≤

∑′

k
Pik(h)

= 1− [Pi,i(h)+Pi,i−1(h)+Pi,i+1(h)]

= 1− [1− (λi+µi)h+ o(h)+µih+ o(h)+ λih+ o(h)]

= o(h)

so that

Pij(t+ h)= µihPi−1,j(t)+ [1− (λi+µi)h]Pij(t)+ λihPi+1,j(t)+ o(h).

Transposing the term Pij(t) to the left-hand side and dividing the equation by h, we
obtain, after letting h ↓ 0,

P′ij(t)= µiPi−1,j(t)− (λi+µi)Pij(t)+ λiPi+1,j(t).

The backward equations are deduced by decomposing the time interval (0, t+ h),
where h is positive and small, into the two periods

(0,h), (h, t+ h)
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and examining the transition in each period separately. In this sense, the backward
equations result from a “first step analysis,” the first step being over the short time
interval of duration h.

A different result arises from a “last step analysis,” which proceeds by splitting the
time interval (0, t+ h) into the two periods

(0, t), (t, t+ h)

and adapting the preceding reasoning. From this viewpoint, under more stringent con-
ditions, we can derive a further system of differential equations

P′i0(t)=−λ0Pi,0(t)+µ1Pi,1(t),
(6.24)

P′ij(t)= λj−1Pi,j−1(t)− (λj+µj)Pij(t)+µj+1Pi,j+1(t), j≥ 1,

with the same initial condition Pij(0)= δij. These are known as the forward Kol-
mogorov differential equations. To derive these equations, we interchange t and h in
equation (6.23), and under stronger assumptions in addition to Postulates (1), (2), and
(3), it can be shown that the last term is again o(h). The remainder of the argument is
the same as before. The usefulness of the differential equations will become apparent
in the examples that we study in this and the next section.

A sufficient condition that (6.24) hold is that [Pkj(h)]/h= o(1) for k 6= j, j− 1,
j+ 1, where the o(1) term apart from tending to zero is uniformly bounded with respect
to k for fixed j as h→ 0. In this case, it can be proved that

∑
′

k Pik(t)Pkj(h)= o(h).

Example Linear Growth with Immigration A birth and death process is called a
linear growth process if λn = λn+ a and µn = µn with λ > 0, µ > 0, and a> 0.
Such processes occur naturally in the study of biological reproduction and population
growth. If the state n describes the current population size, then the average instan-
taneous rate of growth is λn+ a. Similarly, the probability of the state of the process
decreasing by one after the elapse of a small duration of time h is µnh+ o(h). The
factor λn represents the natural growth of the population owing to its current size,
while the second factor a may be interpreted as the infinitesimal rate of increase of the
population due to an external source such as immigration. The component µn, which
gives the mean infinitesimal death rate of the present population, possesses the obvious
interpretation.

If we substitute the above values of λn and µn in (6.24), we obtain

P′i0(t)=−aPi0(t)+µPi1(t),

P′ij(t)= [λ( j− 1)+ a]Pi,j−1(t)− [(λ+µ)j+ a]Pij(t)

+µ( j+ 1)Pi,j+1(t), j≥ 1.

Now, if we multiply the jth equation by j and sum, it follows that the expected value

E[X(t)]=M(t)=
∞∑

j=1

jPij(t)
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satisfies the differential equation

M′(t)= a+ (λ−µ)M(t),

with initial condition M(0)= i, if X(0)= i. The solution of this equation is

M(t)= at+ i if λ= µ

and

M(t)=
a

λ−µ

{
e(λ−µ)t− 1

}
+ ie(λ−µ)t if λ 6= µ. (6.25)

The second moment, or variance, may be calculated in a similar way. It is interesting
to note that M(t)→∞ as t→∞ if λ≥ µ, while if λ < µ, the mean population size
for large t is approximately

a

µ− λ
.

These results suggest that in the second case, wherein λ < µ, the population stabi-
lizes in the long run in some form of statistical equilibrium. Indeed, it can be shown
that a limiting probability distribution {πj} exists for which limt→∞Pij(t)= πj, j=
0,1, . . . . Such limiting distributions for general birth and death processes are the sub-
ject of Section 6.4.

Example The Two-State Markov Chain Consider a Markov chain {X(t)} with state
{0,1} whose infinitesimal matrix is

A=

∥∥∥∥∥
0 1

0 −α α

1 β −β

∥∥∥∥∥. (6.26)

The process alternates between states 0 and 1. The sojourn times in state 0 are indepen-
dent and exponentially distributed with parameter α. Those in state 1 are independent
and exponentially distributed with parameter β. This is a finite-state birth and death
process for which λ0 = α,λ1 = 0,µ0 = 0, and µ1 = β. The first Kolmogorov forward
equation in (6.24) becomes

P′00(t)=−αP00(t)+βP01(t). (6.27)

Now, P01(t)= 1−P00(t), which placed in (6.27) gives

P′00(t)= β − (α+β)P00(t).
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Let Q00(t)= e(α+β)tP00(t). Then,

dQ00(t)

dt
= e(α+β)tP′00(t)+ (α+β)e

(α+β)tP00(t)

= e(α+β)t
[
P′00(t)+ (α+β)P00(t)

]
= βe(α+β)t,

which can be integrated immediately to yield

Q00(t)= β
∫

e(α+β)tdt+C

=

(
β

α+β

)
e(α+β)t+C.

The initial condition Q00(0)= 1 determines the constant of integration to be C =
α/(α+β). Thus,

Q00(t)= e(α+β)tP00(t)=

(
β

α+β

)
e(α+β)t+

(
α

α+β

)
(6.28)

and

P00(t)=
β

α+β
+

α

α+β
e−(α+β)t. (6.29a)

Since P01(t)= 1−P00(t), we have

P01(t)=
α

α+β
−

α

α+β
e−(α+β)t, (6.29b)

and by symmetry,

P11(t)=
α

α+β
+

β

α+β
e−(α+β)t, (6.29c)

P10(t)=
β

α+β
−

β

α+β
e−(α+β)t. (6.29d)

These transition probabilities assume a more succinct form if we reparametrize accord-
ing to π = α/(α+β) and τ = α+β. Then,

P00(t)= (1−π)+πe−τ t, (6.30a)

P01(t)= π −πe−τ t, (6.30b)

P10(t)= (1−π)− (1−π)e
−τ t, (6.30c)
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and

P11(t)= π + (1−π)e
−τ t. (6.30d)

Observe that

lim
t→∞

P01(t)= lim
t→∞

P11(t)= π

so that π is the long run probability of finding the process in state 1 independently of
where the process began. The long run behavior of general birth and death processes
is the subject of the next section.

Exercises

6.3.1 Particles are emitted by a radioactive substance according to a Poisson process
of rate λ. Each particle exists for an exponentially distributed length of time,
independent of the other particles, before disappearing. Let X(t) denote the num-
ber of particles alive at time t. Argue that X(t) is a birth and death process and
determine the parameters.

6.3.2 Patients arrive at a hospital emergency room according to a Poisson process of
rate λ. The patients are treated by a single doctor on a first come, first served
basis. The doctor treats patients more quickly when the number of patients
waiting is higher. An industrial engineering time study suggests that the mean
patient treatment time when there are k patients in the system is of the form
mk = α−βk/(k+ 1), where α and β are constants with α > β > 0. Let N(t) be
the number of patients in the system at time t (waiting and being treated). Argue
that N(t) might be modeled as a birth and death process with parameters λk = λ

for k = 0,1, . . . and µk = k/mk for k = 0,1, . . . . State explicitly any necessary
assumptions.

6.3.3 Let {V(t)} be the two-state Markov chain whose transition probabilities are
given by (6.30a–d). Suppose that the initial distribution is (1−π,π). That is,
assume that Pr{V(0)= 0} = 1−π and Pr{V(0)= 1} = π . In this case, show
that Pr{V(t)= 1} = π for all times t > 0.

Problems

6.3.1 Let ξn,n= 0,1, . . . , be a two-state Markov chain with transition probability
matrix

P=

∥∥∥∥∥
0 1

0 0 1

1 1−α α

∥∥∥∥∥.
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Let {N(t); t ≥ 0} be a Poisson process with parameter λ. Show that

X(t)= ξN(t), t ≥ 0,

is a two-state birth and death process and determine the parameters λ0 and µ1
in terms of α and λ.

6.3.2 Collards were planted equally spaced in a single row in order to provide an
experimental setup for observing the chaotic movements of the flea beetle (Phyl-
lotreta cruciferae). A beetle at position k in the row remains on that plant for
a random length of time having mean mk (which varies with the “quality” of
the plant) and then is equally likely to move right (k+ 1) or left (k− 1). Model
the position of the beetle at time t as a birth and death process having parame-
ters λk = µk = 1/(2mk) for k = 1,2, . . . ,N− 1, where the plants are numbered
0,1, . . . ,N. What assumptions might be plausible at the ends 0 and N?

6.3.3 Let {V(t)} be the two-state Markov chain whose transition probabilities are
given by (6.30a–d). Suppose that the initial distribution is (1−π,π). That is,
assume that Pr{V(0)= 0} = 1−π and Pr{V(0)= 1} = π . For 0< s< t, show
that

E[V(s)V(t)]= π −πP10(t− s),

whence

Cov[V(s),V(t)]= π(1−π)e−(α+β)|t−s|.

6.3.4 A Stop-and-Go Traveler The velocity V(t) of a stop-and-go traveler is described
by the two-state Markov chain whose transition probabilities are given by
(6.30a–d). The distance traveled in time t is the integral of the velocity:

S(t)=

t∫
0

V(u)du.

Assuming that the velocity at time t = 0 is V(0)= 0, determine the mean of
S(t). Take for granted the interchange of integral and expectation in

E[S(t)]=

t∫
0

E[V(u)]du.

6.4 The Limiting Behavior of Birth and Death Processes

For a general birth and death process that has no absorbing states, it can be proved that
the limits

lim
t→∞

Pij(t)= πj ≥ 0 (6.31)
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exist and are independent of the initial state i. It may happen that πj = 0 for all states j.
When the limits πj are strictly positive, however, and satisfy

∞∑
j=0

πj = 1, (6.32)

they form a probability distribution that is called, naturally enough, the limiting dis-
tribution of the process. The limiting distribution is also a stationary distribution in
that

πj =

∞∑
i=0

πiPij(t), (6.33)

which tells us that if the process starts in state i with probability πi, then at any time t it
will be in state i with the same probability πi. The proof of (6.33) follows from (6.19)
and (6.31) if we let t→∞ and use the fact that 6∞i=0πi = 1.

The general importance of birth and death processes as models derives in large
part from the availability of standard formulas for determining if a limiting distri-
bution exists and what its values are when it does. These formulas follow from the
Kolmogorov forward equations (6.24) that were derived in Section 6.3.3:

P′i,0(t)=−λ0Pi,0(t)+µ1Pi,1(t),

P′i,j(t)= λj−1Pi,j−1(t)− (λj+µj)Pij(t)+µj+1Pi,j+1(t), j≥ 1,
(6.34)

with the initial condition PiJ(0)= δij. Now pass to the limit as t→∞ in (6.34) and
observe first that the limit of the right side of (6.34) exists according to (6.31). There-
fore, the limit of the left side, the derivatives P′ij(t), exists as well. Since the proba-
bilities are converging to a constant, the limit of these derivatives must be zero. In
summary, passing to the limit in (6.34) produces

0=−λ0π0+µ1π1,

0= λj−1πj−1− (λj+µj)πj+µj+1πj+1, j≥ 1.
(6.35)

The solution to (6.35) is obtained by induction. Letting

θ0 = 1 and θj =
λ0λ1 · · ·λj−1

µ1µ2 · · ·µJ
for j≥ 1, (6.36)

we have π1 = λ0π0/µ1 = θ1π0. Then, assuming that πk = θkπ0 for k = 1, . . . , j, we
obtain

µj+1πj+1 = (λj+µj)θjπ0− λj−1θj−1π0

= λjθjπ0+ (µjθj− λj−1θj−1)π0

= λjθjπ0,
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and finally

πj+1 = θj+1π0.

In order that the sequence {πj} define a distribution, we must have 6jπj = 1. If
6θj <∞, then we may sum the following,

π0 = θ0π0

π1 = θ1π0

π2 = θ2π0

...
...

1= (6θk)π0

to see that π0 = 1/6∞k=0θk, and then

πj = θjπ0 =
θj

6∞k=0θk
for j= 0,1, . . . . (6.37)

If 6θk =∞, then necessarily π0 = 0, and then πj = θjπ0 = 0 for all j, and there is no
limiting distribution (limt→∞Pij(t)= 0 for all j).

Example Linear Growth with Immigration As described in the example at the end
of Section 6.3.3, this process has birth parameters λn = a+ λn and death parameters
µn = µn for n= 0,1, . . . , where λ > 0 is the individual birth rate, a> 0 is the rate of
immigration into the population, and µ > 0 is the individual death rate.

Suppose λ < µ. It was shown in Section 6.3.3 that the population mean M(t) con-
verges to a/(µ− λ) as t→∞. Here, we will determine the limiting distribution of the
process under the same condition λ < µ.

Then, θ0 = 1, θ1 = a/µ, θ2 = a(a + λ)/[µ(2µ)], θ3 = a(a + λ)(a + 2λ)/
[µ(2µ)(3µ)], and, in general,

θk =
a(a+ λ) · · · [a+ (k− 1)λ]

µk(k)!

=
(a/λ)[(a/λ)+ 1] · · · [(a/λ)+ k− 1]

k!

(
λ

µ

)k

=

(
(a/λ)+ k− 1

k

)(
λ

µ

)k

.

Now, use the infinite binomial formula (Chapter 1, equation (1.71)),

(1− x)−N
=

∞∑
k=0

(
N+ k− 1

k

)
xk for|x|< 1,
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to determine that

∞∑
k=0

θk =

∞∑
k=0

(
(a/λ)+ k− 1

k

)(
λ

µ

)k

=

(
1−

λ

µ

)−(a/λ)

when λ < µ. Thus, π0 = (1− λ/µ)a/λ, and

πk =

(
λ

µ

)k
(a/λ)[(a/λ)+ 1] · · · [(a/λ)+ k− 1]

k!
(1− λ/µ)a/λ for k > 1.

Example Repairman Models A system is composed of N machines, of which at
most M ≤ N can be operating at any one time. The rest are “spares.” When a machine
is operating, it operates a random length of time until failure. Suppose this failure time
is exponentially distributed with parameter µ.

When a machine fails, it undergoes repair. At most R machines can be “in repair”
at any one time. The repair time is exponentially distributed with parameter λ. Thus,
a machine can be in any of four states: (1) operating; (2) “up,” but not operating, i.e.,
a spare; (3) in repair; and (4) waiting for repair. There is a total of N machines in the
system. At most M can be operating. At most R can be in repair.

The action is diagrammed in Figure 6.5.
Let X(t) be the number of machines “up” at time t, either operating or spare. Then,
(we assume) the number operating is min{X(t),M}, and the number of spares is
max{0,X(t)−M}. Let Y(t)= N−X(t) be the number of machines “down.” Then, the
number in repair is min{Y(t),R}, and the number waiting for repair is max{0,Y(t)−R}.

Y(t) � Number of machines “down”

X(t) � Number of machines “up”

Repair shopWaiting
for

repair

Factory

“Spares”

Capacity � R

Repair rate � �

Capacity � M

Failure rate � �

Figure 6.5 Repairman model.
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The foregoing formulas permit us to determine the number of machines in any category,
once X(t) is known.

Then, X(t) is a finite-state birth and death process1 with parameters

λn = λ×min{N− n,R}

=

{
λR for n= 0,1, . . . ,N−R,

λ(N− n) for n= N−R+ 1, . . . ,N,

and

µn = µ×min{n,M} =

{
µn for n= 0,1, . . . ,M,

µM for n=M+ 1, . . . ,N.

It is now a routine task to determine the limiting probability distribution for any val-
ues of λ,µ,N,M, and R. (See Problems 6.4.1 and 6.4.7.) In terms of the limiting
probabilities π0,π1, . . . ,πN , some quantities of interest are the following:

Average Machines Operating= π1+ 2π2+ ·· ·+MπM

+M(πM+1+ ·· ·+πN);

LongRun Utilization=
Average Machines Operating

Capacity

=
π1+ 2π2+ ·· ·+MπM

M
+ (πM+1+ ·· ·+πN);

Average Idle Repair Capacity= 1πN−R+1+ 2πN−R+2+ ·· ·+RπN .

These and other similar quantities can be used to evaluate the desirability of adding
additional repair capability, additional spare machines, and other possible improve-
ments.

The stationary distribution assumes quite simple forms in certain special cases.
For example, consider the special case in which M = N = R. The situation arises, for
instance, when each machine’s operator becomes its repairman upon its failure. Then,
λn = λ(N− n) and µn = µn for n= 0,1, . . . ,N, and following (6.36), we determine
θ0 = 1,θ1 = λN/µ,θ2 = (λN)λ(N− 1)/µ(2µ), and, in general,

θk =
N(N− 1) · · ·(N− k+ 1)

(1)(2) · · ·(k)

(
λ

µ

)k

=

(
N

k

)(
λ

µ

)k

.

1 The definition of birth and death processes was given for an infinite number of states. The adjustments in
the definitions and analyses for the case of a finite number of states are straightforward and even simpler
than the original definitions and are left to the reader.
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The binomial formula (1+ x)N =6N
k=0

(N
k

)
xk applies to yield

N∑
k=0

θk =

N∑
k=0

(
N

k

)(
λ

µ

)k

=

(
1+

λ

µ

)N

.

Thus, π0 = [1+ (λ/µ)]−N
= [µ/(λ+µ)]N , and

πk =

(
N

k

)(
λ

µ

)k

[µ/(λ+µ)]N

=

(
N

k

)(
λ

λ+µ

)k(
µ

λ+µ

)N−k

.

(6.38)

We recognize (6.38) as the familiar binomial distribution.

Example Logistic Process Suppose we consider a population whose size X(t) ranges
between two fixed integers N and M(N <M) for all t ≥ 0. We assume that the birth
and death rates per individual at time t are given by

λ= α(M−X(t)) and µ= β(X(t)−N)

and that the individual members of the population act independently of each other. The
resulting birth and death rates for the population then become

λn = αn(M− n) and µn = βn(n−N).

To see this, we observe that if the population size X(t) is n, then each of the n
individuals has an infinitesimal birth rate λ so that λu = αn(M− n). The same rationale
applies in the interpretation of the µn.

Under such conditions, one would expect the process to fluctuate between the two
constants N and M, since, e.g., if X(t) is near M, the death rate is high and the birth
rate is low, and then X(t) will tend toward N. Ultimately, the process should display
stationary fluctuations between the two limits N and M.

The stationary distribution in this case is

πN+m =
c

N+m

(
M−N

m

)(
α

β

)m

, m= 0,1,2, . . . ,M−N,

where c is an appropriate constant determined so that 6mπN+m = 1. To see this, we
observe that

θN+m =
λNλN+1 · · ·λN+m−1

µN+1µN+2 · · ·µN+m

=
αmN(N+ 1) · · ·(N+m− 1)(M−N) · · ·(M−N−m+ 1)

βm(N+ 1) · · ·(N+m)m!

=
N

N+m

(
M−N

m

)(
α

β

)m

.
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Example Some Genetic Models Consider a population consisting of N individuals
who are either of gene type a or gene type A. The state of the process X(t) represents
the number of a individuals at time t. We assume that the probability that any indi-
vidual dies and is replaced by another during the time interval (t, t+ h) is λh+ o(h)
independent of the values of X(t) and that the probability of two or more changes
occurring in a time interval h is o(h).

The changes in the population structure are affected as follows. An individual is to
be replaced by another chosen randomly from the population; that is, if X(t)= j, then
an a-type is selected to be replaced with probability j/N and an A-type with probability
1 −j/N. We refer to this stage as death. Next, birth takes place by the following rule.
Another selection is made randomly from the population to determine the type of the
new individual replacing the one who died. The model introduces mutation pressures
that admit the possibility that the type of the new individual may be altered upon birth.
Specifically, let γ1 denote the probability that an a-type mutates to an A-type, and let
γ2 denote the probability of an A-type mutating to an a-type.

The probability that the new individual added to the population is of type a is

j

N
(1− γ1)+

(
1−

j

N

)
γ2. (6.39)

We deduce this formula as follows: The probability that we select an a-type and that
no mutation occurs is ( j/N)(1− γ1). Moreover, the final type may be an a-type if
we select an A-type that subsequently mutates into an a-type. The probability of this
contingency is (1− j/N)γ2. The combination of these two possibilities gives (6.39).

We assert that the conditional probability that X(t+)−X(t)= 1 when a change of
state occurs is(

1−
j

N

)[
j

N
(1− γ1)+

(
1−

j

N

)
γ2

]
, where X(t)= j. (6.40)

In fact, the a-type population size can increase only if an A-type dies (is replaced). This
probability is 1− ( j/N). The second factor is the probability that the new individual
is of type a as in (6.39).

In a similar way, we find that the conditional probability that X(t+)−X(t)=−1
when a change of state occurs is

j

N

[(
1−

j

N

)
(1− γ2)+

j

N
γ1

]
, where X(t)= j.

The number of type a individuals in the population is thus a birth and death process
with a finite number of states and infinitesimal birth and death rates

λj = λ

(
1−

j

N

)[
j

N
(1− γ1)+

(
1−

j

N

)
γ2

]
N
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and

µj = λ
j

N

[
j

N
γ1+

(
1−

j

N

)
(1− γ2)

]
N, 0≤ j≤ N.

Although these parameters seem rather complicated, it is interesting to see what
happens to the stationary measure {πk}

N
k=0 if we let the population size N→∞ and

the probabilities of mutation per individual γ1 and γ2 tend to zero in such a way that
γ1N→ κ1 and γ2N→ κ2, where 0< κ1, κ2 <∞. At the same time, we shall trans-
form the state of the process to the interval [0,1] by defining new states j/N, i.e., the
fraction of a-types in the population. To examine the stationary density at a fixed frac-
tion x, where 0< x< 1, we shall evaluate πk as k→∞ in such a way that k = [xN],
where [xN] is the greatest integer less than or equal to xN.

Keeping these relations in mind, we write

λj =
λ(N− j)

N
(1− γ1− γ2)j

(
1+

a

j

)
, where a=

Nγ2

1− γ1− γ2
,

and

µj =
λ(N− j)

N
(1− γ1− γ2)j

(
1+

b

N− j

)
, where b=

Nγ1

1− γ1− γ2
.

Then,

logθk =

k−1∑
j=0

logλj−

k∑
j=1

logµj

=

k−1∑
j=1

log

(
1+

a

j

)
−

k−1∑
j=1

log

(
1+

b

N− j

)
+ logNa

− log(N− k)k

(
1+

b

N− k

)
.

Now, using the expansion

log(1+ x)= x−
x2

2
+

x3

3
− ·· · , |x|< 1,

it is possible to write

k−1∑
j=1

log

(
1+

a

j

)
= a

k−1∑
j=1

1

j
+ ck,
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where ck approaches a finite limit as k→∞. Therefore, using the relation

k−1∑
j=1

1

j
∼ logk as k→∞,

we have

k−1∑
j=1

log

(
1+

a

j

)
∼ logka

+ ck as k→∞.

In a similar way, we obtain

k−1∑
j=1

log

(
1+

b

N− j

)
∼ log

Nb

(N− k)b
+ dk as k→∞,

where dk approaches a finite limit as k→∞. Using the above relations, we have

logθk ∼ log

(
Ck

ka(N− k)bNa

Nb(N− k)k

)
as k→∞, (6.41)

where logCk = ck+ dk, which approaches a limit, say C, as k→∞. Notice that a→
κ2 and b→ κ1 as N→∞. Since k = [Nx], we have, for N→∞,

θk ∼ Cκ2Nκ2−1xκ2−1(1− x)κ1−1.

Now, from (6.41), we have

θk ∼ aCkka−1
(

1−
k

N

)b−1

.

Therefore,

1

Na

N−1∑
k=0

θk ∼
a

N

N−1∑
k=0

Ck

(
k

N

)a−1(
1−

k

N

)b−1

.

Since Ck→ C as k tends to ∞, we recognize the right side as a Riemann sum
approximation of

κ2C

1∫
0

xκ2−1(1− x)κ1−1dx.
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Thus,

N∑
i=0

θi ∼ Nκ2κ2C

1∫
0

xκ2−1(1− x)κ1−1dx

so that the resulting density on [0,1] is

θk

6θi
∼

1

N

xκ2−1(1− x)κ1−1∫ 1
0 xκ2−1(1− x)κ1−1dx

=
xκ2−1(1− x)κ1−1dx∫ 1
0 xκ2−1(1− x)κ1−1dx

,

since dx∼ 1/N. This is a beta distribution with parameters κ1 and κ2.

Exercises

6.4.1 In a birth and death process with birth parameters λn = λ for n= 0,1, . . . and
death parameters µn = µn for n= 0,1, . . . , we have

P0j(t)=
(λp) je−λp

j!
,

where

p=
1

µ

[
1− e−µt] .

Verify that these transition probabilities satisfy the forward equations (6.34),
with i= 0.

6.4.2 Let X(t) be a birth and death process where the possible states are 0,1, . . . ,N,
and the birth and death parameters are, respectively, λn = α(N− n) and
µn = βn. Determine the stationary distribution.

6.4.3 Determine the stationary distribution for a birth and death process having
infinitesimal parameters λn = α(n+ 1) and µn = βn2 for n= 0,1, . . . , where
0< α < β.

6.4.4 Consider two machines, operating simultaneously and independently, where
both machines have an exponentially distributed time to failure with mean 1/µ
(µ is the failure rate). There is a single repair facility, and the repair times are
exponentially distributed with rate λ.
(a) In the long run, what is the probability that no machines are operating?
(b) How does your answer in (a) change if at most one machine can operate,

and thus be subject to failure, at any time?
6.4.5 Consider the birth and death parameters λn = θ < 1 and µn = n/(n+ 1) for

n= 0,1, . . . . Determine the stationary distribution.
6.4.6 A birth and death process has parameters λn = λ and µn = nµ, for n= 0,1, . . . .

Determine the stationary distribution.
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Problems

6.4.1 For the repairman model of the second example of this section, suppose that
M = N = 5,R= 1,λ= 2, and µ= 1. Using the limiting distribution for the sys-
tem, determine
(a) The average number of machines operating.
(b) The equipment utilization.
(c) The average idle repair capacity.
How do these system performance measures change if a second repairman is
added?

6.4.2 Determine the stationary distribution, when it exists, for a birth and death
process having constant parameters λn = λ for n= 0,1, . . . and µn = µ for
n= 1,2, . . . .

6.4.3 A factory has five machines and a single repairman. The operating time until
failure of a machine is an exponentially distributed random variable with param-
eter (rate) 0.20 per hour. The repair time of a failed machine is an exponen-
tially distributed random variable with parameter (rate) 0.50 per hour. Up to
five machines may be operating at any given time, their failures being indepen-
dent of one another, but at most one machine may be in repair at any time. In
the long run, what fraction of time is the repairman idle?

6.4.4 This problem considers a continuous time Markov chain model for the chang-
ing pattern of relationships among members in a group. The group has four
members: a,b,c, and d. Each pair of the group may or may not have a certain
relationship with each other. If they have the relationship, we say that they are
linked. For example, being linked may mean that the two members are commu-
nicating with each other. The following graph illustrates links between a and b,
between a and c, and between b and d:

a

b

c

d

Figure 6.6

Suppose that any pair of unlinked individuals will become linked in a small time
interval of length h with probability αh+ o(h). Any pair of linked individuals
will lose their link in a small time interval of length h with probability βh+ o(h).
Let X(t) denote the number of linked pairs of individuals in the group at time t.
Then, X(t) is a birth and death process.
(a) Specify the birth and death parameters λk and µk for k = 0,1, . . . .
(b) Determine the stationary distribution for the process.

6.4.5 A chemical solution contains N molecules of type A and an equal number
of molecules of type B. A reversible reaction occurs between type A and B
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molecules in which they bond to form a new compound AB. Suppose that in any
small time interval of length h, any particular unbonded A molecule will react
with any particular unbonded B molecule with probability αh+ o(h), where α
is a reaction rate of formation. Suppose also that in any small time interval of
length h, any particular AB molecule disassociates into its A and B constituents
with probability βh+ o(h), where β is a reaction rate of dissolution. Let X(t)
denote the number of AB molecules at time t. Model X(t) as a birth and death
process by specifying the parameters.

6.4.6 A time-shared computer system has three terminals that are attached to a central
processing unit (CPU) that can simultaneously handle at most two active users.
If a person logs on and requests service when two other users are active, then
the request is held in a buffer until it can receive service. Let X(t) be the total
number of requests that are either active or in the buffer at time t. Suppose that
X(t) is a birth and death process with parameters

λk =

{
λ for k = 0,1,2,

0 for k ≥ 3

and

µk =

{
kµ for k = 0,1,2,

2µ for k = 3.

Determine the long run probability that the computer is fully loaded.
6.4.7 A system consists of three machines and two repairmen. At most two machines

can operate at any time. The amount of time that an operating machine works
before breaking down is exponentially distributed with mean 5. The amount of
time that it takes a single repairman to fix a machine is exponentially distributed
with mean 4. Only one repairman can work on a failed machine at any given
time. Let X(t) be the number of machines in operating condition at time t.
(a) Calculate the long run probability distribution for X(t).
(b) If an operating machine produces 100 units of output per hour, what is the

long run output per hour of the system?
6.4.8 A birth and death process has parameters

λk = α(k+ 1) for k = 0,1,2, . . . ,

and

µk = β(k+ 1) for k = 1,2, . . . .

Assuming that α < β, determine the limiting distribution of the process. Sim-
plify your answer as much as possible.
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6.5 Birth and Death Processes with Absorbing States

Birth and death processes in which λ0 = 0 arise frequently and are correspondingly
important. For these processes, the zero state is an absorbing state. A central example
is the linear-growth birth and death process without immigration (cf. Section 6.3.3).
In this case, λn = nλ and µn = nµ. Since growth of the population results exclusively
from the existing population, it is clear that when the population size becomes zero it
remains zero thereafter; that is, 0 is an absorbing state.

6.5.1 Probability of Absorption into State 0

It is of interest to compute the probability of absorption into state 0 starting from state
i(i≥ 1). This is not, a priori, a certain event, since conceivably the particle (i.e., state
variable) may wander forever among the states (1,2, . . .) or possibly drift to infinity.

Let ui(i= 1,2, . . .) denote the probability of absorption into state 0 from the initial
state i. We can write a recursion formula for ui by considering the possible states after
the first transition. We know that the first transition entails the movements

i→ i+ 1 with probability
λi

µi+ λi
,

i→ i− 1 with probability
µi

µi+ λi
.

Invoking the familiar first step analysis, we directly obtain

ui =
λi

µi+ λi
ui+1+

µi

µi+ λi
ui−1, i≥ 1, (6.42)

where u0 = 1.
Another method for deriving (6.42) is to consider the “embedded random walk”

associated with a given birth and death process. Specifically, we examine the birth and
death process only at the transition times. The discrete time Markov chain generated
in this manner is denoted by {Yn}

∞

n=0, where Y0 = X0 is the initial state and Yn(n≥ 1)
is the state at the nth transition. Obviously, the transition probability matrix has the
form

P=

∥∥∥∥∥∥∥∥∥
1 0 0 0 · · ·

q1 0 p1 0 · · ·

0 q2 0 p2 · · ·

...
...

∥∥∥∥∥∥∥∥∥,

where

pi =
λi

λi+µi
= 1− qi for i≥ 1.
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The probability of absorption into state 0 for the embedded random walk is the same
as for the birth and death processes, since both processes execute the same transi-
tions. A closely related problem (gambler’s ruin) for a random walk was examined in
Chapter 3, Section 3.6.1.

We turn to the task of solving (6.42) subject to the conditions u0 = 1 and 0≤ ui ≤

1(i≥ 1). Rewriting (6.42), we have

(ui+1− ui)=
µi

λi
(ui− ui−1), i≥ 1.

Defining νi = ui+1− ui, we obtain

νi =
µi

λi
νi−1, i≥ 1.

Iteration of the last relation yields the formula νi = ρiν0, where

ρ0 = 1 and ρi =
µ1µ2 · · ·µi

λ1λ2 · · ·λi
for i≥ 1;

and with ui+1− ui = νi,

ui+1− ui = νi = ρiν0 = ρi(u1− u0)= ρi(u1− 1) for i≥ 1.

Summing these last equations from i= 1 to i= m− 1, we have

um− u1 = (u1− 1)
m−1∑
i=1

ρi, m> 1. (6.43)

Since um by its very meaning is bounded by 1, we see that if

∞∑
i=1

ρi =∞, (6.44)

then necessarily u1 = 1 and um = 1 for all m≥ 2. In other words, if (6.44) holds, then
ultimate absorption into state 0 is certain from any initial state.

Suppose 0< u1 < 1; then, of course,

∞∑
i=1

ρi <∞.

Obviously, um is decreasing in m, since passing from state m to state 0 requires enter-
ing the intermediate states in the intervening time. Furthermore, it can be shown that
um→ 0 as m→∞. Now, letting m→∞ in (6.43) permits us to solve for u1; thus,

u1 =
6∞i=1ρi

1+6∞i=1ρi
;
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and then from (6.43), we obtain

um =
6∞i=mρi

1+6∞i=1ρi
, m≥ 1.

6.5.2 Mean Time Until Absorption

Consider the problem of determining the mean time until absorption, starting from
state m.

We assume that condition (6.44) holds so that absorption is certain. Notice that we
cannot reduce our problem to a consideration of the embedded random walk, since the
actual time spent in each state is relevant for the calculation of the mean absorption
time.

Let wi be the mean absorption time starting from state i (this could be infinite).
Considering the possible states following the first transition, instituting a first step
analysis, and recalling the fact that the mean waiting time in state i is (λi+µi)

−1 (it
is actually exponentially distributed with parameter λi+µi), we deduce the recursion
relation

wi =
1

λi+µi
+

λi

λi+µi
wi+1+

µi

λi+µi
wi−1, i≥ 1, (6.45)

where w0 = 0. Letting zi = wi−wi+1 and rearranging (6.45) leads to

zi =
1

λi
+
µi

λi
zi−1, i≥ 1. (6.46)

Iterating this relation gives

z1 =
1

λ1
+
µ1

λ1
z0,

z2 =
1

λ2
+
µ2

λ2
z1 =

1

λ2
+

µ2

λ2λ1
+
µ2µ1

λ2λ1
z0,

z3 =
1

λ3
+

µ3

λ3λ2
+

µ3µ2

λ3λ2λ1
+
µ3µ2µ1

λ3λ2λ1
z0,

and finally

zm =

m∑
i=1

1

λi

m∏
j=i+1

µj

λj
+

 m∏
j=1

µj

λj

z0.

(The product 5m
m+1µj/λj is interpreted as 1.) Using the notation

ρ0 = 1 and ρi =
µ1µ2 · · ·µi

λ1λ2 · · ·λi
, i≥ 1,
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the expression for zm becomes

zm =

m∑
i=1

1

λi

ρm

ρi
+ ρmz0,

or, since zm = wm−wm+1 and z0 = w0−w1 =−w1, then

1

ρm
(wm−wm+1)=

m∑
i=1

1

λiρi
−w1. (6.47)

If 6∞i=1(1/λiρi)=∞, then inspection of (6.47) reveals that necessarily w1 =∞.
Indeed, it is probabilistically evident that wm < wm+1 for all m, and this property would
be violated for m large if we assume to the contrary that w1 is finite.

Now, suppose 6∞i=1(1/λiρi) <∞; then, letting m→∞ in (6.47) gives

w1 =

∞∑
i=1

1

λiρi
− lim

m→∞

1

ρm
(wm−wm+1).

It is more involved but still possible to prove that

lim
m→∞

1

ρm
(wm−wm+1)= 0,

and then,

w1 =

∞∑
i=1

1

λiρi
.

We summarize the discussion of this section in the following theorem:

Theorem 6.1. Consider a birth and death process with birth and death parameters λn

and µn,n≥ 1, where λ0 = 0 so that 0 is an absorbing state.
The probability of absorption into state 0 from the initial state m is

um =


6∞i=mρi

1+6∞i=1ρi
if
∞∑

i=1
ρi <∞,

1 if
∞∑

i=1
ρi =∞.

(6.48)

The mean time to absorption is

wm =


∞ if

∞∑
i=1

1
λiρi
=∞,

∞∑
i=1

1
λiρi
+

m−1∑
k=1

ρk

∞∑
j=k+1

1
λjρj

if
∞∑

i=1

1
λiρi

<∞,

(6.49)

where ρ0 = 1 and ρi = (µ1µ2 · · ·µi)/(λ1λ2 · · ·λi).
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Example Population Processes Consider the linear growth birth and death process
without immigration (cf. Section 6.3.3) for which µn = nµ and λn = nλ,n= 0,1, . . . .
During a short time interval of length h, a single individual in the population dies with
probability µh+ o(h) and gives birth to a new individual with probability λh+ o(h),
and thus, µ > 0 and λ > 0 represent the individual death and birth rates, respectively.

Substitution of a= 0 and i= m in equation (6.25) determines the mean population
size at time t for a population starting with X(0)= m individuals. This mean population
size is M(t)= me(λ−µ)t, exhibiting exponential growth or decay depending on whether
λ > µ or λ < µ.

Let us now examine the extinction phenomenon and determine the probability that
the population eventually dies out. This phenomenon corresponds to absorption in
state 0 for the birth and death process.

When λn = nλ and µn = nµ, a direct calculation yields ρi = (µ/λ)
i, and then,

∞∑
i=m

ρi =

∞∑
i=m

(µ/λ)i =


(µ/λ)m

1− (µ/λ)
when λ > µ,

∞ when λ≤ µ.

From Theorem 6.1, the probability of eventual extinction starting with m individuals is

Pr{Extinction|X(0)= m} =

{
(µ/λ)m when λ > µ,
1 when λ≤ µ.

(6.50)

When λ= µ, the process is sure to vanish eventually. Yet, in this case, the mean
population size remains constant at the initial population level. Similar situations
where mean values do not adequately describe population behavior frequently arise
when stochastic elements are present.

We turn attention to the mean time to extinction assuming that extinction is certain,
i.e., when λ≤ µ. For a population starting with a single individual, then, from (6.49)
with m= 1, we determine this mean time to be

∞∑
i=1

1

λiρi
=

1

λ

∞∑
i=1

1

i

(
λ

µ

)i

=
1

λ

∞∑
i=1

(λ/µ)∫
0

xi−1dx

=
1

λ

(λ/µ)∫
0

∞∑
i=1

xi−1dx

(6.51)

=
1

λ

(λ/µ)∫
0

dx

(1− x)
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=−
1

λ
ln(1− x)

∣∣∣(λ/µ)
0

=


1

λ
ln

(
µ

µ− λ

)
when µ > λ,

∞ when µ= λ.

When the birth rate λ exceeds the death rate µ, a linear growth birth and death
process can, with strictly positive probability, grow without limit. In contrast, many
natural populations exhibit density-dependent behavior wherein the individual birth
rates decrease or the individual death rates increase or both changes occur as the pop-
ulation grows. These changes are ascribed to factors including limited food supplies,
increased predation, crowding, and limited nesting sites. Accordingly, we introduce a
notion of environmental carrying capacity K, an upper bound that the population size
cannot exceed.

Since all individuals have a chance of dying, with a finite carrying capacity, all
populations will eventually become extinct. Our measure of population fitness will
be the mean time to extinction, and it is of interest to population ecologists studying
colonization phenomena to examine how the capacity K, the birth rate λ, and the death
rate µ affect this mean population lifetime.

The model should have the properties of exponential growth (on the average) for
small populations, as well as the ceiling K beyond which the population cannot grow.
There are several ways of approaching the population size K and staying there at equi-
librium. Since all such models give more or less the same qualitative results, we stip-
ulate the simplest model, in which the birth parameters are

λn =

{
nλ for n= 0,1, . . . ,K− 1,
0 for n> K.

Theorem 6.1 yields w1, the mean time to population extinction starting with a single
individual, as given by

w1 =

∞∑
i=1

1

λiρi
=

∞∑
i=1

λ1λ2 · · ·λi−1

µ1µ2 · · ·µi
=

1

µ

K∑
i=1

1

i

(
λ

µ

)i−1

. (6.52)

Equation (6.52) isolates the distinct factors influencing the mean time to population
extinction. The first factor is 1/µ, the mean lifetime of an individual, since µ is the
individual death rate. Thus, the sum in (6.52) represents the mean generations, or mean
lifespans, to population extinction, a dimensionless quantity that we denote by

Mg = µw1 =

K∑
i=1

1

i
θ i−1, where θ =

λ

µ
. (6.53)

Next, we examine the influence of the birth–death, or reproduction, ratio θ = λ/µ,
and the carrying capacity K on the mean time to extinction. Since λ represents the
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individual birth rate and 1/µ is the mean lifetime of a single member in the population,
we may interpret the reproduction ratio θ = λ(1/µ) as the mean number of offspring
of an arbitrary individual in the population. Accordingly, we might expect significantly
different behavior when θ < 1 as opposed to when θ > 1, and this is indeed the case.
A carrying capacity of K = 100 is small. When K is on the order of 100 or more,
we have the following accurate approximations, their derivations being sketched in
Exercises 6.5.1 and 6.5.2:

Mg ≈



1

θ
ln

(
1

1− θ

)
for θ < 1,

0.5772157+ lnK for θ = 1,

1

K

(
θK

θ − 1

)
for θ > 1.

(6.54)

The contrast between θ < 1 and θ > 1 is vivid. When θ < 1, the mean generations
to extinction Mg is almost independent of carrying capacity K and approaches the
asymptotic value θ−1 ln(1− θ)−1 quite rapidly. When θ > 1, the mean generations to
extinction Mg grows exponentially in K. Some calculations based on (6.54) are given
in Table 6.1.

Example Sterile Male Insect Control The screwworm fly, a cattle pest in warm
climates, was eliminated from the southeastern United States by the release into the
environment of sterilized adult male screwworm flies. When these males, artificially
sterilized by radiation, mate with native females, there are no offspring, and in this
manner, part of the reproductive capacity of the natural population is nullified by their
presence. If the sterile males are sufficiently plentiful so as to cause even a small
decline in the population level, then this decline accelerates in succeeding genera-
tions even if the number of sterile males is maintained at approximately the same level
because the ratio of sterile to fertile males will increase as the natural population drops.
Because of this compounding effect, if the sterile male control method works at all, it
works to such an extent as to drive the native population to extinction in the area in
which it is applied.

Recently, a multibillion-dollar effort involving the sterile male technique has been
proposed for the control of the cotton boll weevil. In this instance, it was felt that

Table 6.1 Mean generations to extinction for a
population starting with a single parent and where θ is the

reproduction rate and K is the environmental capacity

K θ = 0.8 θ = 1 θ = 1.2

10 1.96 2.88 3.10
100 2.01 5.18 4.14× 104

1000 2.01 7.48 7.59× 1076
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pretreatment with a pesticide could reduce the natural population size to a level such
that the sterile male technique would become effective. Let us examine this assump-
tion, first with a deterministic model and then in a stochastic setting.

For both models, we suppose that sexes are present in equal numbers, that sterile
and fertile males are equally competitive, and that a constant number S of sterile males
is present in each generation. In the deterministic case, if N0 fertile males are in the
parent generation and the N0 fertile females choose mates equally likely from the entire
male population, then the fraction N0/(N0+ S) of these matings will be with fertile
males and will produce offspring. Letting θ denote the number of male offspring that
results from a fertile mating, we calculate the size N of the next generation according to

N1 = θN0

(
N0

N0+ S

)
. (6.55)

For a numerical example, suppose that there are N0 = 100 fertile males (and an
equal number of fertile females) in the parent generation of the native population, and
that S= 100 sterile male insects are released. If θ = 4, meaning that a fertile mating
produces four males (and four females) for the succeeding generation, then the number
of both sexes in the first generation is

N1 = 4(100)

(
100

100+ 100

)
= 200;

the population has increased, and the sterile male control method has failed.
On the other hand, if a pesticide can be used to reduce the initial population size to

N0 = 20, or 20% of its former level, and S= 100 sterile males are released, then

N1 = 4(20)

(
20

20+ 100

)
= 13.33,

and the population is declining. The succeeding population sizes are given in Table 6.2,
above. With the pretreatment, the population becomes extinct by the fourth generation.

Often deterministic or average value models will adequately describe the evolution
of large populations. But extinction is a small population phenomenon, and even in the
presence of significant long-term trends, small populations are strongly influenced by

Table 6.2 The trend of an insect population subject to sterile male releases

Number of Insects Number of Ratio Sterile Number of
Generation Natural Population Sterile Insects to Fertile Progeny

Parent 20 100 5:1 13.33
F1 13.33 100 7.5:1 6.27
F2 6.27 100 16:1 1.48
F3 1.48 100 67.5:1 0.09
F4 0.09 100 1156:1 —
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the chance fluctuations that determine which of extinction or recolonization will occur.
This fact motivates us to examine a stochastic model of the evolution of a population
in the presence of sterile males. The factors in our model are

λ, the individual birth rate;
µ, the individual death rate;
θ = λ/µ, the mean offspring per individual;
K, the carrying capacity of the environment;
S, the constant number of sterile males in the population;
m, the initial population size.

We assume that both sexes are present in equal numbers in the natural population
and that X(t), the number of either sex present at time t, evolves as a birth and death
process with parameters

λn =

λn

(
n

n+ S

)
if 0≤ n< K,

0 for n≥ K,

(6.56)and

µn = µn for n= 0,1, . . . .

This is the colonization model of the Population Processes example, modified in
analogy with (6.55) by including in the birth rate the factor n/(n+ S) to represent the
probability that a given mating will be fertile.

To calculate the mean time to extinction wm as given in (6.49), we first use (6.56)
to determine

ρk =
µ1µ2 · · ·µk

λ1λ2 · · ·λk
=

(µ
λ

)k (k+ S)!

k!S!
for k = 1, . . . ,K− 1,

ρ0 = 1, and ρK =∞, or 1/ρK = 0,

and then substitute these expressions for ρk into (6.49) to obtain

wm =

K∑
j=1

1

λjρj
+

m−1∑
k=1

ρk

K∑
j=k+1

1

λjρj

=

m−1∑
k=0

ρk

K∑
j=k+1

1

λjρj
=

m−1∑
k=0

ρk

K∑
j=k+1

1

µjρj−1
(6.57)

=
1

µ


m−1∑
k=0

K−1∑
j=k

1

j+ 1
θ j−k j!(S+ k)!

k!(S+ j)!

.
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Because of the factorials, equation (6.57) presents numerical difficulties when
direct computations are attempted. A simple iterative scheme works to provide accu-
rate and effective computation, however. We let

αk =

K−1∑
j=k

1

j+ 1
θ j−k j!(S+ k)!

k!(S+ j)!

so that wm = (α0+ ·· ·+αm−1)/µ. But, it is easily verified that

αk−1 =
1

k
+ θ

(
k

S+ k

)
αk.

Beginning with αK = 0, one successively computes αK−1,αK−2, . . . ,α0, and then
wm = (α0+ ·· ·+αm−1)/µ.

Using this method, we have computed the mean generations to extinction in the
stochastic model for comparison with the deterministic model as given in Table 6.3.
Table 6.3 lists the mean generations to extinction for various initial population sizes
m when K = S= 100,λ= 4, and µ= 1 so that θ = 4. Instead of the four generations
to extinction as predicted by the deterministic model when m= 20, we now estimate
that the population will persist for over 8 billion generations!

What is the explanation for the dramatic difference between the predictions of the
deterministic model and the predictions of the stochastic model? The stochastic model
allows the small but positive probability that the population will not die out but will
recolonize and return to a higher level near the environmental capacity K and then
persist for an enormous length of time.

While both models are qualitative, the practical implications cannot be dismissed.
In any large-scale control effort, a wide range of habitats and microenvironments is
bound to be encountered. The stochastic model suggests the likely possibility that
some subpopulation in some pocket might persist and later recolonize the entire area.

Table 6.3 The mean lifespans to
extinction in a birth and death model
of a population containing a constant

number S= 100 of sterile males

Initial Mean Lifespans
Population Size to Extinction

20 8,101,227,748
10 4,306,531
5 3,822
4 566
3 65
2 6.3
1 1.2
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A sterile male program that depends on a pretreatment with an insecticide for its suc-
cess is chancy at best.

Exercises

6.5.1 Assuming θ < 1, verify the following steps in the approximation to Mg, the
mean generation to extinction as given in (6.53):

Mg =

K∑
i=1

1

i
θ i−1
= θ−1

K∑
i=1

θ∫
0

xi−1dx

= θ−1

θ∫
0

1− xK

1− x
dx= θ−1

θ∫
0

dx

1− x
− θ−1

θ∫
0

xK

1− x
dx

=
1

θ
ln

1

1− θ
− θ−1

θ∫
0

xK
(

1+ x+ x2
+ ·· ·

)
dx

=
1

θ
ln

1

1− θ
−

1

θ

(
θK+1

K+ 1
+
θK+2

K+ 2
+ ·· ·

)

=
1

θ
ln

1

1− θ
−

θK

K+ 1

(
1+

K+ 1

K+ 2
θ +

K+ 1

K+ 3
θ2
+ ·· ·

)

≈
1

θ
ln

1

1− θ
−

θK

(K+ 1)(1− θ)
.

6.5.2 Assume that θ > 1 and verify the following steps in the approximation to Mg,
the mean generation to extinction as given in (6.53):

Mg =

K∑
i=1

1

i
θ i−1
= θK

K∑
i=1

1

i
θK−i+1

= θK
K∑

j=1

1

K− j+ 1

(
1

θ

)j

=
θK−1

K

[
1+

K

K− 1

(
1

θ

)
+

K

K− 2

(
1

θ

)2

+ ·· ·+
K

1

(
1

θ

)K−1
]

≈
θK−1

K

[
1

1− (1/θ)

]
=

θK

K(θ − 1)
.
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Problems

6.5.1 Consider the sterile male control model as described in the example entitled
“Sterile Male Insect Control ” and let um be the probability that the population
becomes extinct before growing to size K starting with X(0)= m individuals.
Show that

um =
6K−1

i=m ρi

6K−1
i=0 ρi

for m= 1, . . . ,K,

where

ρi = θ
−i (S+ i)!

i!
.

6.5.2 Consider a birth and death process on the states 0,1, . . . ,5 with parameters

λ0 = µ0 = λ5 = µ5 = 0,

λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 4,
µ1 = 4, µ2 = 3, µ3 = 2, µ= 1.

Note that 0 and 5 are absorbing states. Suppose the process begins in state
X(0)= 2.
(a) What is the probability of eventual absorption in state 0?
(b) What is the mean time to absorption?

6.6 Finite-State Continuous Time Markov Chains

A continuous time Markov chain X(t)(t > 0) is a Markov process on the states
0,1,2, . . . . We assume as usual that the transition probabilities are stationary; that is,

Pij(t)= Pr{X(t+ s)= j|X(s)= i}. (6.58)

In this section, we consider only the case where the state spaces S is finite, labeled as
{0,1,2, . . . ,N}.

The Markov property asserts that Pij(t) satisfies

(a) Pij(t)≥ 0,

(b)
N∑

j=0
Pij(t)= 1, i, j= 0,1, . . . ,N, and

(c) Pik(s+ t)=
N∑

j=0
Pij(s)Pjk(t) for t,s≥ 0 (Chapman–Kolmogorov relation),

and we postulate in addition that

(d) lim
t→0+

Pij(t)=

{
1, i= j,
0, i 6= j.
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If P(t) denotes the matrix ‖Pij(t)‖Ni,j=0, then property (c) can be written compactly
in matrix notation as

P(t+ s)= P(t)P(s), t,s≥ 0. (6.59)

Property (d) asserts that P(t) is continuous at t = 0, since the fact P(0)= I
(= identity matrix) is implied by (6.59). It follows simply from (6.59) that P(t) is
continuous for all t > 0. In fact, if s= h> 0 in (6.59), then because of (d), we have

lim
h→0+

P(t+ h)= P(t) lim
h→0+

P(h)= P(t)I= P(t). (6.60)

On the other hand, for t > 0 and 0< h< t, we write (6.59) in the form

P(t)= P(t− h)P(h). (6.61)

But P(h) is near the identity when h is sufficiently small, and so P(h)−1 [the inverse
of P(h)] exists and also approaches the identity I. Therefore,

P(t)= P(t) lim
h→0+

(P(h))−1
= lim

h→0+
P(t− h). (6.62)

The limit relations (6.60) and (6.62) together show that P(t) is continuous.
Actually, P(t) is not only continuous but also differentiable in that the limits

lim
h→0+

1−Pii(h)

h
= qi,

(6.63)

lim
h→0+

Pij(h)

h
= qij, i 6= j,

exist, where 0≤ qij <∞(i 6= j) end 0≤ qi <∞. Starting with the relation

1−Pii(h)=
N∑

j=0,j6=i

Pij(h),

dividing by h, and letting h decrease to zero yields directly the relation

qi =

N∑
j=0.j6=i

qij.

The rates qi and qij furnish an infinitesimal description of the process with

Pr{X(t+ h)= j|X(t)= i} = qijh+ o(h) for i 6= j,

Pr{X(t+ h)= i|X(t)= i} = 1− qih+ o(h).
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In contrast to the infinitesimal description, the sojourn description of the process
proceeds as follows: Starting in state i, the process sojourns there for a duration that
is exponentially distributed with parameter qi. The process then jumps to state j 6= i
with probability pij = qij/qi; the sojourn time in state j is exponentially distributed
with parameter qj, and so on. The sequence of states visited by the process, denoted by
ξ0,ξ1, . . . , is a Markov chain with discrete parameter, called the embedded Markov
chain. Conditioned on the state sequence ξ0,ξ1, . . . , the successive sojourn times
S0,S1, . . . are independent exponentially distributed random variables with parameters
qξ0 ,qξ1 , . . . , respectively.

Assuming that (6.63) has been verified, we now derive an explicit expression for
Pij(t) in terms of the infinitesimal matrix

A=

∥∥∥∥∥∥∥∥∥
−q0 q01 · · · q0N

q10 −q1 q1N
...

qN0 qN1 · · · −qN

∥∥∥∥∥∥∥∥∥ .
The limit relations (6.63) can be expressed concisely in matrix form:

lim
h→0+

P(h)− I
h

= A, (6.64)

which shows that A is the matrix derivative of P(t) at t = 0. Formally, A= P′(0).
With the aid of (6.64) and referring to (6.59), we have

P(t+ h)−P(t)
h

=
P(t)[P(h)− I]

h
=

P(h)− I
h

P(t). (6.65)

The limit on the right exists, and this leads to the matrix differential equation

P′(t)= P(t)A= AP(t), (6.66)

where P′(t) denotes the matrix whose elements are P′ij(t)= dPij(t)/dt. The exis-
tence of P′ij(t) is an obvious consequence of (6.64) and (6.65). The differential equa-
tions (6.66) under the initial condition P(0)= I can be solved by standard methods to
yield the formula

P(t)= eAt
= I+

∞∑
n=1

Antn

n!
. (6.67)

Example The Two-State Markov Chain Consider a Markov chain {X(t)} with states
{0,1} whose infinitesimal matrix is

A=

∥∥∥∥∥
0 1

0 −α α

1 β −β

∥∥∥∥∥.
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The process alternates between states 0 and 1. The sojourn times in state 0 are indepen-
dent and exponentially distributed with parameter α. Those in state 1 are independent
and exponentially distributed with parameter β. We carry out the matrix multiplication∥∥∥∥−α α

β −β

∥∥∥∥× ∥∥∥∥−α α

β −β

∥∥∥∥= ∥∥∥∥ α2
+αβ −α2

−αβ

−β2
−αβ β2

+αβ

∥∥∥∥
=−(α+β)

∥∥∥∥−α α

β −β

∥∥∥∥
to see that A2

=−(α+β)A. Repeated multiplication by A then yields

An
= [−(α+β)]n−1A,

which when inserted into (6.67) simplifies the sum according to

P(t)= I−
1

α+β

∞∑
n=1

[−(α+β)t]n

n!
A

= I−
1

α+β

[
e−(α+β)t− 1

]
A

= I+
1

α+β
A−

1

α+β
Ae−(α+β)t.

And with π = α/(α+β) and τ = α+β,

P(t)=

∥∥∥∥1−π π

1−π π

∥∥∥∥+ ∥∥∥∥ π −π

−(1−π) (1−π)

∥∥∥∥e−τ t,

which is the matrix expression for equations (6.30a–d).
Returning to the general Markov chain on states {0,1, . . . ,N}, when the chain

is irreducible (all states communicate), then Pij(t) > 0 for i, j= 0,1, . . . ,N and
limt→∞Pij(t)= πj > 0 exists independently of the initial state i. The limiting distribu-
tion may be found by passing to the limit in (6.66), noting that limt→∞P′(t)= 0. The
resulting equations for π = (π0,π1, . . . ,πN) are

0= πA= (π0,π1, . . . ,πN)

∥∥∥∥∥∥∥∥∥∥

−q0 q01 · · · q0N

q10 −q1 · · · q1N

...
... . . .

...

qN0 qN1 −qN

∥∥∥∥∥∥∥∥∥∥
,

which is the same as

πjqj =
∑
i6=j

πiqij, j= 0,1, . . . ,N. (6.68)
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Equation (6.68) together with

π0+π1+ ·· ·+πN = 1 (6.69)

determines the limiting distribution.
Equation (6.68) has a mass balance interpretation that aids us in understanding it.

The left side πjqj represents the long run rate at which particles executing the Markov
process leave state j. This rate must equal the long run rate at which particles arrive
at state j if equilibrium is to be maintained. Such arriving particles must come from
some state i 6= j, and a particle moves from state i 6= j to state j at rate qij. Therefore,
the right side 6i6=jπiqij represents the total rate of arriving particles.

Example Industrial Mobility and the Peter Principle Let us suppose that a draftsman
position at a large engineering firm can be occupied by a worker at any of three levels:
T = Trainee, J = Junior draftsman, and S= Senior draftsman. Let X(t) denote the
level of the person in the position at time t, and suppose that X(t) evolves as a Markov
chain whose infinitesimal matrix is

A=

∥∥∥∥∥∥∥
T J S

T −aT aT 0

J aJT −aJ aJS

S aS 0 −aS

∥∥∥∥∥∥∥.
Thus, a Trainee stays at that rank for an exponentially distributed time having param-
eter aT and then becomes a Junior draftsman. A Junior draftsman stays at that level
for an exponentially distributed length of time having parameter aJ = aJT + aJS. Then,
the Junior draftsman leaves the position and is replaced by a Trainee with probability
aJT/aJ or is promoted to a Senior draftsman with probability aJS/aJ and so on.

Alternatively, we may describe the model by specifying the movements during
short time intervals according to

Pr{X(t+ h)= J|X(t)= T} = aTh+ o(h),

Pr{X(t+ h)= T|X(t)= J} = aJTh+ o(h),

Pr{X(t+ h)= S|X(t)= J} = aJSh+ o(h),

Pr{X(t+ h)= T|X(t)= S} = aSh+ o(h),

and

Pr{X(t+ h)= i|X(t)= i} = 1− aih+ o(h) for i= T,J,S.

The equations for the equilibrium distribution (πT ,πJ,πS) are, according to (6.68),

aTπT = aJTπJ + aSπS,

aJπJ = aTπT ,

aSπS = aJSπJ,

1= πT + πJ + πS,
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and the solution is

πT =
aSaJ

aSaJ + aSaT + aTaJS
,

πJ =
aSaT

aSaJ + aSaT + aTaJS
,

πS =
aTaJS

aSaJ + aSaT + aTaJS
.

Let us consider a numerical example for comparison with an alternative model to
be developed later. We suppose that the mean times in the three states are

State Mean Time

T 0.1
J 0.2
S 1.0

and that a Junior draftsman leaves and is replaced by a Trainee with probability 2
5 and

is promoted to a Senior draftsman with probability 3
5 . These suppositions lead to the

prescription aT = 10,aJT = 2,aJS = 3, and aS = 1. The equilibrium probabilities are

πT =
1(5)

1(5)+ 1(10)+ 10(3)
=

5

45
= 0.11,

πJ =
10

45
= 0.22,

πS =
30

45
= 0.67.

But the duration that people spend in any given position is not exponentially dis-
tributed in general. A bimodal distribution is often observed in which many people
leave rather quickly, while others persist for a substantial time. A possible explanation
for this phenomenon is found in the “Peter Principle,”2 which asserts that a worker is
promoted until finally reaching a position in which he or she is incompetent. When
this happens, the worker stays in that job until retirement. Let us modify the industrial
mobility model to accommodate the Peter Principle by considering two types of Junior
draftsmen, Competent and Incompetent. We suppose that a fraction p of Trainees are
Competent and q= 1− p are Incompetent. We assume that a competent Junior drafts-
man stays at that level for an exponentially distributed duration with parameter aC and
then is promoted to Senior draftsman. Finally, an incompetent Junior draftsman stays
in that position until retirement, an exponentially distributed sojourn with parameter

2 Laurence, J.P., & Hull, R. (1969). The Peter Principle. Cutchogue, NY: Buccanear Books.
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aI , and then he or she is replaced by a Trainee. The relevant infinitesimal matrix is
given by

A=

∥∥∥∥∥∥∥∥∥

T I C S

T −aT qaT paT

I aI −aI

C −aC aC

S aS −aS

∥∥∥∥∥∥∥∥∥.
The duration in the Junior draftsman position now follows a probability law that is

a mixture of exponential densities. To compare this model with the previous model,
suppose that p= 3

5 ,q=
2
5 ,aI = 2.86, and aC = 10. These numbers were chosen so as

to make the mean duration as a Junior draftsman,

p

(
1

aC

)
+ q

(
1

aI

)
=

(
3

5

)
(0.10)+

(
2

5

)
(0.35)= 0.20,

the same as in the previous calculations. The probability density of this duration is

f (t)=
3

5
(10)e−10t

+
2

5
(2.86)e−2.86t for t ≥ 0.

This density is plotted in Figure 6.7, for comparison with the exponential density
g(t)= 5e−5t, which has the same mean. The bimodal tendency is indicated in that
f (t) > g(t) when t is near zero and when t is very large.

With the numbers as given and aT = 10 and aS = 1 as before, the stationary distri-
bution (πT ,πI,πC,πS) is found by solving

10πT = 2.86πI, 1πS,

2.86πI = 4πT ,

10πC = 6πT ,

1πS = 10πC,

1= πT + πI + πC+πS.

The solution is

πT = 0.111, πI = 0.155,

πS = 0.667, πC = 0.067.

Let us make two observations before leaving this example. First, the limiting prob-
abilities πT ,πS, and πJ = πI +πC agree between the two models. This is a common
occurrence in stochastic modeling, wherein the limiting behavior of a process is rather
insensitive to certain details of the model and depends only on the first moments, or
means. When this happens, the model assumptions can be chosen for their mathemat-
ical convenience with no loss.
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Figure 6.7 The exponential density (straight line) versus the mixed exponential density (curved
line). Both distributions have the same mean. A logarithmic scale was used to accentuate the
differences.

The second observation is specific to the Peter Principle. We have assumed that
p= 3

5 of Trainees are competent Junior draftsmen and only q= 2
5 are Incompetent.

Yet in the long run, a Junior draftsman is found to be Incompetent with probability
πI/(πI +πC)= 0.155/(0.155+ 0.067)= 0.70!

Example Redundancy and the Burn-In Phenomenon An airlines reservation system
has two computers, one online and one backup. The operating computer fails after an
exponentially distributed duration having parameter µ and is replaced by the standby.
There is one repair facility, and repair times are exponentially distributed with param-
eter λ. Let X(t) be the number of computers in operating condition at time t. Then,
X(t) is a Markov chain whose infinitesimal matrix is

A=

∥∥∥∥∥∥∥
0 1 2

0 −λ λ 0

1 µ −(λ+µ) λ

2 0 µ −µ

∥∥∥∥∥∥∥.
The stationary distribution (π0,π1,π2) satisfies

λπ0 = µπ1,

(λ+µ)π1 = λπ0, +µπ2,

µπ2 = λπ1,

1= π0+ π1 + π2,
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and the solution is

π0 =
1

1+ (λ/µ)+ (λ/µ)2
,

π1 =
λ/µ

1+ (λ/µ)+ (λ/µ)2
,

π2 =
(λ/µ)2

1+ (λ/µ)+ (λ/µ)2
.

The availability, or probability that at least one computer is operating, is 1−π0 =

π1+π2.
Often, in practice, the assumption of exponentially distributed operating times is

not realistic because of the so-called burn-in phenomenon. This idea is best explained
in terms of the hazard rate r(t) associated with a probability density function f (t) of
a nonnegative failure time T . Recall that r(t)1t measures the conditional probability
that the item fails in the next time interval (t, t+1t) given that it has survived up to
time t, and therefore, we have

r(t)=
f (t)

1−F(t)
for t ≥ 0,

where F(t) is the cumulative distribution function associated with the probability den-
sity function f (t).

A constant hazard rate r(t)= λ for all t corresponds to the exponential density
function f (t)= λe−λt for t ≥ 0. The burn-in phenomenon is described by a hazard rate
that is initially high and then decays to a constant level, where it persists, possibly later
to rise again (aging). It corresponds to a situation in which a newly manufactured or
newly repaired item has a significant probability of failing early in its use. If the item
survives this test period, however, it then operates in an exponential or memoryless
manner. The early failures might correspond to incorrect manufacture or faulty repair,
or might be a property of the materials used.

Anyone familiar with automobile repairs has experienced the burn-in pheno-
menon.

One of many possible ways to model the burn-in phenomenon is to use a mixture
of exponential densities

f (t)= pαe−αt
+ qβe−βt, t ≥ 0, (6.70)

where 0< p= 1− q< 1 and α,β are positive. The density function for which
p= 0.1,α = 10,q= 0.9, and β = 0.909 · · · = 1/1.1 has mean one. Its hazard rate is
plotted in Figure 6.8, where the higher initial burn-in level is evident.
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Figure 6.8 The hazard rate corresponding to the density given in (6.70). The higher hazard rate
at the initial t values represents the burn-in phenomenon.

We may incorporate the burn-in phenomenon corresponding to the mixed exponen-
tial density (6.70) by expanding the state space according to the following table:

Notation State

0 Both computers down
1A One operating computer, current up time has parameter α
1B One operating computer, current up time has parameter β
2A Two operating computers, current up time has parameter α
2B Two operating computers, current up time has parameter β

Equation (6.70) corresponds to a probability p that a computer beginning operation
will have an exponentially distributed up time with parameter α and a probability q
that the parameter is β. Accordingly, we have the infinitesimal matrix

A=

∥∥∥∥∥∥∥∥∥∥∥

0 1A 1B 2A 2B

0 −λ pλ qλ
1A α −(λ+α) λ

1B β −(λ+β) λ

2A pα qα −α

2B pβ qβ −β

∥∥∥∥∥∥∥∥∥∥∥
.

The stationary distribution can be determined in the usual way by applying (6.68).

Exercises

6.6.1 A certain type component has two states: 0= OFF and 1= OPERATING.
In state 0, the process remains there a random length of time, which is
exponentially distributed with parameter α, and then moves to state 1. The time
in state 1 is exponentially distributed with parameter β, after which the process
returns to state 0.
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The system has two of these components, A and B, with distinct parameters:

Component Operating Failure Rate Repair Rate

A βA αA
B βB αB

In order for the system to operate, at least one of components A and B must be
operating (a parallel system). Assume that the component stochastic processes
are independent of one another. Determine the long run probability that the sys-
tem is operating by
(a) Considering each component separately as a two-state Markov chain and

using their statistical independence;
(b) Considering the system as a four-state Markov chain and solving equa-

tions (6.68).
6.6.2 Let X1(t) and X2(t) be independent two-state Markov chains having the same

infinitesimal matrix

A=

∥∥∥∥∥
0 1

0 −λ λ

1 µ −µ

∥∥∥∥∥.
Argue that Z(t)= X1(t)+X2(t) is a Markov chain on the state space S=
{0,1,2} and determine the transition probability matrix P(t) for Z(t).

Problems

6.6.1 Let Yn,n= 0,1, . . . , be a discrete time Markov chain with transition probabili-
ties P= ‖Pij‖, and let {N(t); t ≥ 0} be an independent Poisson process of rate λ.
Argue that the compound process

X(t)= YN(t), t ≥ 0,

is a Markov chain in continuous time and determine its infinitesimal parameters.
6.6.2 A certain type component has two states: 0= OFF and 1= OPERATING. In

state 0, the process remains there a random length of time, which is exponen-
tially distributed with parameter α, and then moves to state 1. The time in state 1
is exponentially distributed with parameter β, after which the process returns to
state 0.

The system has three of these components, A,B, and C, with distinct
parameters:

Component Operating Failure Rate Repair Rate

A βA αA
B βB αB
C βC αC
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In order for the system to operate, component A must be operating, and at
least one of components B and C must be operating. In the long run, what frac-
tion of time does the system operate? Assume that the component stochastic
processes are independent of one another.

6.6.3 Let X1(t),X2(t), . . . , XN(t) be independent two-state Markov chains having the
same infinitesimal matrix

A=

∥∥∥∥∥
0 1

0 −λ λ

1 µ −µ

∥∥∥∥∥.
Determine the infinitesimal matrix for the Markov chain Z(t)= X1(t)+ ·· ·+
XN(t).

6.6.4 A system consists of two units, both of which may operate simultaneously, and
a single repair facility. The probability that an operating system will fail in a
short time interval of length 1t is µ(1t)+ o(1t). Repair times are exponen-
tially distributed, but the parameter depends on whether the failure was regular
or severe. The fraction of regular failures is p, and the corresponding exponential
parameter is α. The fraction of severe failure is q= 1− p, and the exponential
parameter is β < α.

Model the system as a continuous time Markov chain by taking as states the
pairs (x,y), where x= 0,1,2 is the number of units operating and y= 0,1,2 is
the number of units undergoing repair for a severe failure. The possible states are
(2,0), (1,0), (1,1), (0,0), (0,1), and (0,2). Specify the infinitesimal matrix A.
Assume that the units enter the repair shop on a first come, first served basis.

6.7 A Poisson Process with a Markov Intensity3

Consider “points” scattered in some manner along the semi-infinite interval [0,∞),
and for an interval of the form I = (a,b], with 0≤ a< b<∞, let N(I) count the
number of “points” in the interval I. Then N(I), as I ranges over the half-open inter-
vals I = (a,b], is a point process. (See Chapter 5, Section 5.5 for generalizations to
higher dimensions.) Suppose that, conditional on a given intensity, N(I) is a nonho-
mogeneous Poisson process, but where the intensity function {λ(t), t ≥ 0} is itself a
stochastic process. Such point processes were introduced in Chapter 5, Section 5.1.4,
where they were called Cox processes in honor of their discoverer. While Cox pro-
cesses are sufficiently general to describe a plethora of phenomena, they remain
simple enough to permit explicit calculation, at least in some instances. As an illus-
tration, we will derive the probability of no points in an interval for a Cox process in
which the intensity function is a two-state Markov chain in continuous time. The Cox
process alternates between being “ON” and “OFF.” When the underlying intensity is
“ON,” points occur according to a Poisson process of constant intensity λ. When the

3 Starred sections contain material of a more specialized or advanced nature.
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underlying process is “OFF,” no points occur. We will call this basic model a (0,λ)
Cox process to distinguish it from a later generalization. The (0,λ) Cox process might
describe bursts of rainfall in a locale that alternates between dry spells and wet ones, or
arrivals to a queue from a supplier that randomly shuts down. Rather straightforward
extensions of the techniques that we will now use in this simple case can be adapted
to cover more complex models and computations, as we will subsequently show.

We assume that the intensity process {λ(t); t ≥ 0} is a two-state Markov chain in
continuous time for which

Pr{λ(t+ h)= λ|λ(t)= 0} = αh+ o(h), (6.71)

and

Pr{λ(t+ h)= 0|λ(t)= λ} = βh+ o(h). (6.72)

This intensity is merely the constant λ times the two-state birth and death process of
Section 6.3. As may be seen by allowing t→∞ in (6.29), such a process has the
limiting distribution Pr{λ(∞)= 0} = β/(α+β) and Pr{λ(∞)= λ} = α/(α+β). We
will assume that the intensity process begins with this limiting distribution, or explic-
itly, that Pr{λ(0)= 0} = β/(α+β) and Pr{λ(0)= λ} = α/(α+β). With this assump-
tion, the intensity process is stationary in the sense that Pr{λ(t)= 0} = β/(α+β)
and Pr{λ(t)= λ} = α/(α+β) for all t ≥ 0. This stationarity carries over to the Cox
process N(I) to imply that Pr{N((0, t])= k} = Pr{N((s,s+ t])= k} for all s, t ≥ 0 and
k = 0,1, . . . . We are interested in determining

f (t;λ)= Pr{N((0, t])= 0}.

Let

3(t)=

t∫
0

λ(s)ds (6.73)

and note the conditional Poisson probability

Pr{N((0, t])= 0|λ(s) for s≤ t} = e−3(t)

so that upon removing the conditioning via the law of total probability, we obtain

f (t;λ)= E
[
e−3(t)

]
= f0(t)+ f1(t), (6.74)

where

f0(t)= Pr{N((0, t])= 0 and λ(t)= 0}, (6.75)



340 An Introduction to Stochastic Modeling

and

f1(t)= Pr{N((0, t])= 0 and λ(t)= λ}. (6.76)

Using an infinitesimal “last step analysis” similar to that used to derive the
Kolmogorov forward equations, we will derive a pair of first-order linear differen-
tial equations for f0(t) and f1(t). To this end, by analyzing the possibilities at time t
and using the law of total probability, we begin with

f0(t+ h)= f0(t)Pr{N((t, t+ h])= 0|λ(t)= 0}Pr{λ(t+ h)= 0|λ(t)= 0}

+ f1(t)Pr{N((t, t+ h])= 0|λ(t)= λ}Pr{λ(t+ h)= 0|λ(t)= λ}

= f0(t)[1−αh+ o(h)]+ f1(t)e
−λhβh+ o(h),

and

f1(t+ h)= f1(t)Pr{N((t, t+ h])= 0|λ(t)= λ}Pr{λ(t+ h)= λ|λ(t)= λ}

+ f0(t)Pr{N((t, t+ h])= 0|λ(t)= 0}Pr{λ(t+ h)= λ|λ(t)= 0}

= f1(t)e
−λh[1−βh+ o(h)]+ f0(t)αh+ o(h).

We rearrange the terms and use e−λh
= 1− λh+ o(h) to get

f0(t+ h)− f0(t)=−αf0(t)h+βf1(t)h+ o(h)

and

f1(t+ h)− f1(t)=−(β + λ)f1(t)h+αf0(t)h+ o(h),

which, after dividing by h and letting h tend to zero, become the differential equations

df0(t)

dt
=−αf0(t)+βf1(t) (6.77)

and

df1(t)

dt
=−(β + λ)f1(t)+αf0(t). (6.78)

The initial conditions are

f0(0)= Pr{λ(0)= 0} = β/(α+β) (6.79)

and

f1(0)= Pr{λ(0)= λ} = α/(α+β). (6.80)
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Such coupled first-order linear differential equations are readily solved. In our
case, after carrying out the solution and simplifying the result, the answer is
Pr{N((0, t])= 0} = f0(t)+ f1(t)= f (t;λ), where

f (t;λ)= c+ exp{−µ+t}+ c− exp{−µ−t} (6.81)

with

µ± =
1

2

{
(λ+α+β)±

√
(λ+α+β)2− 4αλ

}
, (6.82)

c+ =
[αλ/(α+β)]−µ−

µ+−µ−
(6.83)

and

c− =
µ+− [αλ/(α+β)]

µ+−µ−
. (6.84)

A Generalization Let N be a Cox process driven by a 0–1 Markov chain λ(t), but now
suppose that when the intensity process is in state 0, the Cox process is, conditionally,
a Poisson process of rate λ0, and when the intensity process is in state 1, then the Cox
process is a Poisson process of rate λ1. The earlier Cox process had λ0 = 0 and λ1 = λ.
Without loss of generality, we assume 0< λ0 < λ1.

In order to evaluate Pr{N((0, t])= 0}, we write N as the sum N = N1+N2 of two
independent processes, where N1 is a Poisson process of constant rate λ0 and N2 is a
(0,λ) Cox process with λ= λ1− λ0. Then, N is zero if and only if both N1 and N2 are
zero, whence

Pr{N((0, t])= 0} = Pr{N1((0, t])= 0} ·Pr{N2((0, t])= 0}

= e−λ0tf (t,λ1− λ0). (6.85)

Example The tensile strength S(t) of a single fiber of length t is often assumed to
follow a Weibull distribution of the form

Pr{S(t) > x} = exp
{
−tσxδ

}
, for x> 0, (6.86)

where δ and σ are positive material constants. The explicit appearance of the length t in
the exponent is an expression of a weakest-link size effect, in which the fiber strength
is viewed as the minimum strength of independent sections. This theory suggests that
the survivorship probability of strength for a fiber of length t should satisfy the relation

Pr{S(t) > x} = [Pr{S(1) > x}]t, t > 0. (6.87)

The Weibull distribution is the only type of distribution that is concentrated on 0≤
x<∞ and satisfies (6.87).
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However, a fiber under stress may fail from a surface flaw such as a notch or scratch,
or from an internal flaw such as a void or inclusion. Where the diameter d of the fiber
varies along its length, the relative magnitude of these two types of flaws will also
vary, since the surface of the fiber is proportional to d, while the volume is proportional
to d2. As a simple generalization, suppose that the two types of flaws alternate and that
the changes from one flaw type to the other follow a two-state Markov chain along the
continuous length of the fiber. Further, suppose that a fiber of constant type i flaw, for
i= 0,1, will support the load x with probability

Pr{S(t) > x} = exp
{
−tσix

δi
}
, x> 0,

where σi and δi are positive constants.
We can evaluate the survivorship probability for the fiber having Markov varying

flaw types by bringing in an appropriate (λ0,λ1) Cox process. For a fixed x> 0, sup-
pose that flaws that are weaker than x will occur along a fiber of constant flaw type
i according to a Poisson process of rate λi(x)= σixδi , for i= 0,1. A fiber of length t
and having Markov varying flaw types will carry a load of x if and only if there are no
flaws weaker than x along the fiber. Accordingly, for the random flaw type fiber, using
(6.85), we have

Pr{S(t) > x} = e−λ0(x)tf (t;λ1(x)− λ0(x)). (6.88)

Equation (6.88) may be evaluated numerically under a variety of assumptions for
comparison with observed fiber tensile strengths. Where fibers having two flaw types
are tested at several lengths, (6.88) may be used to extrapolate and predict strengths at
lengths not measured.

It is sometimes more meaningful to reparametrize according to π = α/(α+β) and
τ = α+β. Here, π is the long run fraction of fiber length for which the applicable flaw
distribution is of type 1, and 1−π is the similar fraction of type 0 flaw behavior. The
second parameter τ is a measure of the rapidity with which the flaw types alternate. In
particular, when τ = 0, the diameter or flaw type remains in whichever state it began,
and the survivor probability reduces to the mixture

Pr{S(t) > x} = πe−λ1(x)t+ (1−π)e−λ0(x)t. (6.89)

On the other hand, at τ =∞, the flaw type process alternates instantly, and the survivor
probability simplifies to

Pr{S(t) > x} = exp{−t[πλ1(x)+ (1−π)λ0(x)]}. (6.90)

The probability distribution for N((O, t ]) Let 3(t) be the cumulative intensity for
a Cox process and suppose that we have evaluated

g(t;θ)= E
[
e−(1−θ)3(t)

]
, 0< θ < 1.
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For a (0,λ) Cox process, for instance, g(t,θ)= f (t;(1− θ)λ), where f is defined in
(6.81). Upon expanding as a power series in θ , according to

g(t;θ)= E

[
e−3(t)

∞∑
k=0

3(t)k

k!
θk

]

=

∞∑
k=0

E

[
e−3(t)

3(t)k

k!

]
θk

=

∞∑
k=0

Pr{N((0, t])= k}θk,

we see that the coefficient of θk in the power series is Pr{N((0, t])= k}. In principle
then, the probability distribution for the points in an interval in a Cox process can be
determined in any particular instance.

Exercises

6.7.1 Suppose that a (0,λ) Cox process has α = β = 1 and λ= 2. Show that µ± =
2±
√

2 and c− =
1
4 (2+

√
2)= 1− c+, whence

Pr{N((0, t])= 0} = e−2t

[
cosh(

√
2t)+

√
2

2
sinh(
√

2t)

]
.

6.7.2 Suppose that a (0,λ) Cox process has α = β = 1 and λ= 2. Show that

f0(t)=
1+
√

2

4
e−(2−

√
2)t
+

1−
√

2

4
e−(2+

√
2)t

and

f1(t)=
1

4
e−(2−

√
2)t
+

1

4
e−(2+

√
2)t

satisfy the differential equations (6.77) and (6.78) with the initial conditions
(6.79) and (6.80).

Problems

6.7.1 Consider a stationary Cox process driven by a two-state Markov chain. Let
π = α/(α+β) be the probability that the process begins in state λ.
(a) By using the transition probabilities given in (6.30a–d), show that

Pr{λ(t)= λ} = π for all t > 0.
(b) Show that E[N((0, t])]= πλt for all t > 0.
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6.7.2 The excess life γ (t) in a point process is the random length of the duration from
time t until the next event. Show that the cumulative distribution function for
the excess life in a Cox process is given by Pr{γ (t)≤ x} = 1−Pr{N((t, t+
x])= 0}.

6.7.3 Let T be the time to the first event in a stationary (0,λ) Cox process. Find the
probability density function φ(t) for T . Show that when α = β = 1 and λ= 2,
this density function simplifies to φ(t)= exp{−2t}cosh(

√
2t).

6.7.4 Let T be the time to the first event in a stationary (0,λ) Cox process. Find the
expected value E[T]. Show that E[T]= 3

2 when α = β = 1 and λ= 2. What is
the average duration between events in this process?

6.7.5 Determine the conditional probability of no points in the interval (t, t+ s],
given that there are no points in the interval (0, t] for a stationary Cox pro-
cess driven by a two-state Markov chain. Establish the limit

lim
t→∞

Pr{N((t, t+ s])= 0|N((0, t])= 0} = e−µ−S , s> 0.

6.7.6 Show that the Laplace transform

φ(s;λ)=

∞∫
0

e−stf (t;λ)dt

is given by

φ(s;λ)=
s+ (1−π)λ+ τ

s2+ (τ + λ)s+πτλ
,

where τ = α+β and π = α/(α+β). Evaluate the limit (a) as τ →∞, and (b)
as τ → 0.

6.7.7 Consider a (0,λ) stationary Cox process with α = β = 1 and λ= 2. Show that
g(t;θ)= f (t;(1− θ)λ) is given by

g(t;θ)= e−(2−θ)t
{

cosh(Rt)+
1

R
sinh(Rt)

}
,

where

R=
√
θ2− 2θ + 2.

Use this to evaluate Pr{N((0,1])= 1}.
6.7.8 Consider a stationary (0,λ) Cox process. A long duration during which no

events were observed would suggest that the intensity process is in state 0.
Show that

Pr{λ(t)= 0|N((0, t])= 0} =
f0(t)

f (t)
,

where f0(t) is defined in (6.75).
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6.7.9 Show that

f0(t)= a+e−µ+t
+ a−e−µ−t

and

f1(t)= b+e−µ+t
+ b−e−µ−t

with

a± =
1

2
(1−π)

[
1∓

(α+β + λ)

R

]
,R=

√
(α+β + λ)2− 4αλ

b± =
1

2
π

[
1±

(λ−α−β)

R

]
satisfy the differential equations (6.77) and (6.78) subject to the initial condi-
tions (6.79) and (6.80).

6.7.10 Consider a stationary (0,λ) Cox process.
(a) Show that

Pr{N((0,h]) > 0,N((h,h+ t])= 0} = f (t;λ)− f (t+ h;λ),

whence

Pr{N((h,h+ t])= 0|N((0,h]) > 0} =
f (t;λ)− f (t+ h;λ)

1− f (h;λ)
.

(b) Establish the limit

lim
h→0

Pr{N((h,h+ t])= 0|N((0,h]) > 0} =
f ′(t;λ)

f ′(0;λ)
,

where

f ′(t;λ)=
df (t;λ)

dt
.

(c) We interpret the limit in (b) as the conditional probability

Pr{N((0, t])= 0|Event occurs at time 0}.

Show that

Pr{N((0, t])= 0|Event at time 0} = p+e−µ+t
+ p−e−µ−t ,

where

p+ =
c+µ+

c+µ++ c−µ−
, p− =

c−µ−
c+µ++ c−µ−

.
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(d) Let τ be the time to the first event in (0,∞) in a stationary (0,λ) Cox
process with α = β = 1 and λ= 2. Show that

E[τ |Event at time 0]= 1.

Why does this differ from the result in Problem 6.7.4?
6.7.11 A Stop-and-Go Traveler The velocity V(t) of a stop-and-go traveler is

described by a two-state Markov chain. The successive durations in which the
traveler is stopped are independent and exponentially distributed with param-
eter α, and they alternate with independent exponentially distributed sojourns,
parameter β, during which the traveler moves at unit speed. Take the stationary
case in which Pr{V(0)= 1} = π = α/(α+β). The distance traveled in time t
is the integral of the velocity:

S(t)=

t∫
0

V(u)du.

Show that

E
[
e−θS(t)]

= f (t;θ), θ real.

(This is the Laplace transform of the probability density function of S(t).)
6.7.12 Let τ be the time of the first event in a (0,λ) Cox process. Let the 0 and λ

states represent “OFF” and “ON,” respectively.
(a) Show that the total duration in the (0,τ ] interval that the system is ON is

exponentially distributed with parameter λ and does not depend on α,β,
or the starting state.

(b) Assume that the process begins in the OFF state. Show that the total dura-
tion in the (0,τ ] interval that the system is OFF has the same distribution as

N(ϑ)∑
k=0

ηk,

where ζ is exponentially distributed with parameter λ,N(t) is a Poisson
process with parameter β, and η0,η1, . . . are independent and exponentially
distributed with parameter α.



7 Renewal Phenomena

7.1 Definition of a Renewal Process
and Related Concepts

Renewal theory began with the study of stochastic systems whose evolution through
time was interspersed with renewals or regeneration times when, in a statistical sense,
the process began anew. Today, the subject is viewed as the study of general functions
of independent, identically distributed, nonnegative random variables representing the
successive intervals between renewals. The results are applicable in a wide variety of
both theoretical and practical probability models.

A renewal (counting) process {N(t), t ≥ 0} is a nonnegative integer-valued stochas-
tic process that registers the successive occurrences of an event during the time interval
(0, t], where the times between consecutive events are positive, independent, identi-
cally distributed random variables. Let the successive durations between events be
{Xk}

∞

k=1 (often representing the lifetimes of some units successively placed into ser-
vice) such that Xi is the elapsed time from the (i− 1)st event until the occurrence of
the ith event. We write

F(x)= Pr{Xk ≤ x}, k = 1,2,3, . . . ,

for the common probability distribution of X1,X2, . . . . A basic stipulation for renewal
processes is F(0)= 0, signifying that X1,X2, . . . are positive random variables. We
refer to

Wn = X1+X2+ ·· ·+Xn, n≥ 1 (7.1)

(W0 = 0 by convention),

as the waiting time until the occurrence of the nth event.
The relation between the interoccurrence times {Xk} and the renewal counting pro-

cess {N(t), t ≥ 0} is depicted in Figure 7.1. Note formally that

N(t)= number of indices n for which 0<Wn ≤ t. (7.2)

In common practice, the counting process {N(t), t ≥ 0} and the partial sum pro-
cess {Wn,n≥ 0} are interchangeably called the “renewal process.” The prototypical
renewal model involves successive replacements of lightbulbs. A bulb is installed for
service at time W0 = 0, fails at time W1 = X1, and is then exchanged for a fresh bulb.
The second bulb fails at time W2 = X1+X2 and is replaced by a third bulb. In general,
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Figure 7.1 The relation between the interoccurrence times Xk and the renewal counting pro-
cess N(t).

the nth bulb burns out at time Wn = X1+ ·· ·+Xn and is immediately replaced, and the
process continues. It is natural to assume that the successive lifetimes are statistically
independent, with probabilistically identical characteristics in that

Pr{Xk ≤ x} = F(x) for k = 1,2, . . . .

In this process, N(t) records the number of lightbulb replacements up to time t.
The principal objective of renewal theory is to derive properties of certain random

variables associated with {N(t)} and {Wn} from knowledge of the interoccurrence dis-
tribution F. For example, it is of significance and relevance to compute the expected
number of renewals for the time duration (0, t]:

E[N(t)]=M(t)

is called the renewal function. To this end, several pertinent relationships and formulas
are worth recording. In principle, the probability law of Wn = X1+ ·· ·+Xn can be
calculated in accordance with the convolution formula

Pr{Wn ≤ x} = Fn(x),

where F1(x)= F(x) is assumed known or prescribed, and then

Fn(x)=

∞∫
0

Fn−1(x− y)dF(y)=

x∫
0

Fn−1(x− y)dF(y).

Such convolution formulas were reviewed in Chapter 1, Section 1.2.5.
The fundamental connecting link between the waiting time process {Wn} and the

renewal counting process {N(t)} is the observation that

N(t)≥ k if and only if Wk ≤ t. (7.3)



Renewal Phenomena 349

In words, equation (7.3) asserts that the number of renewals up to time t is at least k
if and only if the kth renewal occurred on or before time t. Since this equivalence is
the basis for much that follows, the reader should verify instances of it by referring to
Figure 7.1.

It follows from (7.3) that

Pr{N(t)≥ k} = Pr{Wk ≤ t} (7.4)

= Fk(t), t ≥ 0,k = 1,2, . . . ,

and consequently,

Pr{N(t)= k} = Pr{N(t)≥ k}−Pr{N(t)≥ k+ 1}

= Fk(t)−Fk+1(t), t ≥ 0,k = 1,2, . . . .
(7.5)

For the renewal function M(t)= E[N(t)], we sum the tail probabilities in the man-
ner E[N(t)]=6∞k=1 Pr{N(t)≥ k}, as derived in Chapter 1, equation (1.49), and then
use (7.4) to obtain

M(t)= E[N(t)]=
∞∑

k=1

Pr{N(t)≥ k}

=

∞∑
k=1

Pr{Wk ≤ t} =
∞∑

k=1

Fk(t). (7.6)

There are a number of other random variables of interest in renewal theory. Three
of these are the excess life (also called the excess random variable), the current life
(also called the age random variable), and the total life, defined, respectively, by

γt =WN(t)+1− t (excess or residual lifetime),

δt = t−WN(t) (current life or age random variable),

βt = γt+ δt (total life).

A pictorial description of these random variables is given in Figure 7.2.
An important identity enables us to evaluate the mean of WN(t)+1 in terms of the

mean lifetime µ= E[X1] of each unit and the renewal function M(t). Namely, it is true
for every renewal process that

E[WN(t)+1]= E[X1+ ·· ·+XN(t)+1]

= E[X1]{E[N(t)+ 1]},
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Figure 7.2 The excess life γt, the current life δt, and the total life βt.

or

E[WN(t)+1]= µ{M(t)+ 1}. (7.7)

At first glance, this identity resembles the formula given in Chapter 2, equation (2.30)
for the mean of a random sum, which asserts that E[X1+ ·· ·+XN]= E[X1]E[N] when
N is an integer-valued random variable that is independent of X1,X2, . . . . The random
sum approach does not apply in the current context, however, the crucial difference
being that the random number of summands N(t)+ 1 is not independent of the sum-
mands themselves. Indeed, in Section 7.3, on the Poisson process viewed as a renewal
process, we will show that the last summand XN(t)+1 has a mean that approaches twice
the unconditional mean µ= E[X1] for t large. For this reason, it is not correct, in par-
ticular, that E[WN(t)] can be evaluated as the product of E[X1] and E[N(t)]. In view of
these comments, the identity expressed in equation (7.7) becomes more intriguing and
remarkable.

To derive (7.7), we will use the fundamental equivalence (7.3) in the form

N(t)≥ j− 1 if and only if X1+ ·· ·+Xj−1 ≤ t,

which expressed in terms of indicator random variables becomes

1{N(t)≥ j− 1} = 1{X1+ ·· ·+Xj−1 ≤ t}.

Since this indicator random variable is a function only of the random variables
X1, . . . ,Xj−1, it is independent of Xj, and thus we may evaluate

E[Xj1{X1+ ·· ·+Xj−1 ≤ t}]= E[Xj]E[1{X1+ ·· ·+Xj−1 ≤ t}]

= E[Xj]Pr{X1+ ·· ·+Xj−1 ≤ t} (7.8)

= µFj−1(t).



Renewal Phenomena 351

With (7.8) in hand, the evaluation of the equivalence expressed in (7.7) becomes
straightforward. We have

E[WN(t)+1]= E[X1+ ·· ·+XN(t)+1]

= E[X1]+E

N(t)+1∑
j=2

Xj


= µ+E

 ∞∑
j=2

Xj1{N(t)+ 1≥ j}


= µ+

∞∑
j=2

E[Xj1{X1+ ·· ·+Xj−1 ≤ t}]

= µ+µ

∞∑
j=2

Fj−1(t) (using (7.8))

= µ[1+M(t)] (using (7.6)).

Some examples of the use of the identity (7.7) will appear in the exercises, and an
alternative proof in the case of a discrete renewal process can be found in Section 7.6.

Exercises

7.1.1 Verify the following equivalences for the age and the excess life in a renewal
process N(t):

γt > x if and only if N(t+ x)−N(t)= 0;

and for 0< x< t,

δt > x if and only if N(t)−N(t− x)= 0.

Why is the condition x< t important in the second case but not the first?
7.1.2 Consider a renewal process in which the interoccurrence times have an expo-

nential distribution with parameter λ:

f (x)= λe−λx, and F(x)= 1− e−λx for x> 0.

Calculate F2(t) by carrying out the appropriate convolution [see the equation
just prior to (7.3)], and then determine Pr{N(t)= 1} from equation (7.5).

7.1.3 Which of the following are true statements?
(a) N(t) < k if and only if Wk > t.
(b) N(t)≤ k if and only if Wk ≥ t.
(c) N(t) > k if and only if Wk < t.
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7.1.4 Consider a renewal process for which the lifetimes X1,X2, . . . are discrete ran-
dom variables having the Poisson distribution with mean λ. That is,

Pr{Xk = n} =
e−λλn

n!
for n= 0,1, . . . .

(a) What is the distribution of the waiting time Wk?
(b) Determine Pr{N(t)= k}.

Problems

7.1.1 Verify the following equivalences for the age and the excess life in a renewal
process N(t): (Assume t > x.)

Pr{δt ≥ x,γt > y} = Pr{N(t− x)= N(t+ y)}

=

∞∑
k=0

Pr{Wk < t− x,Wk+1 > t+ y}

= [1−F(t+ y)]

+

∞∑
k=1

t−x∫
0

[1−F(t+ y− z)]dFk(z).

Carry out the evaluation when the interoccurrence times are exponentially dis-
tributed with parameter λ, so that dFk is the gamma density

dFk(z)=
λkzk−1

(k− 1)!
e−λzdz for z> 0.

7.1.2 From equation (7.5), and for k ≥ 1, verify that

Pr{N(t)= k} = Pr{Wk ≤ t <Wk+1}

=

t∫
0

[1−F(t− x)]dFk(x),

and carry out the evaluation when the interoccurrence times are exponentially
distributed with parameter λ, so that dFk is the gamma density

dFk(z)=
λkzk−1

(k− 1)!
e−λzdz for z> 0.
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7.1.3 A fundamental identity involving the renewal function, valid for all renewal
processes, is

E[WN(t)+1]= E[X1](M(t)+ 1).

See equation (7.7). Using this identity, show that the mean excess life can be
evaluated in terms of the renewal function via the relation

E[γt]= E[X1](1+M(t))− t.

7.1.4 Let γt be the excess life and δt the age in a renewal process having inte-
roccurrence distribution function F(x). Determine the conditional probability
Pr{γt > y|δt = x} and the conditional mean E[γt|δt = x].

7.2 Some Examples of Renewal Processes

Stochastic models often contain random times at which they, or some part of them,
begin afresh in a statistical sense. These renewal instants form natural embedded
renewal processes, and they are found in many diverse fields of applied proba-
bility including branching processes, insurance risk models, phenomena of popula-
tion growth, evolutionary genetic mechanisms, engineering systems, and econometric
structures. When a renewal process is discovered embedded within a model, the pow-
erful results of renewal theory become available for deducing implications.

7.2.1 Brief Sketches of Renewal Situations

The synopses that follow suggest the wide scope and diverse contexts in which renewal
processes arise. Several of the examples will be studied in more detail in later sections.

(a) Poisson Processes A Poisson process {N(t), t ≥ 0} with parameter λ is a renewal counting
process having the exponential interoccurrence distribution

F(x)= 1− e−λx, x≥ 0,

as established in Chapter 5, Theorem 5.5. This particular renewal process possesses a host
of special features, highlighted later in Section 7.3.

(b) Counter Processes The times between successive electrical impulses or signals impinging
on a recording device (counter) are often assumed to form a renewal process. Most phys-
ically realizable counters lock for some duration immediately upon registering an impulse
and will not record impulses arriving during this dead period. Impulses are recorded only
when the counter is free (i.e., unlocked). Under quite reasonable assumptions, the sequence
of events of the times of recorded impulses forms a renewal process, but it should be empha-
sized that the renewal process of recorded impulses is a secondary renewal process derived
from the original renewal process comprising the totality of all arriving impulses.

(c) Traffic Flow The distances between successive cars on an indefinitely long single-lane
highway are often assumed to form a renewal process. So also are the time durations
between consecutive cars passing a fixed location.
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(d) Renewal Processes Associated with Queues In a single-server queueing process, there are
embedded many natural renewal processes. We cite two examples:
(i) If customer arrival times form a renewal process, then the times of the starts of succes-

sive busy periods generate a second renewal process.
(ii) For the situation in which the input process (the arrival pattern of customers) is Poisson,

the successive moments in which the server passes from a busy to a free state determine
a renewal process.

(e) Inventory Systems In the analysis of most inventory processes, it is customary to assume
that the pattern of demands forms a renewal process. Most of the standard inventory policies
induce renewal sequences, e.g., the times of replenishment of stock.

(f) Renewal Processes in Markov Chains Let Z0,Z1, . . . be a recurrent Markov chain. Suppose
Z0 = i, and consider the durations (elapsed number of steps) between successive visits to
state i. Specifically, let W0 = 0,

W1 =min{n> 0;Zn = i},

and

Wk+1 =min{n>Wk;Zn = i}, k = 1,2, . . . .

Since each of these times is computed from the same starting state i, the Markov property
guarantees that Xk =Wk −Wk−1 are independent and identically distributed, and thus {Xk}

generates a renewal process.

7.2.2 Block Replacement

Consider a lightbulb whose life, measured in discrete units, is a random variable X,
where Pr{X = k} = pk for k = 1,2, . . . . Assuming that one starts with a fresh bulb and
that each bulb is replaced by a new one when it burns out, let M(n)= E[N(n)] be the
expected number of replacements up to time n.

Because of economies of scale, in a large building such as a factory or office it is
often cheaper, on a per bulb basis, to replace all the bulbs, failed or not, than it is to
replace a single bulb. A block replacement policy attempts to take advantage of this
reduced cost by fixing a block period K and then replacing bulbs as they fail during
periods 1,2, . . . , K− 1, and replacing all bulbs, failed or not, in period K. This strategy
is also known as “group relamping.” If c1 is the per bulb block replacement cost and
c2 is the per bulb failure replacement cost (c1 < c2), then the mean total cost during
the block replacement cycle is c1+ c2M(K− 1), where M(K− 1)= E[N(K− 1)] is
the mean number of failure replacements. Since the block replacement cycle consists
of K periods, the mean total cost per bulb per unit time is

θ(K)=
c1+ c2M(K− 1)

K
.

If we can determine the renewal function M(n) from the life distribution {pk}, then we
can choose the block period K = K∗ so as to minimize the cost rate θ(K). Of course,
this cost must be compared to the cost of replacing only upon failure.



Renewal Phenomena 355

The renewal function M(n), or expected number of replacements up to time n,
solves the equation

M(n)= FX(n)+
n−1∑
k=1

pkM(n− k) for n= 1,2, . . . .

To derive this equation, condition on the life X1 of the first bulb. If it fails after time n,
there are no replacements during periods [1,2, . . . ,n]. On the other hand, if it fails at
time k < n, then we have its failure plus, on the average, M(n− k) additional replace-
ments during the interval [k+ 1, k+ 2, . . . ,n]. Using the law of total probability to
sum these contributions, we obtain

M(n)=
∞∑

k=n+1

pk(0)+
n∑

k=1

pk[1+M(n− k)]

= FX(n)+
n−1∑
k=1

pkM(n− k) [because M(0)= 0],

as asserted.
Thus, we determine

M(1)= FX(1),

M(2)= FX(2)+ p1M(1),

M(3)= FX(3)+ p1M(2)+ p2M(1),

and so on.
To consider a numerical example, suppose that

p1 = 0.1, p2 = 0.4, p3 = 0.3, and p4 = 0.2,

and

c1 = 2 and c2 = 3.

Then,

M(1)= p1 = 0.1,

M(2)= (p1+ p2)+ p1M(1)= (0.1+ 0.4)+ 0.1(0.1)= 0.51,

M(3)= (p1+ p2+ p3)+ p1M(2)+ p2M(1)

= (0.1+ 0.4+ 0.3)+ 0.1(0.51)+ 0.4(0.1)= 0.891,

M(4)= (p1+ p2+ p3+ p4)+ p1M(3)+ p2M(2)+ p3M(1)

= 1+ 0.1(0.891)+ 0.4(0.51)+ 0.3(0.1)= 1.3231.
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The average costs are shown in the following table:

Block Period Cost=
c1+ c2M(K− 1)

K
= θ(K)

K

1 2.00000
2 1.15000
3 1.17667
4 1.16825
5 1.19386

The minimum cost block period is K∗ = 2.
We wish to elicit one more insight from this example. Forgetting about block

replacement, we continue to calculate

M(5)= 1.6617,

M(6)= 2.0647,

M(7)= 2.4463,

M(8)= 2.8336,

M(9)= 3.2136,

M(10)= 3.6016.

Let un be the probability that a replacement occurs in period n. Then, M(n)=
M(n− 1)+ un asserts that the mean replacements up to time n is the mean replace-
ments up to time n− 1 plus the probability that a replacement occurs in period n. The
calculations are shown in the following table:

n un =M(n)−M(n− 1)

1 0.1000
2 0.4100
3 0.3810
4 0.4321
5 0.3386
6 0.4030
7 0.3816
8 0.3873
9 0.3800

10 0.3880
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The probability of a replacement in period n seems to be converging. This is indeed
the case, and the limit is the reciprocal of the mean bulb lifetime:

1

E[X1]
=

1

0.1(1)+ 0.4(2)+ 0.3(3)+ 0.2(4)

= 0.3846 · · · .

This calculation makes sense. If a lightbulb lasts, on the average, E[X1] time units,
then the probability that it will need to be replaced in any period should approximate
1/E[X1]. Actually, the relationship is not as simple as just stated. Further discussion
takes place in Sections 7.4 and 7.6.

Exercises

7.2.1 Let {Xn;n= 0,1, . . .} be a two-state Markov chain with the transition probability
matrix

P=

∥∥∥∥∥
0 1

0 1− a a

1 b 1− b

∥∥∥∥∥.
State 0 represents an operating state of some system, while state 1 represents
a repair state. We assume that the process begins in state X0 = 0, and then the
successive returns to state 0 from the repair state form a renewal process. Deter-
mine the mean duration of one of these renewal intervals.

7.2.2 A certain type component has two states: 0= OFF and 1= OPERATING. In
state 0, the process remains there a random length of time, which is exponen-
tially distributed with parameter α, and then moves to state 1. The time in state 1
is exponentially distributed with parameter β, after which the process returns to
state 0.

The system has two of these components, A and B, with distinct parameters:

Component Operating Failure Rate Repair Rate

A βA αA
B βB αB

In order for the system to operate, at least one of components A and B must be
operating (a parallel system). Assume that the component stochastic processes
are independent of one another. Consider the successive instants that the system
enters the failed state from an operating state. Use the memoryless property
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of the exponential distribution to argue that these instants form a renewal
process.

7.2.3 Calculate the mean number of renewals M(n)= E[N(n)] for the renewal process
having interoccurrence distribution

p1 = 0.4, p2 = 0.1, p3 = 0.3, p4 = 0.2

for n= 1,2, . . . ,10. Also calculate un =M(n)−M(n− 1).

Problems

7.2.1 For the block replacement example of this section for which p1 = 0.1,p2 =

0.4,p3 = 0.3, and p4 = 0.2, suppose the costs are c1 = 4 and c2 = 5. Determine
the minimal cost block period K∗ and the cost of replacing upon failure alone.

7.2.2 Let X1,X2, . . . be the interoccurrence times in a renewal process. Suppose
Pr{Xk = 1} = p and Pr{Xk = 2} = q= 1− p. Verify that

M(n)= E[N(n)]=
n

1+ q
−

q2

(1+ q)2
[
1− (−q)n

]
for n= 2,4,6, . . . .

7.2.3 Determine M(n)when the interoccurrence times have the geometric distribution

Pr{X1 = k} = pk = β(1−β)
k−1 for k = 1,2, . . . ,

where 0< β < 1.

7.3 The Poisson Process Viewed as a Renewal Process

As mentioned earlier, the Poisson process with parameter λ is a renewal process
whose interoccurrence times have the exponential distribution F(x)= 1− e−λx,x≥ 0.
The memoryless property of the exponential distribution (see Sections 1.4.2, 1.5.2 of
Chapter 1, and Chapter 5) serves decisively in yielding the explicit computation of a
number of functionals of the Poisson renewal process.

The Renewal Function
Since N(t) has a Poisson distribution, then

Pr{N(t)= k]=
(λt)ke−λt

k!
, k = 0,1, . . . ,
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t + xt

N(t)

γt

x

Figure 7.3 The excess life γt exceeds x if and only if there are no renewals in the interval
(t, t+ x].

and

M(t)= E[N(t)]= λt.

Excess Life
Observe that the excess life at time t exceeds x if and only if there are no renewals
in the interval (t, t+ x] (Figure 7.3). This event has the same probability as that of
no renewals in the interval (0,x], since a Poisson process has stationary independent
increments. In formal terms, we have

Pr{γt > x} = Pr{N(t+ x)−N(t)= 0}

= Pr{N(x)= 0} = e−λx.
(7.9)

Thus, in a Poisson process, the excess life possesses the same exponential distri-
bution

Pr{γt ≤ x} = 1− e−λx, x≥ 0, (7.10)

as every life, another manifestation of the memoryless property of the exponential
distribution.

Current Life
The current life δt, of course, cannot exceed t, while for x< t the current life exceeds
x if and only if there are no renewals in (t− x, t], which again has probability e−λx.
Thus, the current life follows the truncated exponential distribution

Pr{δt ≤ x} =

{
1− e−λx for 0≤ x< t,

1 for t ≤ x.
(7.11)
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Mean Total Life
Using the evaluation of equation (1.50) in Chapter 1 for the mean of a nonnegative
random variable, we have

E[βt]= E[γt]+E[δt]

=
1

λ
+

t∫
0

Pr{δt > x}dx

=
1

λ
+

t∫
0

e−λxdx

=
1

λ
+

1

λ

(
1− e−λt).

Observe that the mean total life is significantly larger than the mean life 1/λ=
E[Xk] of any particular renewal interval. A more striking expression of this phe-
nomenon is revealed when t is large, where the process has been in operation for a
long duration. Then, the mean total life E[βt] is approximately twice the mean life.
These facts appear at first paradoxical.

Let us reexamine the definition of the total life βt with a view to explaining on an
intuitive basis the seeming discrepancy. First, an arbitrary time point t is fixed. Then,
βt measures the length of the renewal interval containing the point t. Such a procedure
will tend with higher likelihood to favor a lengthy renewal interval rather than one of
short duration. The phenomenon is known as length-biased sampling and occurs, well
disguised, in a number of sampling situations.

Joint Distribution of γt and δt
The joint distribution of γt and δt is determined in the same manner as the marginals.
In fact, for any x> 0 and 0< y< t, the event {γt > x,δt > y} occurs if and only if there
are no renewals in the interval (t− y, t+ x], which has probability e−λ(x+y). Thus,

Pr{γt > x,δt > y} =

{
e−λ(x+y) if x> 0,0< y< t,

0 if y≥ t.
(7.12)

For the Poisson process, observe that γt and δt are independent, since their joint distri-
bution factors as the product of their marginal distributions.

Exercises

7.3.1 Let W1,W2, . . . be the event times in a Poisson process {X(t); t ≥ 0} of rate λ.
Evaluate

Pr{WN(t)+1 > t+ s} and E[WN(t)+1].
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7.3.2 Particles arrive at a counter according to a Poisson process of rate λ. An arriving
particle is recorded with probability p and lost with probability 1− p indepen-
dently of the other particles. Show that the sequence of recorded particles is a
Poisson process of rate λp.

7.3.3 Let W1,W2, . . . be the event times in a Poisson process {N(t); t ≥ 0} of rate λ.
Show that

N(t) and WN(t)+1

are independent random variables by evaluating

Pr{N(t)= n and WN(t)+1 > t+ s}.

Problems

7.3.1 In another form of sum quota sampling (see Chapter 5, Section 5.4.2), a
sequence of nonnegative independent and identically distributed random vari-
ables X1,X2, . . . is observed, the sampling continuing until the first time that the
sum of the observations exceeds the quota t. In renewal process terminology, the
sample size is N(t)+ 1. The sample mean is

WN(t)+1

N(t)+ 1
=

X1+ ·· ·+XN(t)+1

N(t)+ 1
.

An important question in statistical theory is whether or not this sample mean
is unbiased. That is, how does the expected value of this sample mean relate
to the expected value of, say, X1? Assume that the individual X summands are
exponentially distributed with parameter λ, so that N(t) is a Poisson process,
and evaluate the expected value of the foregoing sample mean and show that

E

[
WN(t)+1

N(t)+ 1

]
=

1

λ

[
1− e−λt](1+

1

λt

)
.

Hint: Use the result of the previous exercise, that

WN(t)+1 and N(t)

are independent, and then evaluate separately

E[WN(t)+1] and E

[
1

N(t)+ 1

]
.
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7.3.2 A fundamental identity involving the renewal function, valid for all renewal
processes, is

E
[
WN(t)+1

]
= E[X1](M(t)+ 1).

See equation (7.7). Evaluate the left side and verify the identity when the
renewal counting process is a Poisson process.

7.3.3 Pulses arrive at a counter according to a Poisson process of rate λ. All phys-
ically realizable counters are imperfect, incapable of detecting all signals that
enter their detection chambers. After a particle or signal arrives, a counter must
recuperate, or renew itself, in preparation for the next arrival. Signals arriv-
ing during the readjustment period, called dead time or locked time, are lost.
We must distinguish between the arriving particles and the recorded particles.
The experimenter observes only the particles recorded; from this observation he
desires to infer the properties of the arrival process.

Suppose that each arriving pulse locks the counter for a fixed time τ . Deter-
mine the probability p(t) that the counter is free at time t.

7.3.4 This problem is designed to aid in the understanding of length-biased sampling.
Let X be a uniformly distributed random variable on [0,1]. Then, X divides
[0,1] into the subintervals [0,X] and (X,1]. By symmetry, each subinterval has
mean length 1

2 . Now pick one of these subintervals at random in the following
way: Let Y be independent of X and uniformly distributed on [0,1], and pick the
subinterval [0,X] or (X,1] that Y falls in. Let L be the length of the subinterval
so chosen. Formally,

L=

{
X if Y ≤ X,
1−X if Y > X.

Determine the mean of L.
7.3.5 Birds are perched along a wire as shown according to a Poisson process of rate

λ per unit distance:

D(t)0

t

At a fixed point t along the wire, let D(t) be the random distance to the nearest
bird. What is the mean value of D(t)? What is the probability density function
ft(x) for D(t)?

7.4 The Asymptotic Behavior of Renewal Processes

A large number of the functionals that have explicit expressions for Poisson renewal
processes are far more difficult to compute for other renewal processes. There are,
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however, many simple formulas that describe the asymptotic behavior, for large values
of t, of a general renewal process. We summarize some of these asymptotic results in
this section.

7.4.1 The Elementary Renewal Theorem

The Poisson process is the only renewal process (in continuous time) whose renewal
function M(t)= E[N(t)] is exactly linear. All renewal functions are asymptotically
linear, however, in the sense that

lim
t→∞

M(t)

t
= lim

t→∞

E[N(t)]

t
=

1

µ
, (7.13)

where µ= E[Xk] is the mean interoccurrence time. This fundamental result, known as
the elementary renewal theorem, is invoked repeatedly to compute functionals describ-
ing the long run behavior of stochastic models having renewal processes associated
with them.

The elementary renewal theorem (7.4.1) holds even when the interoccurrence times
have infinite mean, and then limt→∞M(t)/t = 1/∞= 0.

The elementary renewal theorem is so intuitively plausible that it has often been
viewed as obvious. The left side, limt→∞M(t)/t, describes the long run mean number
of renewals or replacements per unit time. The right side, 1/µ, is the reciprocal of the
mean life of a component. Isn’t it obvious that if a component lasts, on the average, µ
time units, then in the long run these components will be replaced at the rate of 1/µ per
unit time? However plausible and convincing this argument may be, it is not obvious,
and to establish the elementary renewal theorem requires several steps of mathematical
analysis, beginning with the law of large numbers. As our main concern is stochastic
modeling, we omit this derivation, as well as the derivations of the other asymptotic
results summarized in this section, in order to give more space to their application.

Example Age Replacement Policies Let X1,X2, . . . represent the lifetimes of items
(lightbulbs, transistor cards, machines, etc.) that are successively placed in service,
the next item commencing service immediately following the failure of the previous
one. We stipulate that {Xk} are independent and identically distributed positive random
variables with finite mean µ= E[Xk]. The elementary renewal theorem tells us to
expect to replace items over the long run at a mean rate of 1/µ per unit time.

In the long run, any replacement strategy that substitutes items prior to their failure
will use more than 1/µ items per unit time. Nonetheless, where there is some benefit in
avoiding failure in service, and where units deteriorate, in some sense, with age, there
may be an economic or reliability advantage in considering alternative replacement
strategies. Telephone or utility poles serve as good illustrations of this concept. Clearly,
it is disadvantageous to allow these poles to fail in service because of the damage to
the wires they carry, the damage to adjoining property, overtime wages paid for emer-
gency replacements, and revenue lost while service is down. Therefore, an attempt is
usually made to replace older utility poles before they fail. Other instances of planned
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replacement occur in preventative maintenance strategies for aircraft, where “time” is
now measured by operating hours.

An age replacement policy calls for replacing an item upon its failure or upon its
reaching age T , whichever occurs first. Arguing intuitively, we would expect that the
long run fraction of failure replacements, items that fail before age T , will be F(T), and
the corresponding fraction of (conceivably less expensive) planned replacements will
be 1−F(T). A renewal interval for this modified age replacement policy obviously
follows a distribution law

FT(x)=

{
F(x) for x< T,
1 for x≥ T,

and the mean renewal duration is

µT =

∞∫
0

{1−FT(x)}dx=

T∫
O

{1−F(x)}dx< µ.

The elementary renewal theorem indicates that the long run mean replacement rate
under age replacement is increased to 1/µT .

Now, let Y1,Y2, . . . denote the times between actual successive failures. The random
variable Y1 is composed of a random number of time periods of length T (correspond-
ing to replacements not associated with failures), plus a last time period in which the
distribution is that of a failure conditioned on failure before age T; i.e., Y1 has the
distribution of NT +Z, where

Pr{N ≥ k} = {1−F(T)}k, k = 0,1, . . . ,

and

Pr{Z ≤ z} =
F(z)

F(T)
, 0≤ z≤ T.

Hence,

E[Y1]=
1

F(T)

T[1−F(T)]+

T∫
0

(F(T)−F(x))dx


=

1

F(T)

T∫
0

{1−F(x)}dx=
µT

F(T)
.

The sequence of random variables for interoccurrence times of the bona fide failure
{Yi} generates a renewal process whose mean rate of failures per unit time in the
long run is 1/E[Y1]. This inference again relies on the elementary renewal theorem.
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Depending on F, the modified failure rate 1/E[Y1] may possibly yield a lower failure
rate than 1/µ, the rate when replacements are made only upon failure.

Let us suppose that each replacement, whether planned or not, costs K dollars, and
that each failure incurs an additional penalty of c dollars. Multiplying these costs by
the appropriate rates gives the long run mean cost per unit time as a function of the
replacement age T:

C(T)=
K

µT
+

c

E[Y1]

=
K+ cF(T)∫ T

0 [1−F(x)]dx
.

In any particular situation, a routine calculus exercise or recourse to numerical com-
putation produces the value of T that minimizes the long run cost rate. For example,
if K = 1,c= 4, and lifetimes are uniformly distributed on [0,1], then F(x)= x for
0≤ x≤ 1, and

T∫
0

[1−F(x)]dx= T

(
1−

1

2
T

)

and

C(T)=
1+ 4T

T(1−T/2)
.

To obtain the cost minimizing T , we differentiate C(T) with respect to T and equate to
zero, thereby obtaining

dC(T)

dT
= 0=

4T(1−T/2)− (1+ 4T)(1−T)

[T(1−T/2)]2
,

0= 4T − 2T2
− 1+T − 4T + 4T2,

0= 2T2
+T − 1,

T =
−1±

√
1+ 8

4
=

(
1

2
,−1

)
,

and the optimal choice is T∗ = 1
2 . Routine calculus will verify that this choice leads to

a minimum cost, and not a maximum or inflection point.

7.4.2 The Renewal Theorem for Continuous Lifetimes

The elementary renewal theorem asserts that

lim
t→∞

M(t)

t
=

1

µ
.
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It is tempting to conclude from this that M(t) behaves like t/µ as t grows large, but
the precise meaning of the phrase “behaves like” is rather subtle. For example, sup-
pose that all of the lifetimes are deterministic, say Xk = 1 for k = 1,2, . . . . Then, it is
straightforward to calculate

M(t)= N(t)= 0 for 0≤ t < 1,
= 1 for 1≤ t < 2,
= k for k ≤ t < k+ 1.

That is, M(t)= [t], where [t] denotes the greatest integer not exceeding t. Since
µ= 1 in this example, then M(t)− t/µ= [t]− t, a function that oscillates indefinitely
between 0 and −1. While it remains true in this illustration that M(t)/t = [t]/t→ 1=
1/µ, it is not clear in what sense M(t) “behaves like” t/µ. If we rule out the periodic
behavior that is exemplified in the extreme by this deterministic example, then M(t)
behaves like t/µ in the sense described by the renewal theorem, which we now explain.
Let M(t, t+ h]=M(t+ h)−M(t) denote the mean number of renewals in the interval
(t, t+ h]. The renewal theorem asserts that when periodic behavior is precluded, then

lim
t→∞

M(t, t+ h]= h/µ for any fixed h> 0. (7.14)

In words, asymptotically, the mean number of renewals in an interval is proportional
to the interval’s length, with proportionality constant 1/µ.

A simple and prevalent situation in which the renewal theorem (7.4.2) is valid
occurs when the lifetimes X1,X2, . . . are continuous random variables having the prob-
ability density function f (x). In this circumstance, the renewal function is differen-
tiable, and

m(t)=
dM(t)

dt
=

∞∑
n=1

fn(t), (7.15)

where fn(t) is the probability density function for Wn = X1+ ·· ·+Xn. Now (7.14) may
be written in the form

M(t+ h)−M(t)

h
→

1

µ
as t→∞,

which, when h is small, suggests that

lim
t→∞

m(t)= lim
t→∞

dM(t)

dt
=

1

µ
, (7.16)

and indeed, this is the case in all but the most pathological of circumstances when
X1,X2, . . . are continuous random variables.

If in addition to being continuous, the lifetimes X1,X2, . . . have a finite mean µ and
finite variance σ 2, then the renewal theorem can be refined to include a second term.
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Under the stated conditions, we have

lim
t→∞

[
M(t)−

t

µ

]
=
σ 2
−µ2

2µ2
. (7.17)

Example When the lifetimes X1,X2, . . . have the gamma density function

f (x)= xe−x for x> 0, (7.18)

then the waiting times Wn = X1+ ·· ·+Xn have the gamma density

fn(x)=
x2n−1

(2n− 1)!
e−x for x> 0,

as may be verified by performing the appropriate convolutions. (See Chapter 1, Sec-
tion 1.2.5.) Substitution into (7.15) yields

m(x)=
∞∑

n=1

fn(x)= e−x
∞∑

n=1

x2n−1

(2n− 1)!

= e−x ex
− e−x

2
=

1

2

(
1− e−2x

)
,

and

M(t)=

t∫
0

m(x)dx=
1

2
t−

1

4

[
1− e−2t

]
.

Since the gamma density in (7.18) has moments µ= 2 and σ 2
= 2, we verify that

m(t)→ 1/µ as t→∞ and M(t)− t/µ→− 1
4 =

(
σ 2
−µ2

)
/2µ2, in agreement with

(7.16) and (7.17).

7.4.3 The Asymptotic Distribution of N(t)

The elementary renewal theorem

lim
t→x

E[N(t)]

t
=

1

µ
(7.19)

implies that the asymptotic mean of N(t) is approximately t/µ. When µ= E[Xk] and
σ 2
= Var[Xk]= E

[
(Xk−µ)

2
]

are finite, then the asymptotic variance of N(t) behaves
according to

lim
t→∞

Var[N(t)]

t
=
σ 2

µ3
. (7.20)
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That is, the asymptotic variance of N(t) is approximately tσ 2/µ3. If we standardize
N(t) by subtracting its asymptotic mean and dividing by its asymptotic standard devi-
ation, we get the following convergence to the normal distribution:

lim
t→∞

Pr

{
N(t)− t/µ√

tσ 2/µ3
≤ x

}
=

1
√

2π

x∫
−∞

e−y2/2dy.

In words, for large values of t, the number of renewals N(t) is approximately normally
distributed with mean and variance given by (7.19) and (7.20), respectively.

7.4.4 The Limiting Distribution of Age and Excess Life

Again we assume that the lifetimes X1,X2, . . . are continuous random variables with
finite mean µ. Let γt =WN(t)+1− t be the excess life at time t. The excess life has the
limiting distribution

lim
t→∞

Pr{γt ≤ x} =
1

µ

x∫
0

[1−F(y)]dy. (7.21)

The reader should verify that the right side of (7.21) defines a valid distribution func-
tion, which we denote by H(x). The corresponding probability density function is
h(y)= µ−1[1−F(y)]. The mean of this limiting distribution is determined accord-
ing to

∞∫
0

yh(y)dy=
1

µ

∞∫
0

y[1−F(y)]dy

=
1

µ

∞∫
0

y


∞∫

y

f (t)dt

dy

=
1

µ

∞∫
0

f (t)


t∫

0

y\dy

dt

=
1

2µ

∞∫
0

t2f (t)dt

=
σ 2
+µ2

2µ
,

where σ 2 is the common variance of the lifetimes X1,X2, . . . .

{γt ≥ x and δt ≥ y} if and only if {γt−y ≥ x+ y}. (7.22)
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t

N(t)

γt−y

x + y

y x

δt γt

Figure 7.4 {δt ≥ y and γt ≥ x} if and only if {γt−y ≥ x+ y}.

It follows that

lim
t→∞

Pr{γt ≥ x,δt ≥ y} = lim
t→∞

Pr{γt−y ≥ x+ y}

= µ−1

∞∫
x+y

[1−F(z)]dz,

exhibiting the joint limiting distribution of (γt,δt). In particular,

lim
t→∞

Pr{δt ≥ y} = lim
t→∞

Pr{γt ≥ 0,δt ≥ y}

= µ−1

∞∫
y

[1−F(z)]dz

= 1−H(y).

The limiting distribution for the current life, or age, δt = t−WN(t) can be deduced
from the corresponding result (7.21) for the excess life. With the aid of Figure 7.4,
corroborate the equivalence.

Exercises

7.4.1 Consider the triangular lifetime density f (x)= 2x for 0< x< 1. Determine an
asymptotic expression for the expected number of renewals up to time t.

Hint: Use equation (7.17).
7.4.2 Consider the triangular lifetime density f (x)= 2x for 0< x< 1. Determine an

asymptotic expression for the probability distribution of excess life. Using this
distribution, determine the limiting mean excess life and compare with the gen-
eral result following equation (7.21).
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7.4.3 Consider the triangular lifetime density function f (x)= 2x, for 0< x< 1. Deter-
mine the optimal replacement age in an age replacement model with replace-
ment cost K = 1 and failure penalty c= 4 (cf. the example in Section 7.4.1).

7.4.4 Show that the optimal age replacement policy is to replace upon failure alone
when lifetimes are exponentially distributed with parameter λ. Can you provide
an intuitive explanation?

7.4.5 What is the limiting distribution of excess life when renewal lifetimes have the
uniform density f (x)= 1, for 0< x< 1?

7.4.6 A machine can be in either of two states: “up” or “down.” It is up at time zero
and thereafter alternates between being up and down. The lengths X1,X2, . . .

of successive up times are independent and identically distributed random vari-
ables with mean α, and the lengths Y1,Y2, . . . of successive down times are
independent and identically distributed with mean β.
(a) In the long run, what fraction of time is the machine up?
(b) If the machine earns income at a rate of $13 per unit time while up, what is

the long run total rate of income earned by the machine?
(c) If each down time costs $7, regardless of how long the machine is down,

what is the long run total down time cost per unit time?

Problems

7.4.1 Suppose that a renewal function has the form M(t)= t+ [1− exp(−at)]. Deter-
mine the mean and variance of the interoccurrence distribution.

7.4.2 A system is subject to failures. Each failure requires a repair time that is expo-
nentially distributed with rate parameter α. The operating time of the system
until the next failure is exponentially distributed with rate parameter β. The
repair times and the operating times are all statistically independent. Suppose
that the system is operating at time 0. Using equation (7.17), determine an
approximate expression for the mean number of failures up to time t, the approx-
imation holding for t� 0.

7.4.3 Suppose that the life of a lightbulb is a random variable X with hazard rate
h(x)= θx for x> 0. Each failed lightbulb is immediately replaced with a new
one. Determine an asymptotic expression for the mean age of the lightbulb in
service at time t, valid for t� 0.

7.4.4 A developing country is attempting to control its population growth by placing
restrictions on the number of children each family can have. This society places
a high premium on female children, and it is felt that any policy that ignores
the desire to have female children will fail. The proposed policy is to allow
any married couple to have children up to the first female baby, at which point
they must cease having children. Assume that male and female children are
equally likely. The number of children in any family is a random variable N.
In the population as a whole, what fraction of children are female? Use the
elementary renewal theorem to justify your answer.
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7.4.5 A Markov chain X0,X1,X2, . . . has the transition probability matrix

0 1 2

P=
0 0.3 0.7 0
1 0.6 0 0.4
2 0 0.5 0.5

.

A sojourn in a state is an uninterrupted sequence of consecutive visits to that
state.
(a) Determine the mean duration of a typical sojourn in state 0.
(b) Using renewal theory, determine the long run fraction of time that the pro-

cess is in state 1.

7.5 Generalizations and Variations on Renewal Processes

7.5.1 Delayed Renewal Processes

We continue to assume that {Xk} are all independent positive random variables, but
only X2,X3, . . . (from the second on) are identically distributed with distribution func-
tion F, while X1 has possibly a different distribution function G. Such a process is
called a delayed renewal process. We have all the ingredients for an ordinary renewal
process except that the initial time to the first renewal has a distribution different from
that of the other interoccurrence times.

A delayed renewal process will arise when the component in operation at time
t = 0 is not new, but all subsequent replacements are new. For example, suppose that
the time origin is taken y time units after the start of an ordinary renewal process.
Then, the time to the first renewal after the origin in the delayed process will have the
distribution of the excess life at time y of an ordinary renewal process.

As before, let W0 = 0 and Wn = X1+ ·· ·+Xn, and let N(t) count the number of
renewals up to time t. But now it is essential to distinguish between the mean number
of renewals in the delayed process

MD(t)= E[N(t)], (7.23)

and the renewal function associated with the distribution F,

M(t)=
∞∑

k=1

Fk(t). (7.24)

For the delayed process, the elementary renewal theorem is

lim
t→∞

MD(t)

t
=

1

µ
, where µ= E[X2], (7.25)



372 An Introduction to Stochastic Modeling

and the renewal theorem states that

lim
t→∞

[MD(t)−MD(t− h)]=
h

µ
,

provided X2,X3, . . . are continuous random variables.

7.5.2 Stationary Renewal Processes

A delayed renewal process for which the first life has the distribution function

G(x)= µ−1

x∫
0

{1−F(y)}dy

is called a stationary renewal process. We are attempting to model a renewal process
that began indefinitely far in the past, so that the remaining life of the item in service
at the origin has the limiting distribution of the excess life in an ordinary renewal
process. We recognize G as this limiting distribution.

It is anticipated that such a process exhibits a number of stationary, or time-
invariant, properties. For a stationary renewal process,

MD(t)= E[N(t)]=
t

µ
(7.26)

and

Pr
{
γ D

t ≤ x
}
= G(x),

for all t. Thus, what is in general only an asymptotic renewal relation becomes an
identity, holding for all t, in a stationary renewal process.

7.5.3 Cumulative and Related Processes

Suppose associated with the ith unit, or lifetime interval, is a second random variable
Yi ({Yi} identically distributed) in addition to the lifetime Xi. We allow Xi and Yi to
be dependent but assume that the pairs (X1,Y1), (X2,Y2), . . . are independent. We use
the notation F(x)= Pr{Xi ≤ x}, G(y)= Pr{Yi ≤ y},µ= E[Xi], and v= E[Yi].

A number of problems of practical and theoretical interest have a natural formula-
tion in those terms.

Renewal Processes Involving Two Components to Each Renewal interval

Suppose that Yi represents a portion of the duration Xi. Figure 7.5 illustrates the model.
There we have depicted the Y portion occurring at the beginning of the interval, but
this assumption is not essential for the results that follow.
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Y1

X1 X2 X3

Y2 Y3

Figure 7.5 A renewal process in which an associated random variable Yi, represents a portion
of the ith renewal interval.

Let p(t) be the probability that t falls in a Y portion of some renewal interval. When
X1,X2, . . . are continuous random variables, the renewal theorem implies the following
important asymptotic evaluation:

lim
t→∞

p(t)=
E[Y1]

E[X1]
. (7.27)

Here are some concrete examples.

A Replacement Model
Consider a replacement model in which replacement is not instantaneous. Let Yi be the
operating time and Zi the lag period preceding installment of the (i+ 1)st operating
unit. (The delay in replacement can be conceived as a period of repair of the service
unit.) We assume that the sequence of times between successive replacements Xk =

Yk+Zk,k = 1,2, . . . , constitutes a renewal process. Then p(t), the probability that the
system is in operation at time t, converges to E[Y1]/E[X1].

A Queueing Model
A queueing process is a process in which customers arrive at some designated place
where a service of some kind is being rendered, e.g., at the teller’s window in a bank
or beside the cashier at a supermarket. It is assumed that the time between arrivals, or
interarrival time, and the time that is spent in providing service for a given customer
are governed by probabilistic laws.

If arrivals to a queue follow a Poisson process of intensity λ, then the successive
times Xk from the commencement of the kth busy period to the start of the next busy
period form a renewal process. (A busy period is an uninterrupted duration when the
queue is not empty.) Each Xk is composed of a busy portion Zk and an idle portion Yk.
Then p(t), the probability that the queue is empty at time t, converges to E[Y1]/E[X1].
This example is treated more fully in Chapter 9, which is devoted to queueing systems.

The Peter Principle
The “Peter Principle” asserts that a worker will be promoted until finally reaching a
position in which he or she is incompetent. When this happens, the person stays in
that job until retirement. Consider the following single job model of the Peter Princi-
ple: A person is selected at random from the population and placed in the job. If the
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person is competent, he or she remains in the job for a random time having cumula-
tive distribution function F and mean µ and is promoted. If incompetent, the person
remains for a random time having cumulative distribution function G and mean v> µ
and retires. Once the job is vacated, another person is selected at random and the pro-
cess repeats. Assume that the infinite population contains the fraction p of competent
people and q= 1− p incompetent ones.

In the long run, what fraction of time is the position held by an incompetent person?
A renewal occurs every time the position is filled, and therefore the mean duration

of a renewal cycle is

E[Xk]= pµ+ (1− p)v.

To answer the question, we let Yk = Xk if the kth person is incompetent, and Yk = 0
if the kth person is competent. Then, the long run fraction of time that the position is
held by an incompetent person is

E[Y1]

E[X1]
=

(1− p)v

pµ+ (1− p)v
.

Suppose that p= 1
2 of the people are competent, and that v= 10, while µ= 1. Then,

E[Y1]

E[X1]
=

(1/2)(10)

(1/2)(10)+ (1/2)(1)
=

10

11
= 0.91.

Thus, while half of the people in the population are competent, the job is filled by a
competent person only 9% of the time!

Cumulative Processes

Interpret Yi as a cost or value associated with the ith renewal cycle. A class of prob-
lems with a natural setting in this general context of pairs (Xi,Yi), where Xi generates a
renewal process, will now be considered. Interest here focuses on the so-called cumu-
lative process

W(t)=
N(t)+1∑

k=1

Yk,

the accumulated costs or value up to time t (assuming that transactions are made at the
beginning of a renewal cycle).

The elementary renewal theorem asserts in this case that

lim
t→∞

1

t
E[W(t)]=

E[Y1]

µ
. (7.28)

This equation justifies the interpretation of E[Y1]/µ as a long run mean cost or value
per unit time, an interpretation that was used repeatedly in the examples of Section 7.2.

Here are some examples of cumulative processes.
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Replacement Models
Suppose Yi is the cost of the ith replacement. Let us suppose that under an age replace-
ment strategy (see Section 7.3 and the example entitled “Age Replacement Policies” in
Section 7.4) a planned replacement at age T costs c1 dollars, while a failure replaced at
time x< T costs c2 dollars. If Yk is the cost incurred at the kth replacement cycle, then

Yk =

{
c1 with probability 1−F(T),

c2 with probability F(T),

and E[Yk]= c1[1−F(T)]+ c2F(T). Since the expected length of a replacement
cycle is

E[min{Xk,T}]=

T∫
0

[1−F(x)]dx,

we have that the long run cost per unit time is

c1[1−F(T)]+ c2F(T)∫ T
0 [1−F(x)]dx

,

and in any particular situation a routine calculus exercise or recourse to numerical
computation produces the value of T that minimizes the long run cost per unit time.

Under a block replacement policy, there is one planned replacement every T units
of time and, on the average, M(T) failure replacements, so the expected cost is E[Yk]=
c1+ c2M(T), and the long run mean cost per unit time is {c1+ c2M(T)}/T .

Risk Theory
Suppose claims arrive at an insurance company according to a renewal process with
interoccurrence times X1,X2, . . . . Let Yk be the magnitude of the kth claim. Then,
W(t)=6N(t)+1

k=1 Yk represents the cumulative amount claimed up to time t, and the
long run mean claim rate is

lim
t→∞

1

t
E[W(t)]=

E[Y1]

E[X1]
.

Maintaining Current Control of a Process
A production process produces items one by one. At any instance, the process is in one
of two possible states, which we label in-control and out-of-control. These states are
not directly observable. Production begins with the process in-control, and it remains
in-control for a random and unobservable length of time before a breakdown occurs,
after which the process is out-of-control. A control chart is to be used to help detect
when the out-of-control state occurs, so that corrective action may be taken.

To be more specific, we assume that the quality of an individual item is a normally
distributed random variable having an unknown mean and a known variance σ 2. If the
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process is in-control, the mean equals a standard target, or design value, µ0. Process
breakdown takes the form of shift in mean away from standard to µ1 = µ0± δσ ,
where δ is the amount of the shift in standard deviation units.

The Shewhart control chart method for maintaining process control calls for mea-
suring the qualities of the items as they are produced, and then plotting these qualities
versus time on a chart that has lines drawn at the target value µ0 and above and below
this target value at µ0± kσ , where k is a parameter of the control scheme being used.
As long as the plotted qualities fall inside these so-called action lines at µ0± kσ , the
process is assumed to be operating in-control, but if ever a point falls outside these
lines, the process is assumed to have left the in-control state, and investigation and
repair are instituted. There are obviously two possible types of errors that can be made
while, thus, controlling the process: (1) needless investigation and repair when the
process is in-control yet an observed quality purely by chance falls outside the action
lines and (2) continued operation with the process out-of-control because the observed
qualities are falling inside the action lines, again by chance.

Our concern is the rational choice of the parameter k, i.e., the rational spacing of
the action lines, so as to balance, in some sense, these two possible errors.

The probability that a single quality will fall outside the action lines when the
process is in-control is given by an appropriate area under the normal density curve.
Denoting this probability by α, we have

α =8(−k)+ 1−8(k)= 28(−k),

where 8(x)= (2π)−1/2
∫ x
−∞

exp
(
−y2/2

)
dy is the standard cumulative normal distri-

bution function. Representative values are given in the following table:

k α

1.645 0.10
1.96 0.05

Similarly, the probability, denoted by p, that a single point will fall outside the
action lines when the process is out-of-control is given by

p=8(−δ− k)+ 1−8(−δ+ k).

Let S denote the number of items inspected before an out-of-control signal arises
assuming that the process is out-of-control. Then, Pr{S=1}=p, Pr{S=2}=(1− p)p,
and in general, Pr{S= n} = (1− p)n−1p. Thus, S has a geometric distribution, and

E[S]=
1

p
.

Let T be the number of items produced while the process is in-control. We suppose
that the mean operating time in-control E[T] is known from past records.

The sequence of durations between detected and repaired out-of-control conditions
forms a renewal process because each such duration begins with a newly repaired
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process and is a probabilistic replica of all other such intervals. It follows from the
general elementary renewal theorem that the long run fraction of time spent out-of-
control (O.C.) is

O.C.=
E[S]

E[S]+E[T]
=

1

1+ pE[T]
.

The long run number of repairs per unit time is

R=
1

E[S]+E[T]
=

p

1+ pE[T]
.

Let N be the random number of “false alarms” while the process is in-control, i.e.,
during the time up to T , the first out-of-control. Then, conditioned on T , the random
variable N has a binomial distribution with probability parameter α, and thus E[N|T}
= αT and E[N]= αE[T]. Again, it follows from the general elementary renewal the-
orem that the long run false alarms per unit time (F.A.) is

F.A.=
E[N]

E[S]+E[T]
=

αpE[T]

1+ pE[T]
.

If each false alarm costs c dollars, each repair cost K dollars, and the cost rate while
operating out-of-control is C dollars, then we have the long run average cost per unit
time of

A.C.= C(O.C.)+K(R)+ c(F.A.)

=
C+Kp+ cαpE[T]

1+ pE[T]
.

By trial and error one may now choose k, which determines α and p, so as to
minimize this average cost expression.

Exercises

7.5.1 Jobs arrive at a certain service system according to a Poisson process of rate λ.
The server will accept an arriving customer only if it is idle at the time of arrival.
Potential customers arriving when the system is busy are lost. Suppose that the
service times are independent random variables with mean service timeµ. Show
that the long run fraction of time that the server is idle is 1/(1+ λµ). What is
the long run fraction of potential customers that are lost?

7.5.2 The weather in a certain locale consists of alternating wet and dry spells. Sup-
pose that the number of days in each rainy spell is Poisson distributed with
parameter 2, and that a dry spell follows a geometric distribution with a mean
of 7 days. Assume that the successive durations of rainy and dry spells are sta-
tistically independent random variables. In the long run, what is the probability
on a given day that it will be raining?
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7.5.3 Consider a lightbulb whose life is a continuous random variable X with prob-
ability density function f (x), for x> 0. Assuming that one starts with a fresh
bulb and that each failed bulb is immediately replaced by a new one, let
M(t)= E[N(t)] be the expected number of renewals up to time t. Consider
a block replacement policy (see Section 7.2.1) that replaces each failed bulb
immediately at a cost of c per bulb and replaces all bulbs at the fixed times
T,2T,3T, . . . . Let the block replacement cost per bulb be b< c. Show that the
long run total mean cost per bulb per unit time is

2(T)=
b+ cM(T)

T
.

Investigate the choice of a cost minimizing value T∗ when M(t)= t+ 1− exp(−at).

Problems

7.5.1 A certain type component has two states: 0= OFF and 1= OPERATING. In
state 0, the process remains there a random length of time, which is exponen-
tially distributed with parameter α, and then moves to state 1. The time in state 1
is exponentially distributed with parameter β, after which the process returns to
state 0.

The system has two of these components, A and B, with distinct parameters:

Component Operating Failure Rate Repair Rate

A βA αA
B βB αB

In order for the system to operate, at least one of components A and B must be
operating (a parallel system). Assume that the component stochastic processes
are independent of one another.
(a) In the long run, what fraction of time is the system inoperational (not oper-

ating)?
(b) Once the system enters the failed state, what is the mean duration there prior

to returning to operation?
(c) Define a cycle as the time between the instant that the system first enters the

failed state and the next such instant. Using renewal theory, find the mean
duration of a cycle.

(d) What is the mean system operating duration between successive system fail-
ures?

7.5.2 The random lifetime X of an item has a distribution function F(x). What is the
mean total life E[X|X > x] of an item of age x?

7.5.3 At the beginning of each period, customers arrive at a taxi stand at times of a
renewal process with distribution law F(x). Assume an unlimited supply of cabs,
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such as might occur at an airport. Suppose that each customer pays a random fee
at the stand following the distribution law G(x), for x> 0. Write an expression
for the sum W(t) of money collected at the stand by time t, and then determine
the limit expectation

lim
t→∞

E[W(t)]

t
.

7.5.4 A lazy professor has a ceiling fixture in his office that contains two light-
bulbs. To replace a bulb, the professor must fetch a ladder, and being lazy,
when a single bulb fails, he waits until the second bulb fails before replacing
them both. Assume that the length of life of the bulbs are independent random
variables.
(a) If the lifetimes of the bulbs are exponentially distributed, with the same

parameter, what fraction of time, in the long run, is our professor’s office
half lit?

(b) What fraction of time, in the long run, is our professor’s office half lit if the
bulbs that he buys have the same uniform (0,1) lifetime distribution?

7.6 Discrete Renewal Theory∗

In this section, we outline the renewal theory that pertains to nonnegative integer-
valued lifetimes. We emphasize renewal equations, the renewal argument, and the
renewal theorem (Theorem 7.1).

Consider a lightbulb whose life, measured in discrete units, is a random variable X
where Pr{X = k} = pk for k = 0,1, . . . . If one starts with a fresh bulb and if each
bulb when it burns out is replaced by a new one, then M(n), the expected number
of renewals (not including the initial bulb) up to time n, solves the equation

M(n)= FX(n)+
n∑

k=0

pkM(n− k), (7.29)

where FX(n)= p0+ ·· ·+ pn is the cumulative distribution function of the random
variable X. A vector or functional equation of the form (7.29) in the unknowns
M(0),M(1), . . . is termed a renewal equation. The equation is established by a renewal
argument, a first step analysis that proceeds by conditioning on the life of the first bulb
and then invoking the law of total probability. In the case of (7.29), e.g., if the first
bulb fails at time k ≤ n, then we have its failure plus, on the average, M(n− k) addi-
tional failures in the interval [k,k+ 1, . . . ,n]. We weight this conditional mean by

∗ The discrete renewal model is a special case in the general renewal theory presented in Sections 7.1–7.5
and does not arise in later chapters.
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the probability pk = Pr{X1 = k} and sum according to the law of total probability to
obtain

M(n)=
n∑

k=0

[1+M(n− k)]pk

= FX(n)=
n∑

k=0

pkM(n− k).

Equation (7.29) is only a particular instance of what is called a renewal equation. In
general, a renewal equation is prescribed by a given bounded sequence {bk} and takes
the form

vn = bn+

n∑
k=0

pkvn−k for n= 0,1, . . . . (7.30)

The unknown variables are v0,v1, . . . , and p0,p1, . . . is a probability distribution for
which, to avoid trivialities, we always assume p0 < 1.

Let us first note that there is one and only one sequence v0,v1, . . . satisfying a
renewal equation, because we may solve (7.30) successively to get

v0 =
b0

1− p0
,

v1 =
b1+ p1v0

1− p0
,

(7.31)

and so on.
Let un be the mean number of renewals that take place exactly in period n. When

p0 = 0, so that the lifetimes are strictly positive and at most one renewal can occur
in any period, then un is the probability that a single renewal occurs in period n. The
sequence u0,u1, . . . satisfies a renewal equation that is of fundamental importance in
the general theory. Let

δn =

{
1 for n= 0,
0 for n> 0.

(7.32)

Then, {un} satisfies the renewal equation

un = δn+

n∑
k=0

pkun−k for n= 0,1, . . . . (7.33)

Again, equation (7.33) is established via a renewal argument. First, observe that δn

counts the initial bulb, the renewal at time 0. Next, condition on the lifetime of this
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first bulb. If it fails in period k ≤ n, which occurs with probability pk, then the process
begins afresh and the conditional probability of a renewal in period n becomes un−k.
Weighting the contingency represented by un−k by its respective probability pk and
summing according to the law of total probability then yields (7.33).

The next lemma shows how the solution {vn} to the general renewal equation (7.30)
can be expressed in terms of the solution {un} to the particular equation (7.33).

Lemma 7.1. If {vn} satisfies (7.30) and {un} satisfies (7.33), then

vn =

n∑
k=0

bn−kuk for n= 0,1, . . . .

Proof. In view of our remarks on the existence and uniqueness of solutions to equa-
tion (7.30), we need only verify that vn =6

n
k=0bn−kuk satisfies (7.30). We have

vn =

n∑
k=0

bn−kuk

=

n∑
k=0

bn−k

{
δk+

k∑
l=0

pk−lul

}

= bn+

n∑
k=0

k∑
l=0

bn−kpk−lul

= bn+

n∑
l=0

n∑
k=l

bn−kpk−lul

= bn+

n∑
l=0

n−l∑
j=0

pjbn−l−jul

= bn+

n∑
j=0

n−j∑
l=0

pjbn−j−lul

= bn+

n∑
j=0

pjvn−j.

�

Example Let X1,X2, . . . be the successive lifetimes of the bulbs and let W0 = 0 and
Wn = X1+ ·· ·+Xn be the replacement times. We assume that p0 = Pr{X1 = 0} = 0.
The number of replacements (not including the initial bulb) up to time n is given by

N(n)= k for Wk ≤ n<Wk+1.
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The M(n)= E[N(n)] satisfies the renewal equation (7.29)

M(n)= p0+ ·· ·+ pn+

n∑
k=0

pkM(n− k),

and elementary algebra shows that mn = E[N(n)+ 1]=M(n)+ 1 satisfies

mn = 1+
n∑

k=0

pkmn−k for n= 0,1, . . . . (7.34)

Then, (7.34) is a renewal equation for which bn ≡ 1 for all n. In view of Lemma 7.1,
we conclude that

mn =

n∑
k=0

1uk = u0+ ·· ·+ un.

Conversely, un = mn−mn−1 =M(n)−M(n− 1).
To continue with the example, let gn = E[WN(n)+1]. The definition is illustrated in

Figure 7.6. We will argue that gn satisfies a certain renewal equation. As shown in
Figure 7.6, WN(n)+1 always includes the first renewal duration X1. In addition, if X1 =

k ≤ n, which occurs with probability pk, then the conditional mean of the added lives
constituting WN(n)+1 is gn−k. Weighting these conditional means by their respective
probabilities and summing according to the law of total probability then gives

gn = E[X1]+
n∑

k=0

gn−kpk.

Hence, by Lemma 7.1,

gn =

n∑
k=0

E[X1]uk = E[X1]mn.

W0 W1 W2

X1

X2

X3

WN(n) +1n n

N(n)

Figure 7.6 WN(n)+1 always contains X1 and contains additional durations when X1 = k ≤ n.
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We get the interesting formula [see (7.7)]

E[X1+ ·· ·+XN(n)+1]= E[X1]×E[N(n)+ 1]. (7.35)

Note that N(n) is not independent of {Xk}, and yet (7.35) still prevails.

7.6.1 The Discrete Renewal Theorem

The renewal theorem provides conditions under which the solution {vn} to a renewal
equation will converge as n grows large. Certain periodic behavior, such as failures
occurring only at even ages, must be precluded, and the simplest assumption assuring
this preclusion is that p1 > 0.

Theorem 7.1. Suppose that 0< p1 < 1 and that {un} and {vn} are the solutions to the
renewal equations (7.33) and (7.30), respectively. Then (a) limn→∞ un = 1/6∞k=0kpk;
and (b) if 6∞k=0|bk|<∞, then limn→∞ vn =

{
6∞k=0bk

}
/
{
6∞k=0kpk

}
.

We recognize that 6∞k=0kpk = E[X1] is the mean lifetime of a unit. Thus, (a) in
Theorem 7.1 asserts that in the long run, the probability of a renewal occurring in a
given interval is one divided by the mean life of a unit.

Remark Theorem 7.1 holds in certain circumstances when p1 = 0. It suffices to
assume that the greatest common divisor of the integers k for which pk > 0 is one.

Example Let γn =WN(n)+1− n be the excess life at time n. For a fixed integer m, let
fn(m)= Pr{γn = m}. We will establish a renewal equation for fn(m) by conditioning
on the first life X1. For m≥ 1,

Pr{γn = m|X1 = k} =


fn−k(m) if 0≤ k ≤ n,

1 if k = n+m,
0 otherwise.

(The student is urged to diagram the alternatives arising in Pr{γn = m|X1 = k}.) Then,
by the law of total probability,

fn(m)= Pr{γn = m} =
∞∑

k=0

Pr{γn = m|X1 = k}pk

= pm+n+

n∑
k=0

fn−k(m)pk.

(7.36)

We apply Theorem 7.1 with bn = pm+n to conclude that

lim
n→∞

Pr{γn = m} =
6∞k=0 pm+k

6∞k=0 kpk
.

=
Pr{X1 ≥ m}

E[X1]
, m= 1,2, . . . .
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The limit is a bona fide probability mass function, since its terms sum to one:

6∞m=1 Pr{X1 ≥ m}

E[X1]
=

E[X1]

E[X1]
= 1.

7.6.2 Deterministic Population Growth with Age Distribution

In this section, we will discuss a simple deterministic model of population growth
that takes into account the age structure of the population. Surprisingly, the discrete
renewal theorem (Theorem 7.1) will play a role in the analysis. As the language
will suggest, the deterministic model that we treat may be viewed as describing the
mean population size in a more elaborate stochastic model that is beyond our scope to
develop fully.

A Simple Growth Model
Let us set the stage by reviewing a simple model that has no age structure. We consider
a single species evolving in discrete time t = 0,1,2, . . . , and we let Nt be the popula-
tion size at time t. We assume that each individual present in the population at time t
gives rise to a constant number λ of offspring that form the population at time t+ 1. (If
death does not occur in the model, then we include the parent as one of the offspring,
and then necessarily λ≥ 1.) If N0 is the initial population size, and each individual
gives rise to λ offspring, then

N1 = λN0,

N2 = λN1 = λ
2N0,

and in general,

Nt = λ
tN0. (7.37)

If λ > 1, then the population grows indefinitely in time; if λ < 1, then the population
dies out; while if λ= 1, then the population size remains constant at Nt = N0 for all
t = 0,1, . . . .

The Model with Age Structure
We shall now introduce an age structure in the population. We need the following
notation:
nu,t = the number of individuals of age u in the population at time t;
Nt = 6

∞

u=0nu,t = the total number of individuals in the population at time t;
bt = the number of new individuals created in the population at time t, the number

of births;
βu = the expected number of progeny of a single individual of age u in one time

period;
lu = the probability that an individual will survive, from birth, at least to age u.
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The conditional probability that an individual survives at least to age u, given that
he has survived to age u− 1, is simply the ration lu/lu−1. The net maternity function
is the product

mu = luβu

and is the birth rate adjusted for the death of some fraction of the population. That is,
mu is the expected number of offspring at age u of an individual now of age 0.

Let us derive the total progeny of a single individual during its lifespan. An indi-
vidual survives at least to age u with probability lu, and then during the next unit of
time gives rise to βu offspring. Summing luβu = mu over all ages u then gives the total
progeny of a single individual:

M =
∞∑

u=0

luβu =

∞∑
u=0

mu. (7.38)

If M > 1, then we would expect the population to increase over time; if M < 1, then
we would expect the population to decrease; while if M = 1, then the population size
should neither increase nor decrease in the long run. This is indeed the case, but the
exact description of the population evolution is more complex, as we will now deter-
mine.

In considering the effect of age structure on a growing population, our interest will
center on bt, the number of new individuals created in the population at time t. We
regard βu, lu, and nu,0 as known, and the problem is to determine bt for t ≥ 0. Once bt

is known, then nu,t and Nt may be determined according to, e.g.,

n0,1 = b1, (7.39)

nu,1 = nu−1,0

[
lu

lu−1

]
for u≥ 1, (7.40)

and

N1 =

∞∑
u=0

nu,1. (7.41)

In the first of these simple relations, n0,1, is the number in the population at time 1 of
age 0, which obviously is the same as b1, those born in the population at time 1. For
the second equation, nu,1 is the number in the population at time 1 of age u. These indi-
viduals must have survived from the nu−1,0 individuals in the population at time 0 of
age u− 1; the conditional probability of survivorship is [lu/lu−1], which explains the
second equation. The last relation simply asserts that the total population size results
by summing the numbers of individuals of all ages. The generalizations of (7.39)
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through (7.41) are

n0,t = bt, (7.42)

nu,t = nu−1,t−1

[
lu

lu−1

]
for u≥ 1, (7.43)

and

Nt =

∞∑
u=0

nu,t for t ≥ 1. (7.44)

Having explained how nu,t and Nt are found once bt is known, we turn to determin-
ing bt. The number of individuals created at time t has two components. One compo-
nent, at, say, counts the offspring of those individuals in the population at time t who
already existed at time 0. In the simplest case, the population begins at time t = 0 with
a single ancestor of age u= 0, and then the number of offspring of this individual at
time t is at = mt, the net maternity function. More generally, assume that there were
nu,0 individuals of age u at time 0. The probability that an individual of age u at time 0
will survive to time t (at which time it will be of age t+ u) is lt+u/lu. Hence the num-
ber of individuals of age u at time 0 that survive to time t is nu,0(lt+u/lu), and each of
these individuals, now of age t+ u, will produce βt+u new offspring. Adding over all
ages we obtain

at =

∞∑
u=0

βt+unu,0
lt+u

lu

=

∞∑
u=0

mt+unu,0

lu
.

(7.45)

The second component of bt counts those individuals created at time t whose par-
ents were not initially in the population but were born after time 0. Now, the number
of individuals created at time τ is bτ . The probability that one of these individuals
survives to time t, at which time he will be of age t− τ , is lt−τ . The rate of births for
individuals of age t− τ is βt−τ . The second component results from summing over τ
and gives

bt = at+

t∑
τ=0

βt−τ lt−τbτ

= at+

t∑
τ=0

mt−τbτ .

(7.46)

Example Consider an organism that produces two offspring at age 1, and two more at
age 2, and then dies. The population begins with a single organism of age 0 at time 0.
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We have the data

n0,0 = 1, nu,0 = 0 for u≥ 1,

b1 = b2 = 2,

l0 = l1 = l2 = 1 and lu = 0 for u> 2.

We calculate from (7.45) that

a0 = 0, a1 = 2, a2 = 2, and at = 0, for t > 2.

Finally, (7.46) is solved recursively as

b0 = 0,

b1 = a1+m0b1+m1b0

= 2+ 0+ 0= 2,

b2 = a2+m0b2+m1b1+m2b0

= 2+ 0+ (2)(2)+ 0= 6,

b3 = a3+m0b3+m1b2+m2b1+m3b0

= 0+ 0+ (2)(6)+ (2)(2)+ 0= 16.

Thus, e.g., an individual of age 0 at time 0 gives rise to 16 new individuals entering
the population at time 3.

The Long Run Behavior

Somewhat surprisingly, since no “renewals” are readily apparent, the discrete renewal
theorem (Theorem 7.1) will be invoked to deduce the long run behavior of this age-
structured population model. Observe that (7.46)

bt = at+

t∑
τ=0

mt−τbτ

= at+

t∑
v=0

mvbt−v

(7.47)

has the form of a renewal equation except that {mv} is not necessarily a bona fide
probability distribution in that, typically, {mv}will not sum to one. Fortunately, there is
a trick that overcomes this difficulty. We introduce a variable s, whose value will be
chosen later, and let

m#
v = mvsv, b#

v = bvsv, and a#
v = avsv.
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Now multiply (7.47) by st and observe that stmvbt−v = (mvsv)(bt−vst−v)= m#
vb#

t−v
to get

b#
t = a#

t +

t∑
v=0

m#
vb#

t−v. (7.48)

This renewal equation holds no matter what value we choose for s. We, therefore,
choose s such that {m#

v} is a bona fide probability distribution. That is, we fix the value
of s such that

∞∑
v=0

m#
v =

∞∑
v=0

mvsv
= 1.

There is always a unique such s whenever 1<6∞v=0mv <∞. We may now apply
the renewal theorem to (7.48), provided that its hypothesis concerning nonperiodic
behavior is satisfied. For this it suffices, e.g., that m1 > 0. Then, we conclude that

lim
t→∞

b#
t = lim

t→∞
bts

t
=

6∞v=0 a#
v

6∞v=0 vm#
v
. (7.49)

We set λ= 1/s and K =6∞v=0a#
v/6

∞

v=0vm#
v to write (7.49) in the form

bt ∼ Kλt for t large.

In words, asymptotically, the population grows at rate λ where λ= 1/s is the solu-
tion to

∞∑
v=0

mvλ
−v
= 1.

When t is large (t > u), then (7.43) may be iterated in the manner

nu,t = nu−1,t−1

[
lu

lu−1

]
= nu−2,t−2

[
lu−1

lu−2

][
lu

lu−1

]
= nu−2,t−2

[
lu

lu−2

]
...

= n0,t−u

[
lu
l0

]
= bt−ulu.
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This simply expresses that those of age u at time t were born t− u time units ago and
survived. Since for large t we have bt−u ∼ Kλt−u, then

nu,t ∼ Kluλ
t−u
= K(luλ

−u)λt,

Nt =

∞∑
u=0

nu,t ∼ K
∞∑

u=0

(luλ
−u)λt,

and

lim
t→∞

nu,t

Nt
=

luλ−u

6∞v=0lvλ−v
.

This last expression furnishes the asymptotic, or stable, age distribution in the popu-
lation.

Example Continuing the example in which m1 = m2 = 2 and mk = 0 otherwise, then
we have

∞∑
v=0

mvsv
= 2s+ 2s2

= 1,

which we solve to obtain

s=
−2±

√
4+ 8

4
=
−1±

√
3

2
= (0.366,−1.366).

The relevant root is s= 0.366, whence λ= 1/s= 2.732. Thus asymptotically, the pop-
ulation grows geometrically at rate λ= 2.732 · · · , and the stable age distribution is as
shown in the following table:

Age Fraction of Population

0 1/
(
1+ s+ s2

)
= 0.6667

1 s/
(
1+ s+ s2

)
= 0.2440

2 s2/
(
1+ s+ s2

)
= 0.0893

Exercises

7.6.1 Solve for vn for n= 0,1, . . . ,10 in the renewal equation

vn = bn+

n∑
k=0

pkvn−k for n= 0,1, . . . ,

where b0 = b1 =
1
2 ,b2 = b3 = ·· · = 0, and p0 =

1
4 ,p1 =

1
2 , and p2 =

1
4 .
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7.6.2 (Continuation of Exercise 7.6.1)
(a) Solve for un for n= 0,1, . . . ,10 in the renewal equation

un = δn+

n∑
k=0

pkun−k for n= 0,1, . . . ,

where δ0 = 1,δ1 = δ2 = ·· · = 0, and {pk} is as defined in Exercise 7.6.1.
(b) Verify that the solution vn in Exercise 7.6.1 and un are related according to

vn =6
n
k=0bkun−k.

7.6.3 Using the data of Exercises 7.6.1 and 7.6.2, determine
(a) limn→∞ un.
(b) limn→∞ vn.

Problems

7.6.1 Suppose the lifetimes X1,X2, . . . have the geometric distribution

Pr{X1 = k} = α(1−α)k−1 for k = 1,2, . . . ,

where 0< α < 1.
(a) Determine un for n= 1,2, . . . .
(b) Determine the distribution of excess life γn by using Lemma 7.1 and (7.36).

7.6.2 Marlene has a fair die with the usual six sides. She throws the die and records the
number. She throws the die again and adds the second number to the first. She
repeats this until the cumulative sum of all the tosses first exceeds a prescribed
number n. (a) When n= 10, what is the probability that she stops at a cumulative
sum of 13? (b) When n is large, what is the approximate probability that she
stops at a sum of n+ 3?

7.6.3 Determine the long run population growth rate for a population whose individ-
ual net maternity function is m2 = m3 = 2, and mk = 0 otherwise. Why does
delaying the age at which offspring are first produced cause a reduction in the
population growth rate? (The population growth rate when m1 = m2 = 2, and
mk = 0 otherwise was determined in the last example of this section.)

7.6.4 Determine the long run population growth rate for a population whose individ-
ual net maternity function is m0 = m1 = 0 and m2 = m3 = ·· · = a> 0. Compare
this with the population growth rate when m2 = a, and mk = 0 for k 6= 2.



8 Brownian Motion and Related
Processes

8.1 Brownian Motion and Gaussian Processes

The Brownian motion stochastic process arose early in this century as an attempt to
explain the ceaseless irregular motions of tiny particles suspended in a fluid, such as
dust motes floating in air. Today, the Brownian motion process and its many gener-
alizations and extensions occur in numerous and diverse areas of pure and applied
science such as economics, communication theory, biology, management science, and
mathematical statistics.

8.1.1 A Little History

The story begins in the summer of 1827, when the English botanist Robert Brown
observed that microscopic pollen grains suspended in a drop of water moved con-
stantly in haphazard zigzag trajectories. Following the reporting of his findings, other
scientists verified the strange phenomenon. Similar Brownian motion was apparent
whenever very small particles were suspended in a fluid medium, e.g., smoke parti-
cles in air. Over time, it was established that finer particles move more rapidly, that
the motion is stimulated by heat, and that the movement becomes more active with a
decrease in fluid viscosity.

A satisfactory explanation had to wait until the next century, when in 1905, Einstein
would assert that the Brownian motion originates in the continual bombardment of
the pollen grains by the molecules of the surrounding water, with successive molec-
ular impacts coming from different directions and contributing different impulses to
the particles. Einstein argued that as a result of the continual collisions, the particles
themselves had the same average kinetic energy as the molecules. Belief in molecules
and atoms was far from universal in 1905, and the success of Einstein’s explanation
of the well-documented existence of Brownian motion did much to convince a num-
ber of distinguished scientists that such things as atoms actually exist. Incidentally,
1905 is the same year in which Einstein set forth his theory of relativity and his quan-
tum explanation for the photoelectric effect. Any single one of his 1905 contributions
would have brought him recognition by his fellow physicists. Today, a search in a
university library under the subject heading “Brownian motion” is likely to turn up
dozens of books on the stochastic process called Brownian motion and few, if any, on
the irregular movements observed by Robert Brown. The literature on the model has
far surpassed and overwhelmed the literature on the phenomenon itself!

An Introduction to Stochastic Modeling. DOI: 10.1016/B978-0-12-381416-6.00008-3
c© 2011 Elsevier Inc. All rights reserved.
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Brownian motion is complicated because the molecular bombardment of the pollen
grain is itself a complicated process, so it is not surprising that it took more than
another decade to get a clear picture of the Brownian motion stochastic process. It was
not until 1923 that Norbert Wiener set forth the modern mathematical foundation. The
reader may also encounter “Wiener process” or “Wiener–Einstein process” as names
for the stochastic process that we will henceforth simply call “Brownian motion.”

Predating Einstein by several years, in 1900 in Paris, Louis Bachelier proposed
what we would now call a “Brownian motion model” for the movement of prices in
the French bond market. While Bachelier’s paper was largely ignored by academics
for many decades, his work now stands as the innovative first step in a mathematical
theory of stock markets that has greatly altered the financial world of today. Later in
this chapter, we will have much to say about Brownian motion and related models in
finance.

8.1.2 The Brownian Motion Stochastic Process

In terms of our general framework of stochastic processes (cf. Chapter 1, Sec-
tion 1.1.1), the Brownian motion process is an example of a continuous-time,
continuous-state-space Markov process. Let B(t) be the y component (as a function of
time) of a particle in Brownian motion. Let x be the position of the particle at time t0;
i.e., B(t0)= x. Let p(y, t|x) be the probability density function, in y, of B(t0+ t), given
that B(t0)= x. We postulate that the probability law governing the transitions is sta-
tionary in time, and therefore p(y, t|x) does not depend on the initial time t0.

Since p(y, t|x) is a probability density function in y, we have the properties

p(y, t|x)≥ 0 and

∞∫
−∞

p(y, t|x)dy= 1. (8.1)

Further, we stipulate that B(t0+ t) is likely to be near B(t0)= x for small values of t.
This is done formally by requiring that

lim
t→0

p(y, t|x)= 0 for y 6= x. (8.2)

From physical principles, Einstein showed that p(y, t|x) must satisfy the partial differ-
ential equation

∂p

∂t
=

1

2
σ 2 ∂

2p

∂x2
. (8.3)

This is called the diffusion equation, and σ 2 is the diffusion coefficient, which Einstein
showed to be given by σ 2

= RT/Nf , where R is the gas constant, T is the temperature,
N is Avogadro’s number, and f is a coefficient of friction. By choosing the proper scale,
we may take σ 2

= 1. With this choice, we can verify directly (see Exercise 8.1.3) that

p(y, t|x)=
1
√

2π t
exp

(
−

1

2t
(y− x)2

)
(8.4)
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is a solution of (8.3). In fact, it is the only solution under the conditions (8.1) and
(8.2). We recognize (8.4) as a normal probability density function whose mean is x
and whose variance is t. That is, the position of the particle t time units after observa-
tions begin is normally distributed. The mean position is the initial location x, and the
variance is the time of observation t.

Because the normal distribution will appear over and over in this chapter, we are
amply justified in standardizing some notation to deal with it.
Let

φ(z)=
1
√

2π
e−

1
2 z2, −∞< z<∞, (8.5)

be the standard normal probability density function, and let

8(z)=

z∫
−∞

φ(x)dx (8.6)

be the corresponding cumulative distribution function. A small table (Table 8.1) of the
cumulative normal distribution appears at the end of this section. Let

φt(z)=
1
√

t
φ(z/
√

t), (8.7)

Table 8.1 The Cumulative Normal
Distribution

8(x)=

x∫
−∞

1
√

2π
e−

1
2 u2

du

x 8(x)

−3 0.00135
−2 0.02275
−1 0.1587

0 0.5000
1 0.8413
2 0.97725
3 0.99865

−2.326 0.01
−1.96 0.025
−1.645 0.05
−1.282 0.10

1.282 0.90
1.645 0.95
1.96 0.975
2.236 0.99
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and

8t(z)=

z∫
−∞

φt(x)dx=8(z/
√

t) (8.8)

be the probability density function and cumulative distribution function, respectively,
for the normal distribution with mean zero and variance t. In this notation, the transi-
tion density in (8.4) is given by

p(y, t|x)= φt(y− x), (8.9)

and

Pr{B(t)≤ y|B(0)= x} =8

(
y− x
√

t

)
.

The transition probability density function in (8.4) or (8.9) gives only the probability
distribution of B(t)−B(0). The complete description of the Brownian motion process
with diffusion coefficient σ 2 is given by the following definition.

Definition Brownian motion with diffusion coefficient σ 2 is a stochastic process
{B(t); t ≥ 0} with the properties:

(a) Every increment B(s+ t)−B(s) is normally distributed with mean zero and variance
σ 2t;σ 2 > 0 is a fixed parameter.

(b) For every pair of disjoint time intervals (t1, t2], (t3, t4], with 0≤ t1 < t2 ≤ t3 < t4, the incre-
ments B(t4)−B(t3) and B(t2)−B(t1) are independent random variables, and similarly for
n disjoint time intervals, where n is an arbitrary positive integer.

(c) B(0)= 0, and B(t) is continuous as a function of t.

The definition says that a displacement B(s+ t)−B(s) is independent of the past, or
alternatively, if we know B(s)= x, then no further knowledge of the values of B(τ )
for past times τ < s has any effect on our knowledge of the probability law governing
the future movement B(s+ t)−B(s). This is a statement of the Markov character of
the process. We emphasize, however, that the independent increment assumption (b)
is actually more restrictive than the Markov property. A typical Brownian motion path
is illustrated in Figure 8.1.

The choice B(0)= 0 is arbitrary, and we often consider Brownian motion starting
at x, for which B(0)= x for some fixed point x. For Brownian motion starting at x,
the variance of B(t) is σ 2t, and σ 2 is termed the variance parameter in the stochastic
process literature. The process B̃(t)= B(t)/σ is a Brownian motion process whose
variance parameter is one, the so-called standard Brownian motion. By this device,
we may always reduce an arbitrary Brownian motion to a standard Brownian motion;
for the most part, we derive results only for the latter. By part (a) of the definition, for
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B(t)

t

Figure 8.1 A typical Brownian motion path.

a standard Brownian motion (σ 2
= 1), we have

Pr{B(s+ t)≤ y|B(s)= x} = Pr{B(s+ t)−B(s)≤ y− x}

=8

(
y− x
√

t

)
.

Remark Let us look, for the moment, at a Brownian displacement B(1t) after a
small elapsed time 1t. The mean displacement is zero, and the variance of the dis-
placement is 1t itself. It is much more common in practical work to use a standard
deviation, the square root of the variance, to measure variability. For the normal
distribution, for instance, the probability of an observation more than 2 standard
deviations away from the mean is about 5%, and the standard deviation is in the
same units as the original measurement, and not (units)2. The standard deviation of
the Brownian displacement is

√
1t, which is much larger than 1t itself when 1t

is small. Indeed, StdDev[B(1t)]/1t =
√
1t/1t = 1/

√
1t→∞ as 1t→ 0. This is

simply another manifestation of the erratic movements of the Brownian particle, yet
it is a point that Bachelier and others had difficulty in handling. But the variance,
being linear in time, and not the standard deviation, is the only possibility if dis-
placements over disjoint time intervals are to be stationary and independent. Write
a total displacement B(s+ t)−B(0) as the sum of two incremental steps in the form
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B(s+ t)−B(0)= {B(s)−B(0)}+ {B(s+ t)−B(s)}. The incremental steps being sta-
tistically independent, their variances must add. The stationary assumption is that
the statistics of the second step B(t+ s)−B(t) do not depend on the time t when
the step began, but only on the duration s of the movement. We must have, then,
Var[B(t+ s)]= Var[B(t)]+Var[B(s)], and the only nonnegative solution to such an
equation is to have the variance of the displacement a linear function of time.

The Covariance Function

Using the independent increments assumption (b), we will determine the covariance
of the Brownian motion. Recall that E[B(t)]= 0 and that E

[
B(t)2

]
= σ 2t. Then, for

0≤ s< t,

Cov[B(s),B(t)]= E[B(s)B(t)]

= E[B(s){B(t)−B(s)+B(s)}]

= E
[
B(s)2

]
+E[B(s){B(t)−B(s)}]

= σ 2s+E[B(s)]E[B(t)−B(s)] (by (b))

= σ 2s (since E[B(s)]= 0).

Similarly, if 0≤ t < s, we obtain Cov[B(s),B(t)]= σ 2t. Both cases may be treated in
a single expression via

Cov[B(s),B(t)]= σ 2 min{s, t}, for s, t ≥ 0. (8.10)

8.1.3 The Central Limit Theorem and the Invariance Principle

Let Sn = ξ1+ ·· ·+ ξn be the sum of n independent and identically distributed random
variables ξ1, . . . , ξn having zero means and unit variances. In this case, the central limit
theorem asserts that

lim
n→∞

Pr

{
Sn
√

n
≤ x

}
=8(x) for all x.

The central limit theorem is stated as a limit. In stochastic modeling, it is used to justify
the normal distribution as appropriate for a random quantity whose value results from
numerous small random effects, all acting independently and additively. It also justifies
the approximate calculation of probabilities for the sum of independent and identically
distributed summands in the form Pr{Sn ≤ x} ≈8(x/

√
n), the approximation known

to be excellent even for moderate values of n in most cases in which the distribution
of the summands is not too skewed.

In a similar manner, functionals computed for a Brownian motion can often serve
as excellent approximations for analogous functionals of a partial sum process, as we
now explain. As a function of the continuous variable t, define

Bn(t)=
S[nt]
√

n
, t ≥ 0, (8.11)
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where [x] is the greatest integer less than or equal to x. Observe that

Bn(t)=
Sk
√

n
=

√
[nt]
√

n

Sk
√

k
, for

k

n
≤ t <

k

n
+

1

n
.

Because Sk/
√

k has unit variance, the variance of Bn(t) is [nt]/n, which converges to
t as n→∞. When n is large, then k = [nt] is large, and Sk/

√
k is approximately nor-

mally distributed by the central limit theorem, and, finally, Bn(t) inherits the indepen-
dent increments property (b) from the postulated independence of the summands. It is
reasonable, then, to believe that Bn(t) should behave much like a standard Brownian
motion process, at least when n is large. This is indeed true, and while we cannot
explain the precise way in which it holds in an introductory text such as this, the
reader should leave with some intuitive feeling for the usefulness of the result and,
we hope, a motivation to learn more about stochastic processes. The convergence of
the sequence of stochastic processes defined in (8.11) to a standard Brownian motion
is termed the invariance principle. It asserts that some functionals of a partial sum
process of independent and identically distributed zero mean and unit variance ran-
dom variables should not depend too heavily on (should be invariant of) the actual
distribution of the summands, but be approximately given by the analogous functional
of a standard Brownian motion, provided only that the summands are not too badly
behaved.

Example Suppose that the summands have the distribution in which ξ =±1, each
with probability 1

2 . Then, the partial sum process Sn is a simple random walk for which
we calculated in Chapter 3, Section 3.5.3 (using a different notation)

Pr{Sn reaches −a< 0 before b> 0|S0 = 0}

=
b

a+ b
. (8.12)

Upon changing the scale in accordance with (8.11), we have

Pr{Bn(t) reaches −a< 0 before b> 0|S0 = 0}

=
b
√

n

a
√

n+ b
√

n
=

b

a+ b
,

and invoking the invariance principle, it should be, and is, the case that for a standard
Brownian motion we have

Pr{B(t) reaches −a< 0 before b> 0|B(0)= 0}

=
b

a+ b
. (8.13)

Finally, invoking the invariance principle for a second time, the evaluation in (8.12)
should hold approximately for an arbitrary partial sum process, provided only that the
independent and identically distributed summands have zero means and unit variances.
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8.1.4 Gaussian Processes

A random vector X1, . . . ,Xn is said to have a multivariate normal distribution, or a
joint normal distribution, if every linear combination α1X1+ ·· ·+αnXn,αi real, has a
univariate normal distribution. Obviously, if X1, . . . ,Xn has a joint normal distribution,
then so does the random vector Y1, . . . ,Ym, defined by the linear transformation in
which

Yj = αj1X1+ ·· ·+αjnXn, for j= 1, . . . ,m,

for arbitrary constants αji.
The multivariate normal distribution is specified by two parameters, the mean val-

ues µi = E[Xi] and the covariance matrix whose entries are 0ij = Cov
[
Xi,Xj

]
. In the

joint normal distribution, 0ij = 0 is sufficient to imply that Xi and Xj are independent
random variables.

Let T be an abstract set and {X(t); t in T} a stochastic process. We call {X(t); t in T}
a Gaussian process if for every n= 1,2, . . . and every finite subset {t1, . . . , tn} of T , the
random vector (X(t1), . . . ,X(tn)) has a multivariate normal distribution. Equivalently,
the process is Gaussian if every linear combination

α1X(t1)+ ·· ·+αnX(tn), αi real,

has a univariate normal distribution. Every Gaussian process is described uniquely by
its two parameters, the mean and covariance functions, given respectively by

µ(t)= E[X(t)], t in T,

and

0(s, t)= E[{X(s)−µ(s)}{X(t)−µ(t)}], s, t in T.

The covariance function is positive definite in the sense that for every n= 1,2, . . . ,
real numbers α1, . . . ,αn, and elements t1, . . . , t1 in T ,

n∑
i=1

n∑
j=1

αiαj0
(
ti, tj

)
≥ 0.

One need only evaluate the expected value of
(
6n

i=1αi{X(ti)−µ(ti)}
)2
≥ 0 in terms of

the covariance function in order to verify this.
Conversely, given an arbitrary mean value function µ(t) and a positive definite

covariance function 0(s, t), there, then, exists a corresponding Gaussian process.
Brownian motion is the unique Gaussian process having continuous trajectories, zero
mean, and covariance function (8.10). We shall use this feature, that the mean value
and covariance functions define a Gaussian process, several times in what follows.

We have seen how the invariance principle leads to the Gaussian process called
Brownian motion. Gaussian processes also arise as the limits of normalized sums of
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independent and identically distributed random functions. To sketch out this idea,
let ξ1(t), ξ2(t), . . . be independent and identically distributed random functions, or
stochastic processes. Let µ(t)= E[ξ(t)] and 0(s, t)= Cov[ξ(s),ξ(t)] be the mean
value and covariance functions, respectively. Motivated by the central limit theorem,
we define

XN(t)=
6N

i=1{ξi(t)−µ(t)}
√

N
.

The central limit theorem tells us that the distribution of XN(t) converges to the normal
distribution for each fixed time point t. A multivariate extension of the central limit
theorem asserts that for any finite set of time points (t1, . . . , tn), the random vector

(XN(t1), . . . ,XN(tn))

has, in the limit for large N, a multivariate normal distribution. It is not difficult
to believe, then, that under ordinary circumstances, the stochastic processes {XN(t);
t ≥ 0} would converge, in an appropriate sense, to a Gaussian process {X(t); t ≥ 0}
whose mean is zero and whose covariance function is 0(s, t). We call this the central
limit principle for random functions. Several instances of its application appear in this
chapter, the first of which is next.

Example Cable Strength Under Equal Load Sharing Consider a cable constructed
from N wires in parallel. Suspension bridge cables are usually built this way. A section
of the cable is clamped at each end and elongated by increasing the distance between
the clamps. The problem is to determine the maximum tensile load that the cable will
sustain in terms of the probabilistic and mechanical characteristics of the individual
wires.

Let L0 be the reference length of an unstretched unloaded strand of wire, and let
L be the length after elongation. The nominal strain is defined to be t = (L−L0)/L0.
Steadily increasing t causes the strand to stretch and exert a force ξ(t) on the clamps,
up to some random failure strain ζ , at which point the wire breaks. Hooke’s law of
elasticity asserts that the wire force is proportional to wire strain, with Young’s modu-
lus K as the proportionality constant. Taken all together, we write the force on the wire
as a function of the nominal strain as

ξ(t)=

{
Kt, for 0≤ t < ζ,

0 for ζ ≤ t.
(8.14)

A typical load function is depicted in Figure 8.2.
We will let F(x)= Pr{ζ ≤ x} be the cumulative distribution function of the failure

strain. We easily determine the mean load on the wire to be

µ(t)= E[ξ(t)]= E[Kt1{t < ζ }]= Kt[1−F(t)]. (8.15)
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Load
ξ (t)

Strain tζ

Figure 8.2 The load on an elastic wire as a function of nominal strain. At a strain of ζ the wire
fails, and the load carried drops to zero.

The higher moments are, for 0< s< t,

E[ξ(s)ξ(t)]= K2stE[1{s< ζ }1{t < ζ }]

= K2st[1−F(t)]

and

0(s, t)= E[ξ(s)ξ(t)]−E[ξ(s)]E[ξ(t)]

= K2stF(s)[1−F(t)], for 0< s< t. (8.16)

Turning to the cable, if it is clamped at the ends and elongated, then each wire within
it is elongated the same amount. The total force SN(t) on the cable is the sum of the
forces exerted by the individual wires. If we assume that the wires are independent and
a priori identical, then these wire forces ξ1(t),ξ2(t), . . . are independent and identically
distributed random functions, and

SN(t)=
N∑

i=1

ξi(t)

is the random load experienced by the cable as a function of the cable strain. An
illustration when N = 5 is given in Figure 8.3.

We are interested in the maximum load that the cable could carry without failing.
This is

QN =max{SN(t); t ≥ 0}.
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Figure 8.3 The load experienced by a cable composed of five elastic wire strands as a function
of the cable strain t.

To obtain an approximation to the distribution of QN , we apply the central limit prin-
ciple for random functions. This leads us to believe that

XN(t)=
SN(t)−Nµ(t)
√

N

should, for large N, be approximately a Gaussian process X(t) with mean zero and
covariance function given by (8.16). We write this approximation in the form

SN(t)≈ Nµ(t)+
√

NX(t). (8.17)

When N is large, the dominant term on the right of (8.17) is Nµ(t). Let t∗ be the value
of t that maximizes µ(t). We assume that t∗ is unique and that the second derivative
of µ(t) is strictly negative at t = t∗. We would then expect that

QN =maxSN(t)≈ Nµ
(
t∗
)
+
√

NX
(
t∗
)
. (8.18)

That is, we would expect that the cable strength would be approximately normally
distributed with mean Nµ(t∗) and variance N0(t∗, t∗). To carry out a numerical
example, suppose that F(x)= 1− exp

{
−x5

}
, a Weibull distribution with shape param-

eter 5. It is easily checked that t∗ = 1/50.2
= 0.7248, that µ(t∗)= 0.5934K, and

0(t∗, t∗)= (0.2792)2K2. A cable composed of N = 30 wires would have a strength
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that is approximately normally distributed with mean 30(0.5934)K = 17.8K and stan-
dard deviation 0.2792

√
30K = 1.5292K.

The above heuristics can be justified, and, indeed, significant refinements in the
approximation have been made. We have referred to the approach as the central limit
principle for random functions because we have not supplied sufficient details to label
it a theorem. Nevertheless, we will see several more applications of the principle in
subsequent sections of this chapter.

Exercises

8.1.1 Let {B(t); t ≥ 0} be a standard Brownian motion.
(a) Evaluate Pr{B(4)≤ 3|B(0)= 1}.
(b) Find the number c for which Pr{B(9) > c|B(0)= 1} = 0.10.

8.1.2 Let {B(t); t ≥ 0} be a standard Brownian motion and c> 0 a constant. Show that
the process defined by W(t)= cB

(
t/c2

)
is a standard Brownian motion.

8.1.3 (a) Show that

dφ(x)

dx
= φ′(x)=−xφ(x),

where φ(x) is given in (8.5).
(b) Use the result in (a) together with the chain rule of differentiation to show

that

p(y, t|x)= φt(y− x)=
1
√

t
φ

(
y− x
√

t

)
satisfies the diffusion equation (8.3).

8.1.4 Consider a standard Brownian motion {B(t); t ≥ 0} at times 0< u< u+ v< u+
v+w, where u,v,w> 0.
(a) Evaluate the product moment E[B(u)B(u+ v)B(u+ v+w)].
(b) Evaluate the product moment

E[B(u)B(u+ v)B(u+ v+w)B(u+ v+w+ x)]

where x> 0.
8.1.5 Determine the covariance functions for the stochastic processes

(a) U(t)= e−tB
(
e2t
)
, for t ≥ 0.

(b) V(t)= (1− t)B(t/(1− t)), for 0< t < 1.
(c) W(t)= tB(1/t), with W(0)= 0.
B(t) is standard Brownian motion.

8.1.6 Consider a standard Brownian motion {B(t); t ≥ 0} at times 0< u< u+ v< u+
v+w, where u,v,w> 0.
(a) What is the probability distribution of B(u)+B(u+ v)?
(b) What is the probability distribution of B(u)+B(u+ v)+B(u+ v+w)?
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8.1.7 Suppose that in the absence of intervention, the cash on hand for a certain cor-
poration fluctuates according to a standard Brownian motion {B(t); t ≥ 0}. The
company manages its cash using an (s,S) policy: If the cash level ever drops to
zero, it is instantaneously replenished up to level s; If the cash level ever rises
up to S, sufficient cash is invested in long-term securities to bring the cash-on-
hand down to level s. In the long run, what fraction of cash interventions are
investments of excess cash?

Hint: Use equation (8.13).

Problems

8.1.1 Consider the simple random walk

Sn = ξ1+ ·· ·+ ξn, S0 = 0,

in which the summands are independent with Pr{ξ =±1} = 1
2 . In Chapter 3,

Section 3.5.3, we showed that the mean time for the random walk to first reach
−a< 0 or b> 0 is ab. Use this together with the invariance principle to show
that E[T]= ab, where

T = Ta,b =min{t ≥ 0;B(t)=−a or B(t)= b},

and B(t) is standard Brownian motion.

Hint: The approximate Brownian motion (8.11) rescales the random walk in
both time and space.

8.1.2 Evaluate E
[
eλB(t)

]
for an arbitrary constant λ and standard Brownian motion

B(t).

8.1.3 For a positive constant ε, show that

Pr

{
|B(t)|

t
> ε

}
= 2{1−8(ε

√
t)}.

How does this behave when t is large (t→∞)? How does it behave when t is
small (t ≈ 0)?

8.1.4 Let α1, . . . ,αn be real constants. Argue that

n∑
i=1

αiB(ti)

is normally distributed with mean zero and variance

n∑
i=1

n∑
j=1

αiαj min
{
ti, tj

}
.



404 An Introduction to Stochastic Modeling

8.1.5 Consider the simple random walk

Sn = ξ1+ ·· ·+ ξn, S0 = 0,

in which the summands are independent with Pr{ξ =±1} = 1
2 . We are going to

stop this random walk when it first drops a units below its maximum to date.
Accordingly, let

Mn = max
0≤k≤n

Sk, Yn =Mn− Sn, and

τ = τa =min{n≥ 0;Yn = a}.

(a) Use a first step analysis to show that

Pr{Mτ = 0} =
1

1+ a
.

(b) Why is Pr{Mτ ≥ 2} = Pr{Mτ ≥ 1}2, and

Pr{Mτ ≥ k} =

(
a

1+ a

)k

?

Identify the distribution of Mτ .
(c) Let B(t) be standard Brownian motion, M(t)=max{B(u);0≤u≤ t},Y(t)=

M(t)−B(t), and τ =min{t ≥ 0;Y(t)= a}. Use the invariance principle to
argue that M(τ ) has an exponential distribution with mean a.

Note: τ is a popular strategy for timing the sale of a stock. It calls for
keeping the stock as long as it is going up, but to sell it the first time that it
drops a units from its best price to date. We have shown that E[M(τ )]= a,
whence E[B(τ )]= E[M(τ )]− a= 0, so that the strategy does not gain a
profit, on average, in the Brownian motion model for stock prices.

8.1.6 Manufacturers of crunchy munchies such as cheese crisps use compression test-
ing machines to gauge product quality. The crisp, or whatever, is placed between
opposing plates, which then move together. As the crisp is crunched, the force is
measured as a function of the distance that the plates have moved. The output of
the compression testing machine is a graph of force versus distance that is much
like Figure 8.3. What aspects of the graph might be measures of product qual-
ity? Model the test as a row of tiny balloons between parallel plates. Each single
balloon might follow a force–distance behavior of the form σ = Ke(1− q(e)),
where σ is the force, K is Young’s modulus, e is strain or distance, and q(e) is a
function that measures departures from Hooke’s law, to allow for soggy crisps.
Each balloon obeys this relationship up until the random strain ζ at which it
bursts. Determine the mean force as a function of strain. Use F(x) for the cumu-
lative distribution function of failure strain.
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8.1.7 For n= 0,1, . . . , show that (a) B(n) and (b) B(n)2− n are martingales (see
Chapter 2, Section 2.5).

8.1.8 Computer Challenge A problem of considerable contemporary importance is
how to simulate a Brownian motion stochastic process. The invariance princi-
ple provides one possible approach. An infinite series expression that N. Wiener
introduced may provide another approach. Let Z0, Z1, . . . be a series of inde-
pendent standard normal random variables. The infinite series

B(t)=
t
√
π

Z0+

√
2

π

∞∑
m=1

sinmt

m
Zm, 0≤ t ≤ 1,

is a standard Brownian motion for 0≤ t ≤ 1. Try to simulate a Brownian motion
stochastic process, at least approximately, by using finite sums of the form

BN(t)=
t
√
π

Z0+

√
2

π

N∑
m=1

sinmt

m
Zm, 0≤ t ≤ 1.

If B(t),0≤ t ≤ 1, is a standard Brownian motion on the interval [0,1], then
B′(t)= (1+ t)B(1/(1+ t)),0≤ t <∞, is a standard Brownian motion on the
interval [0,∞). This suggests

B′N(t)= (1+ t)BN

(
1

1+ t

)
, 0≤ t <∞,

as an approximate standard Brownian motion. In what ways do these finite
approximations behave like Brownian motion? Clearly, they are zero mean
Gaussian processes. What is the covariance function, and how does it com-
pare to that of Brownian motion? Do the gambler’s ruin probabilities of (8.13)
accurately describe their behavior? It is known that the squared variation of a
Brownian motion stochastic process is not random, but constant:

lim
n→∞

n∑
k=1

∣∣∣∣B( k

n

)
−B

(
k− 1

n

)∣∣∣∣2 = 1.

This is a further consequence of the variance relation E
[
(1B)2

]
=1t (see the

remark in Section 8.1.2). To what degree do the finite approximations meet this
criterion?

8.2 The Maximum Variable and the Reflection Principle

Using the continuity of the trajectories of Brownian motion and the symmetry of the
normal distribution, we will determine a variety of interesting probability expressions
for the Brownian motion process. The starting point is the reflection principle.
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8.2.1 The Reflection Principle

Let B(t) be a standard Brownian motion. Fix a value x> 0 and a time t > 0. Bearing
in mind the continuity of the Brownian motion, property (c) of the definition, consider
the collection of sample paths B(u) for u≥ 0 with B(0)= 0 and for which B(t) > x.
Since B(u) is continuous and B(0)= 0, there exists a time τ , itself a random variable
depending on the particular sample trajectory, at which the Brownian motion B(u) first
attains the value x.

We next describe a new path B∗(u) obtained from B(u) by reflection. For u> τ , we
reflect B(u) about the horizontal line at height x> 0 to obtain

B∗(u)=

{
B(u), for u≤ τ,
x− [B(u)− x], for u> τ.

Figure 8.4 illustrates the construction. Note that B∗(t) < x because B(t) > x.
Because the conditional probability law of the path for u> τ , given that B(τ )= x,

is symmetric with respect to the values y> x and y< x, and independent of the history
prior to τ ,∗ the reflection argument displays for every sample path with B(t) > x two

B(u)

B*(u)

x

t u
0 τ

Figure 8.4 The path B(u) is reflected about the horizontal line at x, showing that for every path
ending at B(t) > x, there are two paths, B(u) and B∗(u), that attain the value x somewhere in the
interval 0≤ u≤ t.

∗ The argument is not quite complete because the definition asserts that an increment in a Brownian motion
after a fixed time t is independent of the past, whereas here we are restarting from the random time τ .
While the argument is incomplete, the assertion is true: A Brownian path begins afresh from hitting times
such as τ .
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equally likely sample paths, B(u) and B∗(u), for which both

max
0≤u≤t

B(u) > x and max
0≤u≤t

B∗(u) > x.

Conversely, by the nature of this correspondence, every sample path B(u) for which
max0≤u≤t B(u) > x results from either of two equally likely sample paths, exactly one
of which is such that B(t) > x. The two-to-one correspondence fails only if B(t)= x,
but because B(t) is a continuous random variable (normal distribution), we have
Pr{B(t)= x} = 0, and this case can be safely ignored. Thus, we conclude that

Pr

{
max

0≤u≤t
B(u) > x

}
= 2Pr{B(t) > x}.

In terms of the maximum process defined by

M(t)= max
0≤u≤t

B(u), (8.19)

and using the notation set forth in (8.8), we have

Pr{M(t) > x} = 2[1−8t(x)]. (8.20)

8.2.2 The Time to First Reach a Level

With the help of (8.20), we may determine the probability distribution of the random
time τx at which the Brownian motion first attains a prescribed value x> 0 starting
from B(0)= 0. Formally, define the hitting time

τx =min{u≥ 0;B(u)= x}. (8.21)

Clearly, τx ≤ t if and only if M(t)≥ x. In words, the Brownian motion attains the level
x> 0 before time t if and only if at time t the maximum of the process is at least x. If
the two events are equivalent, then their probabilities must be the same. That is,

Pr{τx ≤ t} = Pr{M(t)≥ x} = 2[1−8t(x)]
(8.22)

=
2
√

2π t

∞∫
x

e−ξ
2/(2t)dξ.

The change of variable ξ = η
√

t leads to

Pr{τx ≤ t} =

√
2

π

∞∫
x/
√

t

e−η
2/2dη. (8.23)
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The probability density function of the random time τ is obtained by differentiating
(8.23) with respect to t, giving

fτx(t)=
xt−3/2

√
2π

e−x2/(2t) for 0< t <∞. (8.24)

8.2.3 The Zeros of Brownian Motion

As a final illustration of the far-reaching consequences of the reflection principle and
equation (8.24), we will determine the probability that a standard Brownian motion
B(t), with B(0)= 0, will cross the t axis at least once in the time interval (t, t+ s] for
t,s> 0. Let us denote this quantity by ϑ(t, t+ s). The result is

ϑ(t, t+ s)= Pr{B(u)= 0 for some u in (t, t+ s]}

=
2

π
arctan

√
s/t (8.25)

=
2

π
arccos

√
t/(t+ s).

First, let us define some notation concerning the hitting time τx defined in (8.21). Let

Ht(z,x)= Pr{τx ≤ t|B(0)= z}

be the probability that a standard Brownian motion starting from B(0)= z will reach
the level x before time t. In equation (8.22), we gave an integral that evaluated

Ht(0,x)= Pr{τx ≤ t|B(0)= 0}, for x> 0.

The symmetry and spatial homogeneity of the Brownian motion make it clear that
Ht(0,x)= Ht(x,0). That is, the probability of reaching x> 0 starting from B(0)= 0
before time t is the same as the probability of reaching 0 starting from B(0)= x. Con-
sequently, from (8.24) we have

Ht(0,x)= Ht(x,0)= Pr{τ0 ≤ t|B(0)= x} (8.26)

=

t∫
0

x
√

2π
ξ−3/2e−x2/(2ξ)dξ.

We will condition on the value of the Brownian motion at time t and use the law of
total probability to derive (8.25). Accordingly, we have

ϑ(t, t+ s)=

∞∫
−∞

Pr{B(u)= 0 for some u in (t, t+ s]|B(t)= x}φt(x)dx,
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where φt(x) is the probability density function for B(t) as given in (8.7). Then, using
(8.26),

ϑ(t, t+ s)= 2

∞∫
0

Hs(x,0)φt(x)dx

= 2

∞∫
0

{∫ s

0

x
√

2π
ξ−3/2e−x2/(2ξ)dξ

}
1
√

2π t
e−x2/2tdx

=
1

π
√

t

s∫
0


∞∫

0

xe−x2/(2ξ)−x2/(2t)dx

ξ−3/2dξ.

To evaluate the inner integral, we let

v=
x2

2

(
1

ξ
+

1

t

)
,

whence

dv= x

(
1

ξ
+

1

t

)
dx,

and so

ϑ(t, t+ s)=
1

π
√

t

s∫
0

(
1

ξ
+

1

t

)−1{∫ ∞
0

ve−vdv

}
ξ−3/2dξ

=

√
t

π

s∫
0

dξ

(t+ ξ)
√
ξ
.

The change of variable η =
√
ξ/t gives

ϑ(t, t+ s)=
2

π

√
s/t∫

0

dη

1+ η2
=

2

π
arccos

√
t/(t+ s).

Finally, Exercise 8.2.2 asks the student to use standard trigonometric identities to show
the equivalence arctan

√
s/t = arccos

√
t/(t+ s).

Exercises

8.2.1 Let {B(t); t ≥ 0} be a standard Brownian motion, with B(0)= 0, and let M(t)=
max{B(u); 0≤ u≤ t}.
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(a) Evaluate Pr{M(4)≤ 2}.
(b) Find the number c for which Pr{M(9) > c} = 0.10.

8.2.2 Show that

arctan
√

s/t = arccos
√

t/(s+ t).

8.2.3 Suppose that net inflows to a reservoir are described by a standard Brownian
motion. If at time 0, the reservoir has x= 3.29 units of water on hand, what is
the probability that the reservoir never becomes empty in the first t = 4 units of
time?

8.2.4 Consider the simple random walk

Sn = ξ1+ ·· ·+ ξn, S0 = 0,

in which the summands are independent with Pr{ξ =±1} = 1
2 . Let Mn =

max0≤k≤n Sk. Use a reflection argument to show that

Pr{Mn ≥ a} = 2Pr{Sn > a}+Pr{Sn = a}, a> 0.

8.2.5 Let τ0 be the largest zero of a standard Brownian motion not exceeding a> 0.
That is, τ0 =max{u≥ 0;B(u)= 0 and u≤ a}. Show that

Pr{τ0 < t} =
2

π
arcsin

√
t/a.

8.2.6 Let τ1 be the smallest zero of a standard Brownian motion that exceeds b> 0.
Show that

Pr{τ1 < t} =
2

π
arccos

√
b/t.

Problems

8.2.1 Find the conditional probability that a standard Brownian motion is not zero
in the interval (t, t+ b] given that it is not zero in the interval (t, t+ a], where
0< a< b and t > 0.

8.2.2 Find the conditional probability that a standard Brownian motion is not zero in
the interval (0,b] given that it is not zero in the interval (0,a], where 0< a< b.

Hint: Let t→ 0 in the result of Problem 8.2.1.
8.2.3 For a fixed t > 0, show that M(t) and |B(t)| have the same marginal probability

distribution, whence

fM(t)(z)=
2
√

t
φ

(
z
√

t

)
for z> 0.

(Here M(t)=max0≤u≤t B(u).) Show that

E[M(t)]=
√

2t/π.
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For 0< s< t, do (M(s),M(t)) have the same joint distribution as (|B(s)|,
|B(t)|)?

8.2.4 Use the reflection principle to obtain

Pr{M(t)≥ z,B(t)≤ x} = Pr{B(t)≥ 2z− x}

= 1−8

(
2z− x
√

t

)
for 0< x< m.

(M(t) is the maximum defined in (8.19).) Differentiate with respect to x, and
then with respect to z, to obtain the joint density function for M(t) and B(t):

fM(t),B(t)(z,x)=
2z− x

t

2
√

t
φ

(
2z− x
√

t

)
.

8.2.5 Show that the joint density function for M(t) and Y(t)=M(t)−B(t) is given by

fM(t),Y(t)(z,y)=
z+ y

t

2
√

t
φ

(
z+ y
√

t

)
.

8.2.6 Use the result of Problem 8.2.5 to show that Y(t)=M(t)−B(t) has the same
distribution as |B(t)|.

8.3 Variations and Extensions

A variety of processes derived from Brownian motion find relevance and application
in stochastic modeling. We briefly describe a few of these.

8.3.1 Reflected Brownian Motion

Let {B(t); t ≥ 0} be a standard Brownian motion process. The stochastic process

R(t)= |B(t)| =

{
B(t), if B(t)≥ 0,

−B(t), if B(t) < 0,

is called Brownian motion reflected at the origin, or, more briefly, reflected Brownian
motion. Reflected Brownian motion reverberates back to positive values whenever it
reaches the zero level and, thus, might be used to model the movement of a pollen
grain in the vicinity of a container boundary that the grain cannot cross.

Since the moments of R(t) are the same as those of |B(t)|, the mean and variance of
reflected Brownian motion are easily determined. Under the condition that R(0)= 0,
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e.g., we have

E[R(t)]=

∞∫
−∞

|x|φt(x)dx

= 2

∞∫
0

x
√

2π t
exp

(
−x2/2t

)
dx (8.27)

=
√

2t/π.

The integral was evaluated through the change of variable y= x/
√

t. Also,

Var[R(t)]= E
[
R(t)2

]
−{E[R(t)]}2

= E
[
B(t)2

]
− 2t/π (8.28)

=

(
1−

2

π

)
t.

Reflected Brownian motion is a second example of a continuous-time, continuous-
state-space Markov process. Its transition density p(y, t|x) is derived from that of
Brownian motion by differentiating

Pr{R(t)≤ y|R(0)= x} = Pr{−y≤ B(t)≤ y|B(0)= x}

=

y∫
−y

φt(z− x)dz

with respect to y to get

p(y, t|x)= φt(y− x)+φt(−y− x)

= φt(y− x)+φt(y+ x).

8.3.2 Absorbed Brownian Motion

Suppose that the initial value B(0)= x of a standard Brownian motion process is pos-
itive, and let τ be the first time that the process reaches zero. The stochastic process

A(t)=

{
B(t) for t ≤ τ,
0 for t > τ

is called Brownian motion absorbed at the origin, which we will shorten to absorbed
Brownian motion. Absorbed Brownian motion might be used to model the price of a
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share of stock in a company that becomes bankrupt at some future instant. We can
evaluate the transition probabilities for absorbed Brownian motion by another use of
the reflection principle introduced in Section 8.2. For x> 0 and y> 0, let

Gt(x,y)= Pr{A(t) > y|A(0)= x}
(8.29)

= Pr
{
B(t) > y,min 0≤u≤tB(u) > 0|B(0)= x

}
.

To determine (8.29), we start with the obvious relation

Pr{B(t) > y|B(0)= x} = Gt(x,y)+Pr
{
B(t) > y,min 0≤u≤tB(u)≤ 0|B(0)= x

}
.

The reflection principle is applied to the last term; Figure 8.5 is the appropriate picture
to guide the analysis. We will argue that

Pr
{
B(t) > y,min 0≤u≤tB(u)≤ 0|B(0)= x

}
= Pr

{
B(t) <−y,min 0≤u≤tB(u)≤ 0|B(0)= x

}
(8.30)

= Pr{B(t) <−y|B(0)= x} =8t(−y− x).

The reasoning behind (8.30) goes as follows: Consider a path starting at x> 0, satisfy-
ing B(t) > y, and which reaches zero at some intermediate time τ . By reflecting such

B(u)

B*(u)

y

x

0

�y

t

Figure 8.5 For every path B(u) starting at x, ending at B(t) > y, and reaching zero in the inter-
val, there is another path B∗(u) starting at x and ending at B∗(t) <−y.
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a path about zero after time τ , we obtain an equally likely path starting from x and
assuming a value below−y at time t. This implies the equality of the first two terms of
(8.30). The equality of the last terms is clear from their meaning, since the condition
that the minimum be below zero is superfluous in view of the requirement that the path
end below −y(y> 0). Inserting (8.30) into (8.29) yields

Gt(x,y)= Pr{B(t) > y|B(0)= x}−Pr{B(t) <−y|B(0)= x}

= 1−8t(y− x)−8t(−(y+ x))

=8t(y+ x)−8t(y− x) (8.31)

=

y+x∫
y−x

φt(z)dz=8

(
y+ x
√

t

)
−8

(
y− x
√

t

)
.

From (8.29) and (8.31), we obtain the transition distribution for absorbed Brownian
motion:

Pr{A(t) > y|A(0)= x} =8

(
y+ x
√

t

)
−8

(
y− x
√

t

)
. (8.32)

Under the condition that A(0)= x> 0,A(t) is a random variable that has both discrete
and continuous parts. The discrete part is

Pr{A(t)= 0|A(0)= x} = 1−Gt(x,0)

= 1−

x∫
−x

φt(z)dz

= 2[1−8t(x)].

In the region y> 0,A(t) is a continuous random variable whose transition density
p(y, t|x) is obtained by differentiating with respect to y in (8.32) and suitably changing
the sign:

p(y, t|x)= φt(y− x)−φt(y+ x).

8.3.3 The Brownian Bridge

The Brownian bridge
{
B0(t); t ≥ 0

}
is constructed from a standard Brownian motion

{B(t); t ≥ 0} by conditioning on the event {B(0)= B(1)= 0}. The Brownian bridge is
used to describe certain random functionals arising in nonparametric statistics, and as
a model for the publicly traded prices of bonds having a specified redemption value
on a fixed expiration date.

We will determine the probability distribution for B0(t) by using the conditional
density formula for jointly normally distributed random variables derived in Chapter 2,
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Problem 2.4.8. First, for 0< t < 1, the random variables B(t) and B(1)−B(t) are inde-
pendent and normally distributed according to the definition of Brownian motion. It
follows that X = B(t) and Y = B(1)= B(t)+{B(1)−B(t)} have a joint normal dis-
tribution (see Chapter 1, Section 1.4.6) for which we have determined µX = µY =

0,σX =
√

t,σY = 1, and ρ = Cov[X,Y]/σXσY =
√

t. Using the results of Chapter 2,
Problem 2.4.8, it then follows that given Y = B(1)= y, the conditional distribution of
X = B(t) is normal, with

µX|Y = µX +
ρσX

σY
(y−µY)= y

√
t = 0 when y= 0,

and

σX|Y = σX

√
1− ρ2 =

√
t(1− t).

For the Brownian bridge, B0(t) is normally distributed with E
[
B0(t)

]
= 0 and

Var
[
B0(t)

]
= t(1− t). Notice how the condition B(0)= B(1)= 0 causes the variance

of B0(t) to vanish at t = 0 and t = 1.
The foregoing calculation of the variance can be extended to determine the

covariance function. Consider times s, t with 0< s< t < 1. By first obtaining the
joint distribution of (B(s),B(t),B(1)), and then the conditional joint distribution of
(B(s),B(t)), given that B(1)= 0, one can verify that the Brownian bridge is a nor-
mally distributed stochastic process with mean zero and covariance function 0(s, t)=
Cov

[
B0(s),B0(t)

]
= s(1− t), for 0< s< t < 1. (See Problem 8.3.3 for an alternative

approach.)

Example The Empirical Distribution Function Let X1,X2, . . . be independent and
identically distributed random variables. The empirical cumulative distribution func-
tion corresponding to a sample of size N is defined by

FN(t)=
1

N
#{Xi ≤ t for i= 1, . . . ,N}

=
1

N

N∑
i=1

ξi(t), (8.33)

where

ξi(t)=

{
1, if Xi ≤ t,
0, if Xi > t.

The empirical distribution function is an estimate, based on the observed sample, of
the true distribution function F(t)= Pr{X ≤ t}. We will use the central limit princi-
ple for random functions (Section 8.1.4) to approximate the empirical distribution
function by a Brownian bridge, assuming that the observations are uniformly dis-
tributed over the interval (0,1). (Problem 8.3.9 calls for the student to explore the
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case of a general distribution.) In the uniform case, F(t)= t for 0< t < 1, and µ(t)=
E[ξ(t)]= F(t)= t. For the higher moments, when 0<s< t<1,E[ξ(s)ξ(t)]=F(s)=s,
and 0(s, t)= Cov[ξ(s),ξ(t)]= E[ξ(s)ξ(t)]−E[ξ(s)]E[ξ(t)]= s− st = s(1− t).

In view of equation (8.33), which expresses the empirical distribution function in
terms of a sum of independent and identically distributed random functions, we might
expect the central limit principle for random functions to yield an approximation in
terms of a Gaussian limit. Following the guidelines in Section 8.1.4, we would expect
that

XN(t)=
6N

i=1{ξi(t)−µ(t)}
√

N

=
NFN(t)−Nt
√

N

=
√

N{FN(t)− t}

would converge, in an appropriate sense, to a Gaussian process with zero mean and
covariance 0(s, t)= s(1− t), for 0< s< t < 1. As we have just seen, this process is a
Brownian bridge. Therefore, we would expect the approximation

FN(t)≈ t+
1
√

N
B0(t), 0< t < 1.

Such approximations are heavily used in the theory of nonparametric statistics.

8.3.4 Brownian Meander

Brownian meander
{
B+(t); t ≥ 0

}
is Brownian motion conditioned to be positive.

Recall (8.29) and (8.31):

Gt(x,y)= Pr
{
B(t) > y,min 0≤u≤tB(u) > 0|B(0)= x

}
=8

(
y+ x
√

t

)
−8

(
y− x
√

t

)
,

so that

Gt(x,0)= Pr
{
min 0≤u≤tB(u) > 0|B(0)= x

}
=8

(
x
√

t

)
−8

(
−x
√

t

)
.

The transition law for Brownian meander is

Pr
{
B+(t) > y|B+(0)= x

}
= Pr

{
B(t) > y|min 0≤u≤tB(u) > 0,B(0)= x

}
,
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whence

Pr
{
B+(t) > y|B+(0)= x

}
=

Gt(x,y)

Gt(x,0)

=

8
(

y+x
√

t

)
−8

(
y−x
√

t

)
8
(

x
√

t

)
−8

(
−x
√

t

) .
Of most interest is the limiting case as x→ 0,

Pr
{
B+(t) > y|B+(0)= 0

}
= lim

x→0

8
(

y+x
√

t

)
−8

(
y−x
√

t

)
8
(

x
√

t

)
−8

(
−x
√

t

)
=

φ
(

y
√

t

)
φ(0)

= e−
1
2 y2/t.

A simple integration yields the mean

E
[
B+(t)|B+(0)= 0

]
=

∞∫
0

Pr
{
B+(t) > y|B+(0)= 0

}
dy

=

∞∫
0

e−
1
2 y2/tdy

=
1

2

√
2π t

∞∫
−∞

1
√
(2π t)

e−
1
2 y2/tdy

=
√
π t/2.

Exercises

8.3.1 Show that the cumulative distribution function for reflected Brownian motion is

Pr{R(t) < y|R(0)= x} =8

(
y− x
√

t

)
−8

(
−y− x
√

t

)
=8

(
y− x
√

t

)
+8

(
y+ x
√

t

)
− 1

=8

(
x+ y
√

t

)
−8

(
x− y
√

t

)
.

Evaluate this probability when x= 1,y= 3, and t = 4.
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8.3.2 The price fluctuations of a share of stock of a certain company are well described
by a Brownian motion process. Suppose that the company is bankrupt if ever
the share price drops to zero. If the starting share price is A(0)= 5, what is the
probability that the company is bankrupt at time t = 25? What is the probability
that the share price is above 10 at time t = 25?

8.3.3 The net inflow to a reservoir is well described by a Brownian motion. Because a
reservoir cannot contain a negative amount of water, we suppose that the water
level R(t) at time t is a reflected Brownian motion. What is the probability that
the reservoir contains more than 10 units of water at time t = 25? Assume that
the reservoir has unlimited capacity and that R(0)= 5.

8.3.4 Suppose that the net inflows to a reservoir follow a Brownian motion. Suppose
that the reservoir was known to be empty 25 time units ago but has never been
empty since. Use a Brownian meander process to evaluate the probability that
there is more than 10 units of water in the reservoir today.

8.3.5 Is reflected Brownian motion a Gaussian process? Is absorbed Brownian motion
(cf. Section 8.1.4)?

Problems

8.3.1 Let B1(t) and B2(t) be independent standard Brownian motion processes. Define

R(t)=
√

B1(t)2+B2(t)2, t ≥ 0.

R(t) is the radial distance to the origin in a two-dimensional Brownian motion.
Determine the mean of R(t).

8.3.2 Let B(t) be a standard Brownian motion process. Determine the conditional
mean and variance of B(t),0< t < 1, given that B(1)= b.

8.3.3 Let B(t) be a standard Brownian motion. Show that B(u)− uB(1),0< u< 1, is
independent of B(1).
(a) Use this to show that B0(t)= B(t)− tB(1),0≤ t ≤ 1, is a Brownian bridge.
(b) Use the representation in (a) to evaluate the covariance function for a

Brownian bridge.
8.3.4 Let B(t) be a standard Brownian motion. Determine the covariance function for

W0(s)= (1− s)B

(
s

1− s

)
, 0< s< 1,

and compare it to that for a Brownian bridge.
8.3.5 Determine the expected value for absorbed Brownian motion A(t) at time t = 1

by integrating the transition density (8.32) according to

E[A(1)|A(0)= x]=

∞∫
0

yp(y,1|x)dy

=

∞∫
0

y[φ(y− x)−φ(y+ x)]dy.
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The answer is E[A(1)|A(0)= x]= x. Show that E[A(t)|A(0)= x]= x for all
t > 0.

8.3.6 Let M =max{A(t); t ≥ 0} be the largest value assumed by an absorbed Brown-
ian motion A(t). Show that Pr{M > z|A(0)= x} = x/z for 0< x< z.

8.3.7 Let t0 = 0< t1 < t2 < · · · be time points, and define Xn = A(tn), where A(t) is
absorbed Brownian motion starting from A(0)= x. Show that {Xn} is a nonneg-
ative martingale. Compare the maximal inequality (2.53) in Chapter 2 with the
result in Problem 8.3.6.

8.3.8 Show that the transition densities for both reflected Brownian motion and
absorbed Brownian motion satisfy the diffusion equation (8.3) in the region
0< x<∞.

8.3.9 Let F(t) be a cumulative distribution function and B0(u) a Brownian bridge.
(a) Determine the covariance function for B0(F(t)).
(b) Use the central limit principle for random functions to argue that the empir-

ical distribution functions for random variables obeying F(t) might be
approximated by the process in (a).

8.4 Brownian Motion with Drift

Let {B(t); t ≥ 0} be a standard Brownian motion process, and let µ and σ > 0 be fixed.
The Brownian motion with drift parameterµ and variance parameter σ 2 is the process

X(t)= µt+ σB(t) for t ≥ 0. (8.34)

Alternatively, Brownian motion with drift parameter µ and variance parameter σ 2 is
the process whose increments over disjoint time intervals are independent (property
(b) of the definition of standard Brownian motion) and whose increments X(t+ s)−
X(t), t,s> 0, are normally distributed with meanµs and variance σ 2s. When X(0)= x,
we have

Pr{X(t)≤ y|X(0)= x} = Pr{µt+ σB(t)≤ y|σB(0)= x}

= Pr

{
B(t)≤

y−µt

σ

∣∣∣B(0)= x

σ

}
=8t

(
y− x−µt

σ

)
=8

(
y− x−µt

σ
√

t

)
.

Brownian motion with drift is not symmetric when µ 6= 0, and the reflection principle
cannot be used to compute the distribution of the maximum of the process. We will use
an infinitesimal first step analysis to determine some properties of Brownian motion
with drift. To set this up, let us introduce some notation to describe changes in the
Brownian motion with drift over small time intervals of length1t. We let1X = X(t+
1t)−X(t) and 1B= B(t+1t)−B(t). Then, 1X = µ1t+ σ1B, and

X(t+1t)= X(t)+1X = X(t)+µ1t+ σ1B. (8.35)
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We observe that the conditional moments of 4t, given X(t)= x, are

E[1X|X(t)= x]= µ1t+ σE[1B]= µ1t, (8.36)

Var[1X|X(t)= x]= σ 2E
[
(1B)2

]
= σ 21t, (8.37)

and

E
[
(1X)2|X(t)= x

]
= σ 21t+ (µ1t)2 = σ 21t+ o(1t), (8.38)

while

E
[
(1X)c

]
= o(1t) for c> 2. (8.39)

8.4.1 The Gambler’s Ruin Problem

Let us suppose that X(0)= x, and that a< x and b> x are fixed quantities. We will be
interested in some properties of the random time T at which the process first assumes
one of the values a or b. This so-called hitting time is formally defined by

T = Tab =min{t ≥ 0;X(t)= a or X(t)= b}.

Analogous to the gambler’s ruin problem in a random walk (Chapter 3, Section 3.5.3),
we will determine the probability that when the Brownian motion exits the interval
(a,b), it does so at the point b. The solution for a standard Brownian motion was
obtained in Section 8.1 by using the invariance principle. Here we solve the problem
for Brownian motion with drift by instituting an infinitesimal first step analysis.

Theorem 8.1. For a Brownian motion with drift parameter µ and variance parame-
ter σ 2, and a< x< b,

u(x)= Pr{X(Tab)= b|X(0)= x} =
e−2µx/σ 2

− e−2µa/σ 2

e−2µb/σ 2
− e−2µa/σ 2 . (8.40)

Proof. Our proof is not entirely complete in that we will assume (1) that u(x) is twice
continuously differentiable, and (2) that we can choose a time increment 1t so small
that exiting the interval (a,b) prior to time 1t can be neglected. With these provisos,
at time 1t the Brownian motion will be at the position X(0)+1X = x+1X, and the
conditional probability of exiting at the upper point b is now u(x+1X). Invoking the
law of total probability, it must be that u(x)= Pr{X(T)= b|X(0)= x} = E[Pr{X(T)=
b|X(0)= x,X(1t)= x+1X}|X(0)= x]= E[u(x+1X)], where a< x< b. �

The next step is to expand u(x+1X) in a Taylor series, whereby u(x+1X)=
u(x)+ u′(x)1X+ 1

2 u′′(x)(1X)2+ o(1X)2. Then,

u(x)= E[u(x+1X)]

= u(x)+ u′(x)E[1X]+
1

2
u′′(x)E

[
(1X)2

]
+E[o(1t)].



Brownian Motion and Related Processes 421

We use (8.36), (8.38), and (8.39) to evaluate the moments of 1X, obtaining

u(x)= u(x)+ u′(x)µ1t+
1

2
u′′(x)σ 21t+ o(1t),

which, after subtracting u(x), dividing by 1t, and letting 1t→ 0, becomes the differ-
ential equation

0= µu′(x)+
1

2
σ 2u′′(x) for a< x< b. (8.41)

The solution to (8.41) is

u(x)= Ae−2µx/σ 2
+B,

where A and B are constants of integration. These constants are determined by the con-
ditions u(a)= 0 and u(b)= 1. In words, the probability of exiting at b if the process
starts at a is zero, while the probability of exiting at b if the process starts at b is one.
When these conditions are used to determine A and B, then (8.40) results.

Example Suppose that the fluctuations in the price of a share of stock in a certain
company are well described by a Brownian motion with drift µ= 1/10 and variance
σ 2
= 4. A speculator buys a share of this stock at a price of $100 and will sell if ever

the price rises to $110 (a profit) or drops to $95 (a loss). What is the probability that
the speculator sells at a profit? We apply (8.40) with a= 95, x= 100, b= 110, and
2µ/σ 2

= 2(0.1)/4= 1/20. Then,

Pr{Sell at profit} =
e−100/20

− e−95/20

e−110/20− e−95/20
= 0.419.

The Mean Time to Exit an Interval

Using another infinitesimal first step analysis, the mean time to exit an interval may
be determined for Brownian motion with drift.

Theorem 8.2. For a Brownian motion with drift parameter µ and variance parame-
ter σ 2, and a< x< b,

E[Tab|X(0)= x]=
1

µ
[u(x)(b− a)− (x− a)], (8.42)

where u(x) is given in (8.40).

Proof. Let v(x)= E[Tab|X(0)= x]. As in the proof of Theorem 8.1, we will assume
(1) that v(x) is twice continuously differentiable, and (2) that we can choose a
time increment 1t so small that exiting the interval (a,b) prior to time 1t can be
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neglected. With these provisos, after time 1t the Brownian motion will be at the
position X(0)+1X = x+1X, and the conditional mean time to exit the interval is
now 1t+ v(x+1X). Invoking the law of total probability, it must be that v(x)=
E[T|X(0) = x] = E[1t + E{T −1t|X(0) = x,X(1t) = x + 1X}|X(0) = x] = 1t+
E[v(x+1X)], where a< x< b. �

The next step is to expand v(x+1X) in a Taylor series, whereby v(x+1X)=
v(x)+ v′(x)1X+ 1

2 v′′(x)(1X)2+ o(1X)2. Then,

v(x)=1t+E[v(x+1X)]

=1t+ v(x)+ v′(x)E[1X]+
1

2
v′′(x)E

[
(1X)2

]
+E

[
o(1X)2

]
.

We use (8.36), (8.38), and (8.39) to evaluate the moments of 1X, obtaining

v(x)=1t+ v(x)+ v′(x)µ1t+
1

2
v′′(x)σ 21t+ o(1t),

which, after subtracting v(x), dividing by 1t, and letting 1t→ 0, becomes the differ-
ential equation

−1= µv′(x)+
1

2
σ 2v′′(x) for a< x< b. (8.43)

Since it takes no time to reach the boundary if the process starts at the boundary, the
conditions are v(a)= v(b)= 0. Subject to these conditions, the solution to (8.43) is
uniquely given by (8.42), as is easily verified (Problem 8.4.1).

Example A Sequential Decision Procedure A Brownian motion X(t) either (1) has
drift µ=+ 1

2δ > 0, or (2) has drift µ=− 1
2δ < 0, and it is desired to determine which

is the case by observing the process. The process will be monitored until it first reaches
the level b> 0, in which case we will decide that the drift is µ=+ 1

2δ, or until it first
drops to the level a< 0, which occurrence will cause us to decide in favor ofµ=− 1

2δ.
This decision procedure is, of course, open to error, but we can evaluate these error
probabilities and choose a and b so as to keep the error probabilities acceptably small.
We have

α = Pr

{
Decide µ=+

1

2
δ|µ=−

1

2
δ

}
= Pr

{
X(T)= b|E[X(t)]=−

1

2
δt

}
(8.44)

=
1− e+δa/σ

2

e+δb/σ 2
− e+δa/σ 2 , (using (8.40))
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and

1−β = Pr

{
Decide µ=−

1

2
δ|µ=+

1

2
δ

}
= Pr

{
X(T)= b|E[X(t)]=+

1

2
δt

}
(8.45)

=
1− e−δa/σ

2

e−δb/σ 2
− e−δa/σ 2 .

If acceptable levels of the error probabilities α and β are prescribed, then we can solve
in (8.44) and (8.45) to determine the boundaries to be used in the decision procedure.
The reader should verify that these boundaries are

a=−
σ 2

δ
log

(
1−α

β

)
, and b=

σ 2

δ
log

(
1−β

α

)
. (8.46)

For a numerical example, if σ 2
= 4 and we are attempting to decide between

µ=− 1
2 and µ=+ 1

2 , and the acceptable error probabilities are chosen to be α =
0.05 and β = 0.10, then the decision boundaries that should be used are a=
−4log(0.95/0.10)=−9.01, and b= 4log(0.90/0.05)= 11.56.

In the above procedure for deciding the drift of a Brownian motion, the observation
duration until a decision is reached will be a random variable whose mean will depend
upon the true value of the drift. Using (8.42) with x= 0 and µ replaced by ± 1

2δ gives
us the mean observation interval, as a function of the true mean µ:

E

[
T|µ=−

1

2
δ

]
= 2

(σ
δ

)2
[
(1−α) log

(
1−α

β

)
−α log

(
1−β

α

)]
and

E

[
T|µ=+

1

2
δ

]
= 2

(σ
δ

)2
[
(1−β) log

(
1−β

α

)
−β log

(
1−α

β

)]
.

We have developed a sequential decision procedure for evaluating the drift of a
Brownian motion. However, invoking the invariance principle leads us to believe
that similar results should maintain, at least approximately, in analogous situations
in which the Brownian motion is replaced by a partial sum process of independent and
identically distributed summands. The result is known as Wald’s approximation for
his celebrated sequential probability ratio test of a statistical hypothesis.

The Maximum of a Brownian Motion with Negative Drift

Consider a Brownian motion with drift {X(t)}, where the drift parameter µ is neg-
ative. Over time, such a process will tend toward ever lower values, and its maxi-
mum M =max{X(t)−X(0); t ≥ 0} will be a well-defined and finite random variable.
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Theorem 8.1 will enable us to show that M has an exponential distribution with param-
eter 2|µ|/σ 2. To see this, let us suppose that X(0)= 0 and that a< 0< b are constants.
Then, Theorem 8.1 states that

Pr{X(Tab)= b|X(0)= x} =
1− e−2µa/σ 2

e−2µb/σ 2
− e−2µa/σ 2 , (8.47)

where Tab is the random time at which the process first reaches a< 0 or b> 0. That is,
the probability that the Brownian motion reaches b> 0 before it ever drops to a< 0
is given by the right side of (8.47). Because both µ < 0 and a< 0, then aµ > 0 and

e−2µa/σ 2
= e−2|µa|/σ 2

→ 0 as a→−∞, and then

lim
a→−∞

Pr{X(Tab)= b} =
1− 0

e−2µb/σ 2
− 0
= e−2|µ|b/σ 2

.

But as a→−∞ the left side of (8.47) becomes the probability that the process ever
reaches the point b, i.e., the probability that the maximum M of the process ever
exceeds b. We have deduced, then, the desired exponential distribution

Pr{M > b} = e−2|µb/σ 2
, b> 0. (8.48)

8.4.2 Geometric Brownian Motion

A stochastic process {Z(t); t ≥ 0} is called a geometric Brownian motion with drift
parameter α if X(t)= logZ(t) is a Brownian motion with drift µ= α− 1

2σ
2 and vari-

ance parameter σ 2. Equivalently, Z(t) is geometric Brownian motion starting from
Z(0)= z if

Z(t)= zeX(t)
= ze

(
α− 1

2σ
2
)

t+σB(t)
, (8.49)

where B(t) is a standard Brownian motion starting from B(0)= 0.
Modern mathematical economists usually prefer geometric Brownian motion over

Brownian motion as a model for prices of assets, say shares of stock, that are traded in
a perfect market. Such prices are nonnegative and exhibit random fluctuations about a
long-term exponential decay or growth curve. Both of these properties are possessed
by geometric Brownian motion, but not by Brownian motion itself. More importantly,
if t0 < t1 < · · ·< tn are time points, then the successive ratios

Z(t1)

Z(t0)
,

Z(t2)

Z(t1)
, . . . ,

Z(tn)

Z(tn−1)

are independent random variables, so that crudely speaking, the percentage changes
over nonoverlapping time intervals are independent.
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We turn to determining the mean and variance of geometric Brownian motion. Let
ξ be a normally distributed random variable with mean zero and variance one. We
begin by establishing the formula

E
[
eλξ
]
= e

1
2λ

2
, −∞< λ <∞,

which results immediately from

1=

∞∫
−∞

1
√

2π
e−

1
2 (u−λ)

2
du (area under normal density)

=

∞∫
−∞

1
√

2π
e−

1
2

(
u2
−2λu+λ2

)
du

= e−
1
2λ

2

∞∫
−∞

eλu 1
√

2π
e−

1
2 u2

du

= e−
1
2λ

2
E
[
eλξ
]
.

To obtain the mean of geometric Brownian motion Z(t)= zeX(t)
= ze

(
α− 1

2σ
2
)

t+σB(t)
,

we use the fact that ξ = B(t)/
√

t is normally distributed with mean zero and variance
one, whence

E[Z(t)|Z(0)= z]= zE

[
e

(
α− 1

2σ
2
)

t+σB(t)
]

= ze

(
α− 1

2σ
2
)t

E
[
eσ
√

tξ
]

(ξ = B(t)/
√

t) (8.50)

= ze

(
α− 1

2σ
2
)

t
e

1
2σ

2t
= zeαt.

Equation (8.50) has interesting economic implications in the case where α is positive
but small relative to the variance parameter σ 2. On the one hand, if α is positive,
then the mean E[Z(t)]= zexp(αt)→∞ as t→∞. On the other hand, if α is positive

but α < 1
2σ

2, then α− 1
2σ

2 < 0, and X(t)=
(
α− 1

2σ
2
)

t+ σB(t) is drifting in the

negative direction. As a consequence of the law of large numbers, it can be shown
that X(t)→−∞ as t→∞ under these circumstances, so that Z(t)= zexp[X(t)]→
exp(−∞)= 0. The geometric Brownian motion process is drifting ever closer to zero,
while simultaneously, its mean or expected value is continually increasing! Here is yet
another stochastic model in which the mean value function is entirely misleading as a
sole description of the process.
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The variance of the geometric Brownian motion is derived in much the same man-
ner as the mean. First

E
[
Z(t)2|Z(0)= z

]
= z2E

[
e2X(t)

]
= z2E

[
e

2
(
α− 1

2σ
2
)

t+2σB(t)
]

= z2e
2
(
α+ 1

2σ
2
)

t
(as in (8.50)),

and then

Var[Z(t)]= E
[
Z(t)2

]
−{E[Z(t)]}2

= z2e
2
(
α+ 1

2σ
2
)

t
− z2e2αt (8.51)

= z2e2αt
(

eσ
2t
− 1

)
.

Because of their close relation as expressed in the definition (8.49), many results
for Brownian motion can be directly translated into analogous results for geomet-
ric Brownian motion. For example, let us translate the gambler’s ruin probability in
Theorem 8.1. For A< 1 and B> 1, define

T = TA,B =min

{
t ≥ 0;

Z(t)

Z(0)
= A or

Z(t)

Z(0)
= B

}
.

Theorem 8.3. For a geometric Brownian motion with drift parameter α and variance
parameter σ 2, and A< 1< B,

Pr

{
Z(T)

Z(0)
= B

}
=

1−A1−2α/σ 2

B1−2α/σ 2
−A1−2α/σ 2 . (8.52)

Example Suppose that the fluctuations in the price of a share of stock in a certain
company are well described by a geometric Brownian motion with drift α = 1/10
and variance σ 2

= 4. A speculator buys a share of this stock at a price of $100 and
will sell if ever the price rises to $110 (a profit) or drops to $95 (a loss). What is
the probability that the speculator sells at a profit? We apply (8.52) with A= 0.95,
B= 1.10, and 1− 2α/σ 2

= 1− 2(0.1)/4= 0.95. Then,

Pr{Sell at profit} =
1− 0.950.95

1.100.95− 0.950.95
= 0.3342.

Example The Black-Scholes Option Pricing Formula A call, or warrant, is an option
entitling the holder to buy a block of shares in a given company at a specified price
at any time during a stated interval. Thus, the call listed in the financial section of the
newspaper as

Hewlett Aug $60 $6

means that for a price of $6 per share, one may purchase the privilege (option) of
buying the stock of Hewlett-Packard at a price of $60 per share at any time between
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now and August (by convention, always the third Friday of the month). The $60 figure
is called the striking price. Since the most recent closing price of Hewlett was $59,
the option of choosing when to buy, or not to buy at all, carries a premium of $7=
$60+ $6− $59 over a direct purchase of the stock today.

Should the price of Hewlett rise to, say, $70 between now and the third Friday of
August, the owner of such an option could exercise it, buying at the striking price of
$60 and immediately selling at the then current market price of $70 for a $10 profit,
less, of course, the $6 cost of the option itself. On the other hand, should the price of
Hewlett fall, the option owner’s loss is limited to his $6 cost of the option. Note that the
seller (technically called the “writer”) of the option has a profit limited to the $6 that
he receives for the option but could experience a huge loss should the price of Hewlett
soar, say to $100. The writer would then either have to give up his own Hewlett shares
or buy them at $100 on the open market in order to fulfill his obligation to sell them to
the option holder at $60.

What should such an option be worth? Is $6 for this privilege a fair price? While
early researchers had studied these questions using a geometric Brownian motion
model for the price fluctuations of the stock, they all assumed that the option should
yield a higher mean return than the mean return from the stock itself because of the
unlimited potential risk to the option writer. This assumption of a higher return was
shown to be false in 1973 when Fisher Black, a financial consultant with a Ph.D.
in applied mathematics, and Myron Scholes, an assistant professor in finance at MIT,
published an entirely new and innovative analysis. In an idealized setting that included
no transaction costs and an ability to borrow or lend limitless amounts of capital at the
same fixed interest rate, they showed that an owner, or a writer, of a call option could
simultaneously buy or sell the underlying stock (“program trading”) in such a way as
to exactly match the returns of the option. Having available two investment opportu-
nities with exactly the same return effectively eliminates all risk, or randomness, by
allowing an investor to buy one while selling the other. The implications of their result
are many. First, since writing an option potentially carries no risk, its return must be
the same as that for other riskless investments in the economy. Otherwise, limitless
profit opportunities bearing no risk would arise. Second, since owning an option car-
ries no risk, one should not exercise it early, but hold it until its expiration date, when,
if the market price exceeds the striking price, it should be exercised, and otherwise
not. These two implications then lead to a third, a formula that established the worth,
or value, of the option.

The Black-Scholes paper spawned hundreds, if not thousands, of further academic
studies. At the same time, their valuation formula quickly invaded the financial world,
where soon virtually all option trades were taking place at or near their Black-Scholes
value. It is remarkable that the valuation formula was adopted so quickly in the
real world in spite of the esoteric nature of its derivation and the ideal world of its
assumptions.

In order to present the Black-Scholes formula, we need some notation. Let S(t) be
the price at time t of a share of the stock under study. We assume that S(t) is described
by a geometric Brownian motion with drift parameter α and variance parameter σ 2.
Let F(z,τ ) be the value of an option, where z is the current price of the stock and τ is
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the time remaining until expiration. Let a be the striking price. When τ = 0, and there
is no time remaining, one exercises the option for a profit of z− a if z> a (market
price greater than striking price) and does not exercise the option, but lets it lapse, or
expire, if z≤ a. This leads to the condition

F(z,0)= (z− a)+ =max{z− a,0}.

The Black-Scholes analysis resulted in the valuation

F(z,τ )= e−rτE
[
(Z(τ )− a)+|Z(0)= z

]
, (8.53)

where r is the return rate for secure, or riskless, investments in the economy, and where
Z(t) is a second geometric Brownian motion having drift parameter r and variance
parameter σ 2. Looking at (8.53), the careful reader will wonder whether we have made
a mistake. No, the worth of the option does not depend on the drift parameter α of the
underlying stock.

In order to put the valuation formula into a useful form, we write

Z(τ )= ze

(
r− 1

2σ
2
)
τ+σ
√
τξ
, ξ = B(τ )/

√
τ , (8.54)

and observe that

ze

(
r− 1

2σ
2
)
τ+σ
√
τξ
> a

is the same as

ξ > v0 =

log(a/z)−
(

r− 1
2σ

2
)
τ

σ
√
τ

. (8.55)

Then,

erτF(z,τ )= E
[
(Z(τ )− a)+|Z(0)= z

]
= E

[(
ze

(
r− 1

2σ
2
)
τ+σ
√
τξ
− a

)+]

=

∞∫
v0

[
ze

(
r− 1

2σ
2
)
τ+σ
√
τv
− a

]
φ(v)dv.

= ze

(
r− 1

2σ
2
)
τ

∞∫
v0

eσ
√
τvφ(v)dv− a

∞∫
v0

φ(v)dv.

Completing the square in the form

−
1

2
v2
+ σ
√
τv=−

1

2

[(
v− σ

√
τ
)2
− σ 2τ

]
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shows that

eσ
√
τvφ(v)= e

1
2σ

2τφ(v− σ
√
τ),

whence

erτF(z,τ )= ze

(
r− 1

2σ
2
)
τ
e+

1
2σ

2τ

∞∫
v0

φ(v− σ
√
τ)dv− a[1−8(v0)]

= zerτ [1−8(v0− σ
√
τ)]− a[1−8(v0)].

Finally, note that

v0− σ
√
τ =

log(a/z)−
(

r+ 1
2σ

2
)
τ

σ
√
τ

and that

1−8(x)=8(−x) and log(a/z)=−log(z/a)

to get, after multiplying by e−rτ , the end result

F(z,τ )= z8

 log(z/a)+
(

r+ 1
2σ

2
)
τ

σ
√
τ


(8.56)

− ae−rτ8

 log(z/a)+
(

r− 1
2σ

2
)
τ

σ
√
τ

.
Equation (8.56) is the Black-Scholes valuation formula. Four of the five factors that

go into it are easily and objectively evaluated: The current market prize z, the striking
price a, the time τ until the option expires, and the rate r of return from secure invest-
ments such as short-term government securities. It is the fifth factor, σ , sometimes
called the volatility, that presents problems. It is, of course, possible to estimate this
parameter based on past records of price movements. However, it should be empha-
sized that it is the volatility in the future that will affect the profitability of the option,
and when economic conditions are changing, past history may not accurately indicate
the future. One way around this difficulty is to work backwards and use the Black-
Scholes formula to impute a volatility from an existing market price of the option. For
example, the Hewlett-Packard call option that expires in August, six months or, τ = 1

2
year, in the future, with a current price of Hewlett-Packard stock of $59, a striking
price of $60, and secure investments returning about r = 0.05, a volatility of σ = 0.35
is consistent with the listed option price of $6. (When σ = 0.35 is used in the Black-
Scholes formula, the resulting valuation is $6.03.) A volatility derived in this manner
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is called an imputed or implied volatility. Someone who believes that the future will
be more variable might regard the option at $6 as a good buy. Someone who believes
the future to be less variable than the imputed volatility of σ = 0.35 might be inclined
to offer a Hewlett-Packard option at $6.

Time to
Striking Expiration Black-Scholes

Price (Years) Offered Valuation
a τ Price F(z,τ)

130 1/12 $17.00 $17.45
130 2/12 19.25 18.87
135 1/12 13.50 13.09
135 2/12 15.13 14.92
140 1/12 8.50 9.26
140 2/12 12.00 11.46
145 1/12 5.50 6.14
145 2/12 9.13 8.52
145 5/12 13.63 13.51
150 1/12 3.13 3.80
150 2/12 6.38 6.14
155 1/12 1.63 2.18
155 2/12 4.00 4.28
155 5/12 9.75 9.05

The above table compares actual offering prices on February 26, 1997, for options
in IBM stock with their Black-Scholes valuation using (8.56). The current market price
of IBM stock is $146.50, and, in all cases, the same volatility σ = 0.30 was used.

The agreement between the actual option prices and their Black-Scholes valuations
seems quite good.

Exercises

8.4.1 A Brownian motion {X(t)} has parameters µ=−0.1 and σ = 2. What is the
probability that the process is above y= 9 at time t = 4, given that it starts at
x= 2.82?

8.4.2 A Brownian motion {X(t)} has parameters µ= 0.1 and σ = 2. Evaluate the
probability of exiting the interval (a,b] at the point b starting from X(0)= 0
for b= 1,10, and 100 and a=−b. Why do the probabilities change when a/b
is the same in all cases?

8.4.3 A Brownian motion {X(t)} has parameters µ= 0.1 and σ = 2. Evaluate the
mean time to exit the interval (a,b] from X(0) = 0 for b= 1,10, and 100 and
a=−b. Can you guess how this mean time varies with b for b large?

8.4.4 A Brownian motion X(t) either (1) has drift µ=+ 1
2δ > 0, or (2) has drift

µ=− 1
2δ < 0, and it is desired to determine which is the case by observ-

ing the process for a fixed duration τ . If X(τ ) > 0, then the decision will be
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that µ=+ 1
2δ; If X(τ )≤ 0, then µ=− 1

2δ will be stated. What should be the
length τ of the observation period if the design error probabilities are set at
α = β = 0.05? Use δ = 1 and σ = 2. Compare this fixed duration with the aver-
age duration of the sequential decision plan in the example of Section 8.4.1.

8.4.5 Suppose that the fluctuations in the price of a share of stock in a certain company
are well described by a geometric Brownian motion with drift α =−0.1 and
variance σ 2

= 4. A speculator buys a share of this stock at a price of $100 and
will sell if ever the price rises to $110 (a profit) or drops to $95 (a loss). What is
the probability that the speculator sells at a profit?

8.4.6 Let ξ be a standard normal random variable.
(a) For an arbitrary constant a, show that

E
[
(ξ − a)+

]
= φ(a)− a[1−8(a)].

(b) Let X be normally distributed with mean µ and variance σ 2. Show that

E
[
(X− b)+

]
= σ

{
φ

(
b−µ

σ

)
−

(
b−µ

σ

)[
1−8

(
b−µ

σ

)]}
.

Problems

8.4.1 What is the probability that a standard Brownian motion {B(t)} ever crosses
the line a+ bt(a> 0,b> 0)?

8.4.2 Show that

Pr

{
max
t≥0

b+B(t)

1+ t
> a

}
= e−2a(a−b), a> 0,b< a.

8.4.3 If B0(s),0< s< 1, is a Brownian bridge process, then

B(t)= (1+ t)B0
(

t

1+ t

)
is a standard Brownian motion. Use this representation and the result of
Problem 8.4.2 to show that for a Brownian bridge B0(t),

Pr

{
max

0≤u≤1
B0(u) > a

}
= e−2a2

.

8.4.4 A Brownian motion X(t) either (1) has drift µ= µ0, or (2) has drift µ= µ1,
where µ0 < µ1 are known constants. It is desired to determine which is the
case by observing the process. Derive a sequential decision procedure that
meets prespecified error probabilities α and β.

Hint: Base your decision on the process X′(t)= X(t)− 1
2 (µ0+µ1).
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8.4.5 Change a Brownian motion with drift X(t) into an absorbed Brownian motion
with drift XA(t) by defining

XA(t)=

{
X(t), for t < τ,
0, for t ≥ τ,

where

τ =min{t ≥ 0;X(t)= 0}.

(We suppose that X(0)= x> 0 and that µ < 0, so that absorption is sure to
occur eventually.) What is the probability that the absorbed Brownian motion
ever reaches the height b> x?

8.4.6 What is the probability that a geometric Brownian motion with drift parameter
α = 0 ever rises to more than twice its initial value? (You buy stock whose
fluctuations are described by a geometric Brownian motion with α = 0. What
are your chances to double your money?)

8.4.7 A call option is said to be “in the money” if the market price of the stock
is higher than the striking price. Suppose that the stock follows a geometric
Brownian motion with drift α, variance σ 2, and has a current market price of z
What is the probability that the option is in the money at the expiration time τ?
The striking price is a.

8.4.8 Verify the Hewlett-Packard option valuation of $6.03 stated in the text when
τ = 1

2 ,z= $59,a= 60,r = 0.05, and σ = 0.35. What is the Black-Scholes
valuation if σ = 0.30?

8.4.9 Let τ be the first time that a standard Brownian motion B(t) starting from
B(0)= x> 0 reaches zero. Let λ be a positive constant. Show that

w(x)= E
[
e−λτ |B(0)= x

]
= e−

√
2λx.

Hint: Develop an appropriate differential equation by instituting an infinites-
imal first step analysis according to

w(x)= E
[
E
{
e−λτ |B(1t)

}
|B(0)= x

]
= E

[
e−λ1tw(x+1B)

]
.

8.4.10 Let t0 = 0< t1 < t2 < · · · be time points, and define Xn = Z(tn)exp(−rtn),
where Z(t) is geometric Brownian motion with drift parameters r and vari-
ance parameter σ 2 (see the geometric Brownian motion in the Black-Scholes
formula (8.53)). Show that {Xn} is a martingale.

8.5 The Ornstein–Uhlenbeck Process∗

The Ornstein–Uhlenbeck process {V(t); t ≥ 0} has two parameters, a drift coefficient
β > 0 and a diffusion parameter σ 2. The process, starting from V(0)= v, is defined in

∗ This section contains material of a more specialized nature.
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terms of a standard Brownian motion {B(t)} by scale changes in both space and time:

V(t)= ve−βt
+
σe−βt

√
2β

B
(

e2βt
− 1

)
, for t ≥ 0. (8.57)

The first term on the right of (8.57) describes an exponentially decreasing trend
towards the origin. The second term represents the fluctuations about this trend in
terms of a rescaled Brownian motion. The Ornstein–Uhlenbeck process is another
example of a continuous-state-space, continuous-time Markov process having contin-
uous paths, inheriting these properties from the Brownian motion in the representation
(8.57). It is a Gaussian process (see the discussion in Section 8.1.4), and (8.57) easily
shows its mean and variance to be

E[V(t)|V(0)= v]= ve−βt, (8.58)

and

Var[V(t)|V(0)= x]= e−2βt σ
2

2β
Var

[
B
(

e2βt
− 1

)]
(8.59)

= σ 2
(

1− e−2βt

2β

)
.

Knowledge of the mean and variance of a normally distributed random variable allows
its cumulative distribution function to be written in terms of the standard normal distri-
bution (8.6), and by this means we can immediately express the transition distribution
for the Ornstein–Uhlenbeck process as

Pr{V(t)≤ y|V(0)= x} =8

(√
2β
(
y− xe−βt

)
σ
√

1− e−2βt

)
. (8.60)

The Covariance Function

Suppose that 0< u< s, and that V(0)= x. Upon subtracting the mean as given by
(8.58), we obtain

Cov[V(u),V(s)]= E
[{

V(u)− xe−βu}{V(s)− xe−βs}]
=
σ 2

2β
e−β(u+s)E

[{
B
(

e2βu
− 1

)}{
B
(

e2βs
− 1

)}]
(8.61)

=
σ 2

2β
e−β(u+s)

(
e2βu
− 1

)
=
σ 2

2β

(
e−β(s−u)

− e−β(s+u)
)
.
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8.5.1 A Second Approach to Physical Brownian Motion

The path that we have taken to introduce the Ornstein–Uhlenbeck process is not faith-
ful to the way in which the process came about. To begin an explanation, let us rec-
ognize that all models of physical phenomena have deficiencies, and the Brownian
motion stochastic process as a model for the Brownian motion of a particle is no
exception. If B(t) is the position of a pollen grain at time t and if this position is chang-
ing over time, then the pollen grain must have a velocity. Velocity is the infinitesimal
change in position over infinitesimal time, and where B(t) is the position of the pollen
grain at time t, the velocity of the grain would be the derivative dB(t)/dt. But while the
paths of the Brownian motion stochastic process are continuous, they are not differen-
tiable. This remarkable statement is difficult to comprehend. Indeed, many elementary
calculus explanations implicitly tend to assume that all continuous functions are differ-
entiable, and if we were to be asked to find an example of one that was not, we might
consider it quite a challenge. Yet each path of a continuous Brownian motion stochas-
tic process is (with probability one) differentiable at no point. We have encountered
yet another intriguing facet of stochastic processes that we cannot treat in full detail
but must leave for future study. We will attempt some motivation, however. Recall
that the variance of the Brownian increment 1B is 1t. But variations in the normal
distribution are not scaled in terms of the variance, but in terms of its square root,
the standard deviation, so that the Brownian increment 1B is roughly on the order of
√
1t, and the approximate derivative

1B

1t
=
1B
√
1t
·

1
√
1t

is roughly on the order of 1/
√
1t. This, of course, becomes infinite as 1t→ 0, which

suggests that a derivative of Brownian motion, were it to exist, could only take the
values±∞. As a consequence, the Brownian path cannot have a derivative. The reader
can see from our attempt at explanation that the topic is well beyond the scope of an
introductory text.

Although its movements may be erratic, a pollen grain, being a physical object
of positive mass, must have a velocity, and the Ornstein–Uhlenbeck process arose as
an attempt to model this velocity directly. Two factors are postulated to affect the
particle’s velocity over a small time interval. First, the frictional resistance or viscos-
ity of the surrounding medium is assumed to reduce the magnitude of the velocity
by a deterministic proportional amount, the constant of proportionality being β > 0.
Second, there are random changes in velocity caused by collisions with neighboring
molecules, the magnitude of these random changes being measured by a variance coef-
ficient σ 2. That is, if V(t) is the velocity at time t, and 1V is the change in velocity
over (t, t+1t], we might express the viscosity factor as

E[1V|V(t)= v]=−βv1t+ o(1t) (8.62)

and the random factor by

Var[1V|V(t)= v]= σ 21t+ o(1t). (8.63)
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The Ornstein–Uhlenbeck process was developed by taking (8.62) and (8.63) together
with the Markov property as the postulates, and from them deriving the transition
probabilities (8.60). While we have chosen not to follow this path, we will verify that
the mean and variance given in (8.58) and (8.59) do satisfy (8.62) and (8.63) over small
time increments. Beginning with (8.58) and the Markov property, the first step is

E[V(t+1t)|V(t)= v]= ve−β1t
= v[1−β1t+ o(1t)],

and then,

E[1V|V(t)= v]= E[V(t+1t)|V(t)= v]− v

=−βv1t+ o(1t),

and over small time intervals the mean change in velocity is the proportional decrease
desired in (8.62). For the variance, we have

Var[1V|V(t)= v]= Var[V(t+1t)|V(t)= v]

= σ 2
(

1− e−2β1t

2β

)
= σ 21t+ o(1t),

and the variance of the velocity increment behaves as desired in (8.63). In fact, (8.62)
and (8.63) together with the Markov property can be taken as the definition of the
Ornstein–Uhlenbeck process in much the same way, but involving far deeper analysis,
that the infinitesimal postulates of Chapter 5, Section 5.2.1, serve to define the Poisson
process.

Example Tracking Error Let V(t) be the measurement error of a radar system that is
attempting to track a randomly moving target. We assume V(t) to be an Ornstein–
Uhlenbeck process. The mean increment E[1V|V(t)= v]=−βv1t+ o(1t) repre-
sents the controller’s effort to reduce the current error, while the variance term reflects
the unpredictable motion of the target. If β = 0.1,σ = 2, and the system starts on tar-
get (v= 0), the probability that the error is less than one at time t = 1 is, using (8.60),

Pr{|V(t)|< 1} =8

( √
2β

σ
√

1− e−2βt

)
−8

( √
−2β

σ
√

1− e−2βt

)

=8

 1√
20
(
1− e−0.2

)
−8

 −1√
20
(
1− e−0.2

)


=8(0.53)−8(−0.53)= 0.4038.

As time passes, this near-target probability drops to 8(1/
√

20)−8(−1/
√

20)=
8(0.22)−8(−0.22)= 0.1742.
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Example Genetic Fluctuations Under Mutation In Chapter 6, Section 6.4, we intro-
duced a model describing fluctuations in gene frequency in a population of N individ-
uals, each either of gene type a or gene type A. With X(t) being the number of type
a individuals at time t, we reasoned that X(t) would be a birth and death process with
parameters

λj = λN

(
1−

j

N

)[
j

N
(1− γ1)+

(
1−

j

N

)
γ2

]
and

µj = λN
j

N

[
j

N
γ1+

(
1−

j

N

)
(1− γ2)

]
.

The parameters γ1 and γ2 measured the rate of mutation from a-type to A-type, and
A-type to a-type, respectively. Here we attempt a simplified description of the model
when the population size N is large. The steady state fluctuations in the relative gene
frequency X(t)/N are centered on the mean

π =
γ2

γ1+ γ2
.

Accordingly, we define the rescaled and centered process

VN(t)=
√

N

(
X(t)

N
−π

)
.

With

1V = VN(t+1t)−VN(t), and 1X = X(t+1t)−X(t),

we have

E [1X|X(t)= j]=
(
λj−µj

)
1t+ o(1t),

which becomes, after substitution and simplification,

E [1X|X(t)= j]= Nλ

[(
1−

j

N

)
γ2−

j

N
γ1

]
1t+ o(1t).

More tedious calculations show that

E
[
1X2
|X(t)= j

]
= Nλ

[
2γ1γ2

(γ1+ γ2)2
+ o

(
1

N

)]
1t.

Our next step is to rescale these in terms of v, using

j

N
= π +

v
√

N
.
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In the rescaled variables,

E[1V|VN(t)= v]=
1
√

N
E

[
1X

∣∣∣∣X(t)N
=

j

N
= π +

v
√

N

]
= λ
√

N

[(
1−π −

v
√

N

)
γ2−

(
π +

v
√

N

)
γ1

]
1t+ o(1t)

=−λ(γ1+ γ2)v1t+ o(1t).

A similar substitution shows that

E
[
1V2
|VN(t)= v

]
=

2λγ1γ2

(γ1+ γ2)2
1t+ o(1t).

Similar computations show that the higher moments of 1V are negligible. Since the
relations (8.62) and (8.63) serve to characterize the Ornstein–Uhlenbeck process, the
evidence is compelling that the rescaled gene processes {VN(t)} will converge in some
appropriate sense to an Ornstein–Uhlenbeck process V(t) with

β = λ(γ1+ γ2) and σ 2
=

2λγ1γ2

(γ1+ γ2)2
,

and

X(t)≈ Nπ +
√

NV(t) for large N.

This is indeed the case, but it represents another topic that we must leave for future
study.

8.5.2 The Position Process

If V(t) is the velocity of the pollen grain, then its position at time t would be

S(t)= S(0)+

t∫
0

V(u)du. (8.64)

Because the Ornstein–Uhlenbeck process is continuous, the integral in (8.64) is well
defined. The Ornstein–Uhlenbeck process is normally distributed, and so is each
approximating sum to the integral in (8.64). It must be, then, that the position pro-
cess S(t) is normally distributed, and, to describe it, we need only evaluate its mean
and covariance functions. To simplify the mathematics without losing any essentials,
let us assume that S(0)= V(0)= 0. Then,

E[S(t)]= E

 t∫
0

V(s)ds

= t∫
0

E[V(s)]ds= 0.
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(The interchange of integral and expectation needs justification. Since the expected
value of a sum is always the sum of the expected values, the interchange of expectation
with Riemann approximating sums is clearly valid. What is needed is justification in
the limit as the approximating sums converge to the integrals.)

Var[S(t)]= E[S(t)2]= E




t∫
0

V(s)ds


2


= E


t∫

0

V(u)du




t∫
0

V(s)ds




=

t∫
0

t∫
0

E[V(s)V(u)]duds

= 2

t∫
0

s∫
0

E[V(s)V(u)]duds (8.65)

=
σ 2

β

t∫
0

s∫
0

(
e−β(s−u)

− e−β(s+u)
)

duds (Using (8.61))

=
σ 2

β2

t∫
0

e−βs (eβs
− 1− 1+ e−βs)ds

=
σ 2

β2

[
t−

2

β

(
1− e−βt)

+
1

2β

(
1− e−2βt

)]
.

This variance behaves like that of a Brownian motion when t is large in the sense that

Var[S(t)]

t
→

σ 2

β2
as t→∞.

That is, observed over a long time span, the particle’s position as modeled by
an Ornstein–Uhlenbeck velocity behaves much like a Brownian motion with vari-
ance parameter σ 2/β2. In this sense, the Ornstein–Uhlenbeck model agrees with the
Brownian motion model over long time spans and improves upon it for short durations.
Section 8.5.4 offers another approach.

Example Stock Prices It is sometimes assumed that the market price of a share of
stock follows the position process under an Ornstein–Uhlenbeck velocity. The model
is consistent with the Brownian motion model over long time spans. In the short term,
the price changes are not independent but have an exponentially decreasing correlation
meant to capture some notion of a market momentum. Suppose a call option is to
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be exercised, if profitable at a striking price of a, at some fixed time t in the future.
If V(0)= 0 and S(0)= z is the current stock price, then the expected value of the
option is

E
[
(S(t)− a)+

]
= τ

{
φ

(
a−µ

τ

)
−

(
a−µ

τ

)[
1−8

(
a−µ

τ

)]}
, (8.66)

where

µ= z,

and

τ 2
=
σ 2

β2

[
t−

2

β

(
1− e−βt)

+
1

2β

(
1− e−2βt

)]
.

Note that µ and τ 2 are the mean and variance of S(t). The derivation is left for
Problem 8.5.4.

8.5.3 The Long Run Behavior

It is easily seen from (8.58) and (8.59) that for large values of t, the mean of the
Ornstein–Uhlenbeck process converges to zero and the variance to σ 2/2β. This leads
to a limiting distribution for the process in which

lim
t→∞

Pr{V(t) < y|V(0)= x} =8

(√
2βy

σ

)
. (8.67)

That is, the limiting distribution of the process is normal with mean zero and variance
σ 2/(2β). We now set forth a representation of a stationary Ornstein–Uhlenbeck pro-
cess, a process for which the limiting distribution in (8.67) holds for all finite times as
well as in the limit. The stationary Ornstein–Uhlenbeck process {Vs(t);−∞< t <∞}
is represented in terms of a Brownian motion by

Vs(t)=
σ
√

2β
e−βtB

(
e2βt

)
, −∞< t <∞. (8.68)

The stationary Ornstein–Uhlenbeck process is Gaussian (see Section 8.1.4) and has
mean zero. The covariance calculation is

0(s, t)= Cov
[
Vs(s),Vs(t)

]
=
σ 2

2β
e−β(s+t)Cov

[
B
(

e2βs
)
,B
(

e2βt
)]

(8.69)

=
σ 2

2β
e−β(s+t)min

{
e2βs,e2βt

}
=
σ 2

2β
e−β|t−s|.
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The stationary Ornstein–Uhlenbeck process is the unique Gaussian process with mean
zero and covariance (8.69).

The independence of the Brownian increments implies that the stationary Ornstein–
Uhlenbeck process is a Markov process, and it is straightforward to verify that the
transition probabilities are given by (8.60).

Example An Ehrenfest Urn Model in Continuous Time A single particle switches
repeatedly between urn A and urn B. Suppose that the duration it spends in an urn
before moving is an exponentially distributed random variable with parameter β, and
that all durations are independent. Let ξ(t)= 1 if the particle is in urn A at time t, and
ξ(t)=−1 if in urn B. Then, {ξ(t); t ≥ 0} is a two-state Markov process in continuous
time for which (see Chapter 6, (6.30))

Pr{ξ(t+ s)= 1|ξ(t)= 1} =
1

2
+

1

2
e−2βs. (8.70)

Let us further stipulate that the particle is equally likely to be in either urn at time
zero. It follows, then, that it is equally likely to be in either urn at all times, and that
therefore, E[ξ(t)]= 0 for all t. Using (8.70) and the symmetry of the process, we may
derive the covariance. We have

E[ξ(t)ξ(t+ s)]=
1

2
Pr{ξ(t+ s)= 1|ξ(t)= 1}

+
1

2
Pr{ξ(t+ s)=−1|ξ(t)=−1}

−
1

2
Pr{ξ(t+ s)=−1|ξ(t)= 1} (8.71)

−
1

2
Pr{ξ(t+ s)= 1|ξ(t)=−1}

= e−2βs.

Now consider N of these particles, each alternating between the urns independently
of the others, and let ξi(t) track the position of the ith particle at time t. The disparity
between the numbers of particles in the two urns is measured by

SN(t)=
N∑

i=1

ξi(t).

If SN(t)= 0, then the urns contain equal numbers of particles. If SN(t)= k, then there
are (N+ k)/2 particles in urn A. The central limit principle for random functions sug-
gests that

VN(t)=
1
√

N
SN(t)
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should, for large N, behave similarly to a Gaussian process with mean zero and
covariance 0(s, t)= exp{−2β|t− s|}. This limiting process is a stationary Ornstein–
Uhlenbeck process with σ 2

= 2β. Thus, we have derived the approximation

SN(t)≈
√

NVs(t), t > 0,

for the behavior of this continuous-time urn model when the number of particles is
large.

8.5.4 Brownian Measure and Integration∗

We state, in the form of a theorem without proof, an exceedingly useful formula for
computing certain functionals of Gaussian processes. This theorem provides a tiny
glimpse into a vast and rich area of stochastic process theory, and we included it in
this elementary text in a blatant attempt to entice the student towards further study.

Theorem 8.4. Let g(x) be a continuous function and let {B(t); t ≥ 0} be a standard
Brownian motion. For each fixed value of t > 0, there exists a random variable

((g)=

t∫
0

g(x)dB(x) (8.72)

that is the limit of the approximating sums

(n(g)=
2n∑

k=1

g

(
k

2n
t

)[
B

(
k

2n
t

)
−B

(
k− 1

2n
t

)]
(8.73)

as n→∞. The random variable ((g) is normally distributed with mean zero and
variance

Var[((g)]=

t∫
0

g2(u)du. (8.74)

If f(x) is another continuous function of x, then ((f) and ((g) have a joint normal
distribution with covariance

E[(( f )((g)]=

t∫
0

f (x)g(x)dx. (8.75)

The proof of the theorem is more tedious than difficult, but it does require knowl-
edge of facts that are not included among our prerequisites. The theorem asserts that a

∗ This subsection is both more advanced and more abstract than those that have preceded it.
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sequence of random variables, the Riemann approximations, converge to another ran-
dom variable. The usual proof begins with showing that the expected mean square of
the difference between distinct Riemann approximations satisfies the Cauchy criterion
for convergence, and then goes on from there.

When g(x) is differentiable, then an integration by parts may be validated, which
shows that

t∫
0

g(x)dB(x)= g(t)B(t)−

t∫
0

B(x)g′(x)dx, (8.76)

and this approach may yield a concrete representation of the integral in certain circum-
stances. For example, if g(x)= 1, then g′(x)= 0, and

t∫
0

1dB(x)= g(t)B(t)− 0= B(t),

as one would hope. When g(x)= t− x, then g′(x)=−1, and

t∫
0

(t− x)dB(x)=

t∫
0

B(x)dx. (8.77)

The process on the right side of (8.77) is called integrated Brownian motion. Theo-
rem 8.4, then, asserts that integrated Brownian motion is normally distributed with
mean zero and variance

Var

 t∫
0

B(x)dx

= t∫
0

(t− x)2dx=
t3

3
.

The calculus of the Brownian integral of Theorem 8.4 offers a fresh and convenient
way to determine functionals of some Gaussian processes. For example, in the case of
the Ornstein–Uhlenbeck process, we have the integral representation

V(t)= ve−βt
+ σ

t∫
0

e−β(t−u)dB(u). (8.78)

The second term on the right of (8.78) expresses the random component of
the Ornstein–Uhlenbeck process as an exponentially weighted moving average of
infinitesimal Brownian increments. According to Theorem 8.4, this random compo-
nent has mean zero and is normally distributed. We use Theorem 8.4 to determine the
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covariance. For 0< s< t,

Cov[V(s),V(t)]= E
[{

V(s)− ve−βs}{V(t)− ve−βt}]
= σ 2E

 s∫
0

e−β(s−u)dB(u)

t∫
0

e−β(t−w)dB(w)


= σ 2

t∫
0

1(u< s)e−β(s−u)e−β(t−u)du

= σ 2e−β(s+t)

s∫
0

e2βudu

=
σ 2

2β
e−β(s+t)

(
e2βs
− 1

)
=
σ 2

2β

(
e−β(t−s)

− e−β(t+s)
)
,

in agreement with (8.61).

Example The Position Process Revisited Let us assume that V(0)= v= 0. The inte-
gral of the Ornstein–Uhlenbeck velocity process gives the particle’s position S(t) at
time t. If we replace the integrand by its representation (8.78) (v= 0), we obtain

S(t)=

t∫
0

V(s)ds= σ

t∫
0

s∫
0

e−β(s−u)dB(u)ds

= σ

t∫
0

t∫
u

e−β(s−u)dsdB(u)

= σ

t∫
0

eβu

t∫
u

e−βsdsdB(u) (8.79)

=
σ

β

t∫
0

eβu (e−βu
− e−βt)dB(u)

=
σ

β

t∫
0

(
1− e−β(t−u)

)
dB(u).
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Theorem 8.4 applied to (8.79) tells us that the position S(t) at time t is normally
distributed with mean zero and variance

Var[S(t)]=
σ 2

β2

t∫
0

[
1− e−β(t−u)

]2
du

=
σ 2

β2

t∫
0

(
1− e−βw)2 dw

=
σ 2

β2

[
t−

2

β

(
1− e−βt)

+
1

2β

(
1− e−2βt

)]
,

in agreement with (8.65). Problem 8.5.4 calls for using Theorem 8.4 to determine the
covariance between the velocity V(t) and position S(t).

The position process under an Ornstein–Uhlenbeck velocity behaves like a Brown-
ian motion over large time spans, and we can see this more clearly from the Brownian
integral representation in (8.79). If we carry out the first term in the integral (8.79) and
recognize that the second part is V(t) itself, we see that

S(t)=
σ

β

t∫
0

(
1− e−β(t−u)

)
dB(u)

=
σ

β

B(t)−

t∫
0

e−β(t−u)dB(u)

 (8.80)

=
1

β
[σB(t)−V(t)].

Let us introduce a rescaled position process that will allow us to better see changes in
position over large time spans. Accordingly, for N > 0, let

SN(t)=
1
√

N
S(Nt)

=
1

β

[
σ
√

N
B(Nt)+

1
√

N
V(t)

]
(8.81)

=
1

β

[
σ B̃(t)+

1
√

N
V(t)

]
,

where B̃(t)= B(Nt)/
√

N remains a standard Brownian motion. (See Exercise 8.1.2.)
Because the variance of V(t) is always less than or equal to σ 2/(2β), the variance of
V(t)/

√
N becomes negligible for large N. Equation (8.81), then, shows more clearly
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in what manner the position process becomes like a Brownian motion: For large N,

SN(t)≈
σ

β
B̃(t).

Exercises

8.5.1 An Ornstein–Uhlenbeck process V(t) has σ 2
= 1 and β = 0.2. What is the prob-

ability that V(t)≤ 1 for t = 1,10, and 100? Assume that V(0)= 0.
8.5.2 The velocity of a certain particle follows an Ornstein–Uhlenbeck process with

σ 2
= 1 and β = 0.2. The particle starts at rest (v= 0) from position S(0)= 0.

What is the probability that it is more than one unit away from its origin at time
t = 1. What is the probability at times t = 10 and t = 100?

8.5.3 Let ξ1,ξ2, . . . be independent standard normal random variables and β a con-
stant, 0< β < 1. A discrete analog to the Ornstein–Uhlenbeck process may be
constructed by setting

V0 = v and Vn = (1−β)Vn−1+ ξn for n≥ 1.

(a) Determine the mean value function and covariance function for {Vn}.
(b) Let1V = Vn+1−Vn. Determine the conditional mean and variance of1V ,

given that Vn = v.

Problems

8.5.1 Let ξ1,ξ2, . . . be independent standard normal random variables and β a con-
stant, 0< β < 1. A discrete analog to the Ornstein–Uhlenbeck process may be
constructed by setting

V0 = v and Vn = (1−β)Vn−1+ ξn for n≥ 1.

(a) Show that

Vn = (1−β)
nv+

n∑
k=1

(1−β)n−kξk.

Comment on the comparison with (8.78).
(b) Let 1Vn = Vn−Vn−1,S1 = v+V1+ ·· ·+Vn, and Bn = ξ1+ ·· ·+ ξn.

Show that

Vn = v−βSn−1+Bn.

Compare and contrast with (8.80).
8.5.2 Let S(t) be the position process corresponding to an Ornstein–Uhlenbeck veloc-

ity V(t). Assume that S(0)= V(0)= 0. Obtain the covariance between S(t) and
V(t).
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8.5.3 Verify the option valuation formulation (8.66).

Hint: Use the result of Exercise 8.4.6.
8.5.4 In the Ehrenfest urn model (see Chapter 3, Section 3.3.2) for molecular diffusion

through a membrane, if there are i particles in urn A, the probability that there
will be i+ 1 after one time unit is 1− i/(2N), and the probability of i− 1 is
i/(2N), where 2N is the aggregate number of particles in both urns. Following
Chapter 3, Section 3.3.2, let Yn be the number of particles in urn A after the
nth transition, and let Xn = Yn−N. Let 1X = Xn+1−Xn be the change in urn
composition. The probability law is

Pr{1X =±1|Xn = x} =
1

2
∓

x

2N
.

We anticipate a limiting process in which the time between transitions becomes
small and the number of particles becomes large. Accordingly, let1t = 1/N and
measure fluctuations of a rescaled process in units of order 1/

√
N. The definition

of the rescaled process is

VN(t)=
X[Nt]
√

N
.

Note that in the duration t = 0 to t = 1 in the rescaled process, there are N tran-
sitions in the urns, and a unit change in the rescaled process corresponds to a
fluctuation of order

√
N in the urn composition. Let1V = VN(t+ 1/N)−VN(t)

be the displacement in the rescaled process over the time interval 1t = 1/N.
Show that

E[1V|VN(t)= v]=
1
√

N

(
1

2
−

v

2
√

N

)
−

1
√

N

(
1

2
+

v

2
√

N

)
=−v

(
1

N

)
=−v1t,

and that (1V)2 = 1/N, whence

Var[1V|VN(t)= v]= E
[
(1V)2

]
−{E[1V]}2

=
1

N
+ o

(
1

N

)
=1t+ o(1t).



9 Queueing Systems

9.1 Queueing Processes

A queueing system consists of “customers” arriving at random times to some facility
where they receive service of some kind and then depart. We use “customer” as
a generic term. It may refer, e.g., to bona fide customers demanding service at a
counter, to ships entering a port, to batches of data flowing into a computer subsys-
tem, to broken machines awaiting repair, and so on. Queueing systems are classified
according to

1. The input process, the probability distribution of the pattern of arrivals of customers in time;
2. The service distribution, the probability distribution of the random time to serve a customer

(or group of customers in the case of batch service); and
3. The queue discipline, the number of servers and the order of customer service.

While a variety of input processes may arise in practice, two simple and frequently
occurring types are mathematically tractable and give insights into more complex
cases. First is the scheduled input, where customers arrive at fixed times T,2T,3T, . . . .
The second most common model is the “completely random” arrival process, where
the times of customer arrivals form a Poisson process. Understanding the axiomatic
development of the Poisson process in V may help one to evaluate the validity of
the Poisson assumption in any given application. Many theoretical results are avail-
able when the times of customer arrivals form a renewal process. Exponentially dis-
tributed interarrival times, then, correspond to a Poisson process of arrivals as a
special case.

We will always assume that the durations of service for individual customers are
independent and identically distributed nonnegative random variables and are inde-
pendent of the arrival process. The situation in which all service times are the same
fixed duration D, is, then, a special case.

The most common queue discipline is first come, first served, where customers are
served in the same order in which they arrive. All of the models that we consider in
this chapter are of this type.

Queueing models aid the design process by predicting system performance. For
example, a queueing model might be used to evaluate the costs and benefits of adding
a server to an existing system. The models enable us to calculate system perfor-
mance measures in terms of more basic quantities. Some important measures of system
behavior are

1. The probability distribution of the number of customers in the system. Not only do customers
in the system often incur costs, but in many systems, physical space for waiting customers

An Introduction to Stochastic Modeling. DOI: 10.1016/B978-0-12-381416-6.00009-5
c© 2011 Elsevier Inc. All rights reserved.
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must be planned for and provided. Large numbers of waiting customers can also adversely
affect the input process by turning potential new customers away. (See Section 9.4.1 on
queueing with balking.)

2. The utilization of the server(s). Idle servers may incur costs without contributing to system
performance.

3. System throughput. The long run number of customers passing through the system is a direct
measure of system performance.

4. Customer waiting time. Long waits for service are annoying in the simplest queueing situa-
tions and directly associated with major costs in many large systems such as those describ-
ing ships waiting to unload at a port facility or patients awaiting emergency care at a
hospital.

9.1.1 The Queueing Formula L = λW

Consider a queueing system that has been operating sufficiently long to have reached
an appropriate steady state, or a position of statistical equilibrium. Let

L= the average number of customers in the system;

λ= the rate of arrival of customers to the system; and

W = the average time spent by a customer in the system.

The equation L= λW is valid under great generality for such systems and is of basic
importance in the theory of queues, since it directly relates two of our most important
measures of system performance, the mean queue size and the mean customer wait-
ing time in the steady state, i.e., mean queue size and mean customer waiting time
evaluated with respect to a limiting or stationary distribution for the process.

The validity of L= λW does not rest on the details of any particular model, but
depends only upon long run mass flow balance relations. To sketch this reasoning,
consider a time T sufficiently long so that statistical fluctuations have averaged out.
Then, the total number of customers to have entered the system is λT , the total number
to have departed is λ(T −W), and the net number remaining in the system L must be
the difference

L= λT − [λ(T −W)]= λW.

Figure 9.1 depicts the relation L= λW.
Of course, what we have done is by no means a proof, and indeed, we shall give

no proof. We shall, however, provide several sample verifications of L= λW where L
is the mean of the stationary distribution of customers in the system, W is the mean
customer time in the system determined from the stationary distribution, and λ is the
arrival rate in a Poisson arrival process.

Let L0 be the average number of customers waiting in the system who are not yet
being served, and let W0 be the average waiting time in the system excluding service
time. In parallel to L= λW, we have the formula

L0 = λW0 (9.1)
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Figure 9.1 The cumulative number of arrivals and departures in a queueing system. The
smoothed values in (b) are meant to symbolize long run averages. The rate of arrivals per unit
time is λ, the mean number in the system is L, and the mean time a customer spends in the
system is W.

The total waiting time in the system is the sum of the waiting time before service and
the service time. In terms of means, we have

W =W0+mean service time. (9.2)

9.1.2 A Sampling of Queueing Models

In the remainder of this chapter, we will study a variety of queueing systems. A stan-
dard shorthand is used in much of the queueing literature for identifying simple queue-
ing models. The shorthand assumes that the arrival times form a renewal process, and
the format A/B/c uses A to describe the interarrival distribution, B to specify the indi-
vidual customer service time distribution, and c to indicate the number of servers. The
common cases for the first two positions are G= GI for a general or arbitrary distri-
bution, M (memoryless) for the exponential distribution, Ek (Erlang) for the gamma
distribution of order k, and D for a deterministic distribution, a schedule of arrivals or
fixed service times.

Some examples discussed in the sequel are the following:

The M/M/1 queue Arrivals follow a Poisson process; service times are exponentially dis-
tributed; and there is a single server. The number X(t) of customers in the system at time t
forms a birth and death process. (See Section 9.2.)
The M/M/∞ queue There are Poisson arrivals and exponentially distributed service times. Any
number of customers are processed simultaneously and independently. Often self-service situ-
ations may be described by this model. In the older literature, this was called the “telephone
trunking problem.”
The M/G/1 queue In this model, there are Poisson arrivals but arbitrarily distributed service
times. The analysis proceeds with the help of an embedded Markov chain.

More elaborate variations will also be set forth. Balking is the refusal of new
customers to enter the system if the waiting line is too long. More generally, in a
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Figure 9.2 If n customers are waiting in a queueing system with balking, an arriving customer
enters the system with probability pn and does not enter with probability 1− pn.

queueing system with balking, an arriving customer enters the system with a probabil-
ity that depends on the size of the queue. Here it is important to distinguish between
the arrival process and the input process, as shown in Figure 9.2. A special case is
a queue with overflow, in which an arriving customer enters the queue if and only if
there is at least one server free to begin service immediately.

In a priority queue, customers are allowed to be of different types. Both the service
discipline and the service time distribution may vary with the customer type.

A queueing network is a collection of service facilities where the departures from
some stations form the arrivals of others. The network is closed if the total number of
customers is fixed, with these customers continuously circulating through the system.
The machine repair model (see the example entitled “Repairman Models” in Chapter 6,
Section 6.4) is an example of a closed queueing network. In an open queueing network,
customers may arrive from, and depart to, places outside the network, as well as move
from station to station. Queueing network models have found much recent application
in the design of complex information processing systems.

Exercises

9.1.1 What design questions might be answered by modeling the following queueing
systems?

The Customer The Server

(a) Arriving airplanes The runway
(b) Cars A parking lot
(c) Broken TVs Repairman
(d) Patients Doctor
(e) Fires Fire engine company

What might be reasonable assumptions concerning the arrival process, service
distribution, and priority in these instances?
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9.1.2 Consider a system, such as a barber shop, where the service required is essen-
tially identical for each customer. Then, actual service times would tend to clus-
ter near the mean service time. Argue that the exponential distribution would
not be appropriate in this case. For what types of service situations might the
exponential distribution be quite plausible?

9.1.3 Oil tankers arrive at an offloading facility according to a Poisson process whose
rate is λ= 2 ships per day. Daily records show that there is an average of 3 ships
unloading or waiting to unload at any instant in time. On average, what is the
duration of time that a ship spends in port? Assume that a ship departs immedi-
ately after unloading.

Problem

9.1.1 Two dump trucks cycle between a gravel loader and a gravel unloader. Suppose
that the travel times are insignificant relative to the load and unload times, which
are exponentially distributed with parameters µ and λ, respectively. Model the
system as a closed queueing network. Determine the long run gravel loads
moved per unit time.

Hint: Refer to the example entitled “Repairman Models” in Section 6.4.

9.2 Poisson Arrivals, Exponential Service Times

The simplest and most extensively studied queueing models are those having a Poisson
arrival process and exponentially distributed service times. In this case, the queue size
forms a birth and death process (see Sections 6.3 and Sections 6.4 of Chapter 6), and
the corresponding stationary distribution is readily found.

We let λ denote the intensity, or rate, of the Poisson arrival process and assume
that the service time distribution is exponential with parameter µ. The corresponding
density function is

g(x)= µe−µx for x> 0. (9.3)

For the Poisson arrival process we have

Pr{An arrival in [t, t+ h)} = λh+ o(h) (9.4)

and

Pr{No arrivals in [t, t+ h)} = 1− λh+ o(h). (9.5)
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Similarly, the memoryless property of the exponential distribution as expressed by its
constant hazard rate (see Chapter 1, Section 1.4.2) implies that

Pr{A service is completed in [t, t+ h)|Service in progress at time t}

= µh+ o(h), (9.6)

and

Pr{Service not completed in [t, t+ h)|Service in progress at time t}

= 1−µh+ o(h), (9.7)

The service rate µ applies to a particular server. If k servers are simultaneously
operating, the probability that one of them completes service in a time interval of
duration h is (kµ)h+ o(h), so that the system service rate is kµ. The principle used
here is the same as that used in deriving the infinitesimal parameters of the Yule pro-
cess (Chapter 6, Section 6.1).

We let X(t) denote the number of customers in the system at time t, counting the
customers undergoing service as well as those awaiting service. The independence of
arrivals in disjoint time intervals together with the memoryless property of the expo-
nential service time distribution implies that X(t) is a time homogeneous Markov
chain, in particular, a birth and death process. (See Sections 6.3 and 6.4 of Chapter 6.)

9.2.1 The M/M/1 System

We consider first the case of a single server and let X(t) denote the number of
customers in the system at time t. An increase in X(t) by one unit corresponds to a
customer arrival, and in view of (9.4) and (9.7) and the postulated independence of
service times and the arrival process, we have

Pr{X(t+ h)= k+ 1|X(t)= k} = [λh+ o(h)]× [1−µh+ o(h)]

= λh+ o(h) for k = 0,1, . . . .

Similarly, a decrease in X(t) by one unit corresponds to a completion of service,
whence

Pr{X(t+ h)= k− 1|X(t)= k} = µh+ o(h) for k = 1,2, . . . .

Then, X(t) is a birth and death process with birth parameters

λk = λ for k = 0,1,2, . . .

and death parameters

µk = µ for k = 1,2, . . . .
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Of course, no completion of service is possible when the queue is empty. We, thus,
specify µ0 = 0.

Let

πk = lim
t→∞

Pr{X(t)= k} for k = 0,1, . . .

be the limiting, or equilibrium, distribution of queue length. Section 6.4 of Chapter 6
describes a straightforward procedure for determining the limiting distribution πk from
the birth and death parameters λk and µk. The technique is to first obtain intermediate
quantities θj defined by

θ0 = 1 and θj =
λ0λ1 · · ·λj−1

µ1µ2 · · ·µj
for j≥ 1, (9.8)

and then

π0 =
1

6∞J=0θj
and πk = θkπ0 =

θk

6∞j=0θj
for k ≥ 1. (9.9)

When 6∞j=0 θj =∞, then limt→∞Pr{X(t)= k} = 0 for all k, and the queue length
grows unboundedly in time.

For the M/M/1 queue at hand we readily compute θ0 = 1 and θj = (λ/µ)
j for

j= 1,2, . . . . Then,

∞∑
j=0

πj =

∞∑
j=0

(
λ

µ

)j

=
1

(1− λ/µ)
if λ < µ,

=∞ if λ≥ µ.

Thus, no equilibrium distribution exists when the arrival rate λ is equal to or greater
than the service rate µ. In this case, the queue length grows without bound.

When λ < µ, a bona fide limiting distribution exists, given by

π0 =
1

6θj
= 1−

λ

µ
(9.10)

and

πk = π0θk =

(
1−

λ

µ

)(
λ

µ

)k

for k = 0,1, . . . . (9.11)

The equilibrium distribution (9.11) gives us the answer to many questions involving
the limiting behavior of the system. We recognize the form of (9.11) as that of a geo-
metric distribution, and then reference to Chapter 1, Section 1.3.3 gives us the mean
queue length in equilibrium to be

L=
λ

µ− λ
. (9.12)
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The ratio ρ = λ/µ is called the traffic intensity,

ρ =
arrival rate

system service rate
=
λ

µ
. (9.13)

As the traffic intensity approaches one, the mean queue length L= ρ/(1− ρ) becomes
infinite. Again using (9.10), the probability of being served immediately upon
arrival is

π0 = 1−
λ

µ
,

the probability, in the long run, of finding the server idle. The server utilization, or
long run fraction of time that the server is busy, is 1 −π0 = λ/µ.

We can also calculate the distribution of waiting time in the stationary case when
λ < µ. If an arriving customer finds n people in front of him, his total waiting time T ,
including his own service time, is the sum of the service times of himself and those
ahead, all distributed exponentially with parameter µ, and since the service times are
independent of the queue size, T has a gamma distribution of order n+ 1 with scale
parameter µ,

Pr{T ≤ t|n ahead} =

t∫
0

µn+1τ ne−µτ

0(n+ 1)
dτ. (9.14)

By the law of total probability, we have

Pr{T ≤ t} =
∞∑

n=0

Pr{T ≤ t|n ahead}×

(
λ

µ

)n(
1−

λ

µ

)
,

since (λ/µ)n(1− λ/µ) is the probability that in the stationary case a customer on
arrival will find n ahead in line. Now, substituting from (9.14), we obtain

Pr{T ≤ t} =
∞∑

n=0

t∫
0

µn+1τ ne−µτ

0(n+ 1)

(
λ

µ

)n(
1−

λ

µ

)
dτ

=

t∫
0

µe−µτ
(

1−
λ

µ

) ∞∑
n=0

τ nλn

0(n+ 1)
dτ

=

t∫
0

(
1−

λ

µ

)
µexp

{
−τµ

(
1−

λ

µ

)}
dτ = 1− exp[−t(µ− λ)],

which is also an exponential distribution.
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The mean of this exponential waiting time distribution is the reciprocal of the
exponential parameter, or

W =
1

µ− λ
. (9.15)

Reference to (9.12) and (9.15) verifies the fundamental queueing formula L= λW.
A queueing system alternates between durations when the servers are busy and

durations when the system is empty and the servers are idle. An idle period begins
the instant the last customer leaves, and endures until the arrival of the next customer.
When the arrival process is Poisson of rate λ, then an idle period is exponentially
distributed with mean

E[I1]=
1

λ
.

A busy period is an uninterrupted duration in which the system is not empty. When
arrivals to a queue follow a Poisson process, then the successive durations Xk from
the commencement of the kth busy period to the start of the next busy period form a
renewal process (see Figure 9.3). Each Xk is composed of a busy portion Bk and an
idle portion Ik. Then, the renewal theorem (see “A Queueing Model” in Chapter 7,
Section 7.5.3) applies to tell us that p0(t), the probability that the system is empty at
time t, converges to

lim
t→∞

p0(t)= π0 =
E[I1]

E[I1]+E[B1]
.

We substitute the known quantities π0 = 1− λ/µ and E[I1]= 1/λ to obtain

1−
λ

µ
=

1/λ

1/λ+E[B1]
,

X(t)

B1

X1 X2

I1 B2 I2
t

Figure 9.3 The busy periods Bk and idle periods Ik of a queueing system. When arrivals form
a Poisson process, then Xk = Bk + Ik, k = 1,2, . . . , are independent, identically distributed non-
negative random variables, and thus form a renewal process.
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which gives

E[B1]=
1

µ− λ

for the mean length of a busy period.
In Section 9.3, in studying the M/G/1 system, we will reverse this reasoning, cal-

culate the mean busy period directly, and then use renewal theory to determine the
server idle fraction π0.

9.2.2 The M/M/∞ System

When an unlimited number of servers are always available, then all customers in the
system at any instant are simultaneously being served. With the departure rate of a
single customer being µ, the departure rate of k customers is kµ, and we obtain the
birth and death parameters

λk = λ and µk = kµ for k = 0,1, . . . .

The auxiliary quantities of (9.8) are

θk =
λ0λ1 · · ·λk−1

µ1µ2 · · ·µk
=

1

k!

(
λ

µ

)k

for k = 0,1, . . . ,

which sum to

∞∑
k=0

θk =

∞∑
k=0

1

k!

(
λ

µ

)k

= eλ/µ,

whence

π0 =
1

6∞k=0θk
= e−λ/µ

and

πk = θkπ0 =
(λ/µ)ke−λ/µ

k!
for k = 0,1, . . . , (9.16)

a Poisson distribution with mean queue length

L=
λ

µ
.

Since a customer in this system begins service immediately upon arrival, cus-
tomer waiting time consists only of the exponentially distributed service time, and
the mean waiting time is W = 1/µ. Again, the basic queueing formula L= λW is
verified.

The M/G/∞ queue will be developed extensively in the next section.
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9.2.3 The M/M/s System

When a fixed number s of servers are available and the assumption is made that a
server is never idle if customers are waiting, then the appropriate birth and death
parameters are

λk = λ for k = 1,2, . . . ,

µk =

{
kµ for k = 0,1, . . . ,s,
sµ for k > s.

If X(t) is the number of customers in the system at time t, then the number undergoing
service is min{X(t),s}, and the number waiting for service is max{X(t)− s,0}. The
system is depicted in Figure 9.4.

The auxiliary quantities are given by

θk =
λ0λ1 · · ·λk−1

µ1µ2 · · ·µk
=


1

k!

(
λ

µ

)k

for k = 0,1, . . . ,s,

1

s!

(
λ

µ

)s(
λ

sµ

)k−s

for k ≥ s,

and when λ < sµ, then

∞∑
j=0

θj =

s−1∑
j=0

1

j!

(
λ

µ

)j

+

∞∑
j=s

1

s!

(
λ

µ

)s(
λ

sµ

)j−s

=

s−1∑
j=0

1

j!

(
λ

µ

)j

+
(λ/µ)s

s!(1− λ/sµ)
for λ < sµ.

(9.17)

The traffic intensity in an M/M/s system is ρ = λ/(sµ). Again, as the traffic inten-
sity approaches one, the mean queue length becomes unbounded. When λ < sµ, then

A common
waiting line

Arrivals

s= 5 Parallel servers

Departures

Figure 9.4 A queueing system with s servers.
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from (9.10) and (9.17),

π0 =


s−1∑
j=0

1

j!

(
λ

µ

)j

+
(λ/µ)s

s!(1− λ/sµ)


−1

,

and

πk =


1

k!

(
λ

µ

)k

π0 for k = 0,1, . . . ,s,

1

s!

(
λ

µ

)s(
λ

sµ

)k−s

π0 for k ≥ s.

(9.18)

We evaluate L0, the mean number of customers in the system waiting for, and not
undergoing, service. Then,

L0 =

∞∑
j=s

( j− s)πj =

∞∑
k=0

kπs+k

= π0

∞∑
k=0

k
1

s!

(
λ

µ

)s(
λ

sµ

)k

=
π0

s!

(
λ

µ

)s ∞∑
k=0

k

(
λ

sµ

)k

=
π0

s!

(
λ

µ

)s
(λ/sµ)

(1− λ/sµ)2
.

(9.19)

Then,

W0 =
L0

λ
,

W =W0+
1

µ
,

and

L= λW = λ

(
W0+

1

µ

)
= L0+

λ

µ
.

Exercises

9.2.1 Customers arrive at a tool crib according to a Poisson process of rate λ= 5 per
hour. There is a single tool crib employee, and the individual service times are



Queueing Systems 459

exponentially distributed with a mean service time of 10 min. In the long run,
what is the probability that two or more workers are at the tool crib being served
or waiting to be served?

9.2.2 On a single graph, plot the server utilization 1−π0 = ρ and the mean queue
length L= ρ/(1− ρ) for the M/M/1 queue as a function of the traffic intensity
ρ = λ/µ for 0< ρ < 1.

9.2.3 Customers arrive at a checkout station in a market according to a Poisson pro-
cess of rate λ= 1 customer per minute. The checkout station can be operated
with or without a bagger. The checkout times for customers are exponentially
distributed, and with a bagger the mean checkout time is 30 s, while without a
bagger this mean time increases to 50 s. Compare the mean queue lengths with
and without a bagger.

Problems

9.2.1 Determine explicit expressions for π0 and L for the M/M/s queue when s= 2.
Plot 1− π0 and L as a function of the traffic intensity ρ = λ/2µ.

9.2.2 Determine the mean waiting time W for an M/M/2 system when λ= 2 and
µ= 1.2. Compare this with the mean waiting time in an M/M/1 system whose
arrival rate is λ= 1 and service rate is µ= 1.2. Why is there a difference when
the arrival rate per server is the same in both cases?

9.2.3 Determine the stationary distribution for an M/M/2 system as a function of the
traffic intensity ρ = λ/2µ, and verify that L= λW.

9.2.4 The problem is to model a queueing system having finite capacity. We assume
arrivals according to a Poisson process of rate λ, with independent exponentially
distributed service times having mean 1/µ, a single server, and a finite system
capacity N. By this we mean that if an arriving customer finds that there are
already N customers in the system, then that customer does not enter the system
and is lost.

Let X(t) be the number of customers in the system at time t. Suppose that
N = 3 (2 waiting, 1 being served).
(a) Specify the birth and death parameters for X(t).
(b) In the long run, what fraction of time is the system idle?
(c) In the long run, what fraction of customers are lost?

9.2.5 Customers arrive at a service facility according to a Poisson process having
rate λ. There is a single server, whose service times are exponentially distributed
with parameterµ. Let N(t) be the number of people in the system at time t. Then,
N(t) is a birth and death process with parameters λn = λ for n≥ 0 and µn = µ

for n≥ 1. Assume λ < µ. Then, πk = (1− λ/µ)(λ/µ)k,k ≥ 0, is a stationary
distribution for N(t); cf. equation (9.11).

Suppose the process begins according to the stationary distribution. That is,
suppose Pr{N(0)= k} = πk for k = 0,1, . . . . Let D(t) be the number of people
completing service up to time t. Show that D(t) has a Poisson distribution with
mean λt.
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Hint: Let Pkj(t)= Pr{D(t)= j|N(0)=k} and Pj(t)=6πkPkj(t)=Pr{D(t)= j}.
Use a first step analysis to show that P0j(t+1t)= λ(1t)P1j(t)+ [1− λ(1t)]
P0j(t)+ o(1t), and for k = 1,2, . . . ,

Pkj(t+1t)= µ(1t)Pk−1,j−1(t)+ λ(1t)Pk+1,j(t)

+ [1− (λ+µ)(1t)]Pkj(t)+ o(t).

Then, use Pj(t)=
∑

kπkPkj(t) to establish a differential equation. Use the
explicit form of πk given in the problem.

9.2.6 Customers arrive at a service facility according to a Poisson process of rate λ.
There is a single server, whose service times are exponentially distributed with
parameter µ. Suppose that “gridlock” occurs whenever the total number of cus-
tomers in the system exceeds a capacity C. What is the smallest capacity C
that will keep the probability of gridlock, under the limiting distributing of
queue length, below 0.001? Express your answer in terms of the traffic intensity
ρ = λ/µ.

9.2.7 Let X(t) be the number of customers in an M/M/∞ queueing system at time t.
Suppose that X(0)= 0.
(a) Derive the forward equations that are appropriate for this process by substi-

tuting the birth and death parameters into Chapter 6, equation (6.24).
(b) Show that M(t)= E[X(t)] satisfies the differential equation M′(t)= λ−

µM(t) by multiplying the jth forward equation by j and summing.
(c) Solve for M(t).

9.3 General Service Time Distributions

We continue to assume that the arrivals follow a Poisson process of rate λ. The suc-
cessive customer service times Y1,Y2, . . . , however, are now allowed to follow an
arbitrary distribution G(y)= Pr{Yk ≤ y} having a finite mean service time ν = E[Yk].
The long run service rate is µ= 1/ν. Deterministic service times of an equal fixed
duration are an important special case.

9.3.1 The M/G/1 System

If arrivals to a queue follow a Poisson process, then the successive durations Xk from
the commencement of the kth busy period to the start of the next busy period form
a renewal process. (A busy period is an uninterrupted duration when the queue is
not empty. See Figure 9.3.) Each Xk is composed of a busy portion Bk and an idle
portion Ik. Then p0(t), the probability that the system is empty at time t, converges to

lim
t→∞

p0(t)= π0 =
E[I1]

E[X1]

=
E[I1]

E[I1]+E[B1]

(9.20)

by the renewal theorem (see “A Queueing Model” in Chapter 7, Section 7.5.3).
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The idle time is the duration from the completion of a service that empties the queue
to the instant of the next arrival. Because of the memoryless property that characterizes
the interarrival times in a Poisson process, each idle time is exponentially distributed
with mean E[I1]= 1/λ.

The busy period is composed of the first service time Y1, plus busy periods gen-
erated by all customers who arrive during this first service time. Let A denote this
random number of new arrivals. We will evaluate the conditional mean busy period
given that A= n and Y1 = y. First,

E[B1|A= 0,Y1 = y]= y,

because when no customers arrive, the busy period is composed of the first customer’s
service time alone. Next, consider the case in which A= 1, and let B′ be the duration
from the beginning of this customer’s service to the next instant that the queue is
empty. Then,

E[B1|A= 1,Y1 = y]= y+E[B′]

= y+E[B1],

because upon the completion of service for the initial customer, the single arrival
begins a busy period B′ that is statistically identical to the first, so that E[B′]= E[B1].
Continuing in this manner we deduce that

E[B1|A= n,Y1 = y]= y+ nE[B1]

and then, using the law of total probability, that

E[B1|Y1 = y]=
∞∑

n=0

E[B1|A= n,Y1 = y]Pr{A= n|Y1 = y}

=

∞∑
n=0

{y+ nE[B1]}
(λy)ne−λy

n!

= y+ λyE[B1].

Finally,

E[B1]=

∞∫
0

E[B1|Y1 = y]dG(y)

=

∞∫
0

{y+ λyE[B1]}dG(y) (9.21)

= ν{1+ λE[B1]}.
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Since E[B1] appears on both sides of (9.21), we may solve to obtain

E[B1]=
ν

1− λν
, provided that λν < 1. (9.22)

To compute the long run fraction of idle time, we use (9.22) and

π0 =
E[I1]

E[I1]+E[B1]

=
1/λ

1/λ+ ν/(1− λν)
(9.23)

= 1− λν if λν < 1.

Note that (9.23) agrees, as it must, with the corresponding expression (9.10)
obtained for the M/M/1 queue where ν = 1/µ. For example, if arrivals occur at the
rate of λ= 2 per hour and the mean service time is 20 min, or ν = 1

3 h, then in the long

run, the server is idle 1− 2
(

1
3

)
=

1
3 of the time.

The Embedded Markov Chain

The number X(t) of customers in the system at time t is not a Markov process for a
general M/G/1 system, because if one is to predict the future behavior of the system,
one must know, in addition, the time expended in service for the customer currently
in service. (It is the memoryless property of the exponential service time distribution
that makes this additional information unnecessary in the M/M/1 case.)

Let Xn, however, denote the number of customers in the system immediately after
the departure of the nth customer. Then, {Xn} is a Markov chain. Indeed, we can write

Xn =

{
Xn−1− 1+An if Xn−1 > 0,

An if Xn−1 = 0,

= (Xn−1− 1)++An,

(9.24)

where An is the number of customers that arrive during the service of the nth customer
and where x+ =max{x,0}. Since the arrival process is Poisson, the number of cus-
tomers An that arrive during the service of the nth customer is independent of earlier
arrivals, and the Markov property follows instantly. We calculate

αk = Pr{An = k} =

∞∫
0

Pr{An = k|Yn = y} dG(y)

=

∞∫
0

(λy)ke−λy

k!
dG(y),

(9.25)
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and then, for j= 0,1, . . . ,

Pij = Pr{Xn = j|Xn−1 = i} = Pr{An = j− (i− 1)+}

=

{
αj−i+1 for i≥ 1, j≥ i+ 1,

αj for i= 0.

(9.26)

The Mean Queue Length in Equilibrium L

The embedded Markov chain is of special interest in the M/G/1 queue because in this
particular instance, the stationary distribution {πj} for the Markov chain {Xn} equals
the limiting distribution for the queue length process {X(t)}. That is, limt→∞Pr{X(t)=
j} = limn→∞Pr{Xn = j}. We will use this helpful fact to evaluate the mean queue
length L.

The equivalence between the stationary distribution for the Markov chain {Xn} and
that for the non-Markov process {X(t)} is rather subtle. It is not the consequence of a
general principle and should not be assumed to hold in other circumstances without
careful justification. The equivalence in the case at hand is sketched in an appendix to
this section.

We will calculate the expected queue length in equilibrium L= limt→∞E[X(t)]
by calculating the corresponding quantity in the embedded Markov chain, L=
limn→∞E[Xn]. If X = X∞ is the number of customers in the system after a customer
departs and X′ is the number after the next departure, then in accordance with (9.24),

X′ = X− δ+N, (9.27)

where N is the number of arrivals during the service period and

δ =

{
1 if X > 0,
0 if X = 0.

In equilibrium, X has the same distribution as does X′, and in particular,

L= E[X]= E[X′], (9.28)

and taking expectation in (9.27) gives

E[X′]= E[X]−E[δ]+E[N],

and, by (9.28) and (9.23), then

E[N]= E[δ]= 1−π0 = λν. (9.29)

Squaring (9.27) gives

(X′)2 = X2
+ δ2
+N2

− 2δX+ 2N(X− δ),
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and since δ2
= δ and Xδ = X, then

(X′)2 = X2
+ δ+N2

− 2X+ 2N(X− δ). (9.30)

Now N, the number of customers that arrive during a service period, is independent
of X, and hence of δ, so that

E[N(X− δ)]= E[N]E[X− δ], (9.31)

and because X and X′ have the same distribution, then

E
[
(X′)2

]
= E

[
X2]. (9.32)

Taking expectations in (9.30) we deduce that

E
[
(X′)2

]
= E

[
X2]
+E[δ]+E

[
N2]
− 2E[X]+ 2E[N]E[X− δ],

and then substituting from (9.29) and (9.32), we obtain

0= λν+E
[
N2]
− 2L+ 2λν{L− λν},

or

L=
λν+E

[
N2
]
− 2(λν)2

2(1− λν)
. (9.33)

It remains to evaluate E
[
N2
]
, where N is the number of arrivals during a service

time Y . Conditioned on Y = y, the random variable N has a Poisson distribution with
a mean (and variance) equal to λy [see equation (9.26)], whence E

[
N2
|Y = y

]
= λy+

(λy)2. Using the law of total probability, then, gives

E
[
N2]
=

∞∫
0

E
[
N2
|Y = y

]
dG(y)

= λ

∞∫
0

ydG(y)+ λ2

∞∫
0

y2dG(y) (9.34)

= λν+ λ2(τ 2
+ ν2),

where τ 2 is the variance of the service time distribution G(y). Substituting (9.34) into
(9.33) gives

L=
2λν+ λ2τ 2

− (λν)2

2(1− λν)

= ρ+
λ2τ 2
+ ρ2

2(1− ρ)
,

(9.35)

where ρ = λν is the traffic intensity.
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Finally, W = L/λ, which simplifies to

W = ν+
λ
(
τ 2
+ ν2

)
2(1− ρ)

. (9.36)

The results (9.35) and (9.36) express somewhat surprising facts. They say that for
a given average arrival rate λ and mean service time ν, we can decrease the expected
queue size L and waiting time W by decreasing the variance of service time. Clearly,
the best possible case in this respect corresponds to constant service times, for which
τ 2
= 0.

Appendix

We sketch a proof of the equivalence between the limiting queue size distribution and
the limiting distribution for the embedded Markov chain in an M/G/1 model. First,
beginning at t = 0 let ηn denote those instants when the queue size X(t) increases
by one (an arrival), and let ξn denote those instants when X(t) decreases by one
(a departure). Let Yn = X(ηn−) denote the queue length immediately prior to an arrival
and let Xn = X(ξn+) denote the queue length immediately after a departure. For any
queue length i and any time t, the number of visits of Yn to i up to time t differs from
the number of visits of Xn to i by at most one unit. Therefore, in the long run the aver-
age visits per unit time of Yn to i must equal the average visits of Xn to i, which is πi,
the stationary distribution of the Markov chain {Xn}. Thus, we need only show that the
limiting distribution of {X(t)} is the same as that of {Yn}, which is X(t) just prior to an
arrival. But because the arrivals are Poisson, and arrivals in disjoint time intervals are
independent, it must be that X(t) is independent of an arrival that occurs at time t. It
follows that {X(t)} and {Yn} have the same limiting distribution, and therefore {X(t)}
and the embedded Markov chain {Xn} have the same limiting distribution.

9.3.2 The M/G/∞ System

Complete results are available when each customer begins service immediately upon
arrival independently of other customers in the system. Such situations may arise when
modeling customer self-service systems. Let W1,W2, . . . be the successive arrival
times of customers, and let V1,V2, . . . be the corresponding service times. In this nota-
tion, the kth customer is in the system at time t if and only if Wk ≤ t (the customer
arrived prior to t) and Wk+Vk > t (the service extends beyond t).

The sequence of pairs (W1,V1), (W2,V2), . . . forms a marked Poisson process (see
Chapter 5, Section 5.6.2), and we may use the corresponding theory to quickly obtain
results in this model. Figure 9.5 illustrates the marked Poisson process. Then X(t), the
number of customers in the system at time t, is also the number of points (Wk,Vk)

for which Wk ≤ t and Wk+Vk > t. That is, it is the number of points (Wk,Vk) in the
unbounded trapezoid described by

At = {(w,v) : 0≤ w≤ t and v> t−w}. (9.37)
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v

(Wk, Vk)

Wk

W1 W2

0

W4 W5

t

W6
w

w+ v= t  

Figure 9.5 For the M/G/∞ queue, the number of customers in the system at time t corresponds
to the number of pairs (Wk,Vk) for which Wk ≤ t and Wk +Vk > t. In the sample illustrated here,
the number of customers in the system at time t is 3.

According to Chapter 5, Theorem 5.8, the number of points in At follows a Poisson
distribution with mean

µ(At)=

∫∫
Ai

λ(dw)dG(v)

= λ

t∫
0


∞∫

t−w

dG(v)

dw

= λ

t∫
0

[1−G(t−w)]dw

= λ

t∫
0

[1−G(x)]dx.

(9.38)

In summary,

pk(t)= Pr{X(t)= k}

=
µ(At)

ke−µ(At)

k!
for k = 0,1, . . . ,
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where µ(At) is given by (9.38). As t→∞, then

lim
t→∞

µ(At)= λ

∞∫
0

[1−G(x)]dx= λν,

where ν is the mean service time. Thus, we obtain the limiting distribution

πk =
(λν)ke−λν

k!
for k = 0,1, . . ..

Exercises

9.3.1 Suppose that the service distribution in a single server queue is exponential with
rate µ; i.e., G(ν)= 1− e−µν for ν ≥ 0. Substitute the mean and variance of this
distribution into (9.35) and verify that the result agrees with that derived for the
M/M/1 system in (9.12).

9.3.2 Consider a single-server queueing system having Poisson arrivals at rate λ. Sup-
pose that the service times have the gamma density

g(y)=
µαyα−1e−µy

0(α)
for y≥ 0,

where α > 0 and µ > 0 are fixed parameters. The mean service time is α/µ and
the variance is α/µ2. Determine the equilibrium mean queue length L.

9.3.3 Customers arrive at a tool crib according to a Poisson process of rate λ= 5 per
hour. There is a single tool crib employee, and the individual service times are
random with a mean service time of 10 min and a standard deviation of 4 min.
In the long run, what is the mean number of workers at the tool crib either being
served or waiting to be served?

9.3.4 Customers arrive at a checkout station in a market according to a Poisson pro-
cess of rate λ= 1 customer per minute. The checkout station can be operated
with or without a bagger. The checkout times for customers are random. With a
bagger the mean checkout time is 30 s, while without a bagger this mean time
increases to 50 s. In both cases, the standard deviation of service time is 10 s.
Compare the mean queue lengths with and without a bagger.

9.3.5 Let X(t) be the number of customers in an M/G/∞ queueing system at time t.
Suppose that X(0)= 0. Evaluate M(t)= E[X(t)], and show that it increases
monotonically to its limiting value as t→∞.

Problems

9.3.1 Let X(t) be the number of customers in an M/G/∞ queueing system at time t,
and let Y(t) be the number of customers who have entered the system and com-
pleted service by time t. Determine the joint distribution of X(t) and Y(t).



468 An Introduction to Stochastic Modeling

9.3.2 In operating a queueing system with Poisson arrivals at a rate of λ= 1 per unit
time and a single server, you have a choice of server mechanisms. Method A
has a mean service time of ν = 0.5 and a variance in service time of τ 2

= 0.2,
while Method B has a mean service time of ν = 0.4 and a variance of τ 2

= 0.9.
In terms of minimizing the waiting time of a typical customer, which method
do you prefer? Would your answer change if the arrival rate were to increase
significantly?

9.4 Variations and Extensions

In this section, we consider a few variations on the simple queueing models studied
so far. These examples do not exhaust the possibilities but serve only to suggest the
richness of the area.

Throughout we restrict ourselves to Poisson arrivals and exponentially distributed
service times.

9.4.1 Systems with Balking

Suppose that a customer who arrives when there are n customers in the systems enters
with probability pn and departs with probability qn = 1− pn. If long queues discourage
customers, then pn would be a decreasing function of n. As a special case, if there is a
finite waiting room of capacity C, we might suppose that

pn =

{
1 for n< C,

0 for n≥ C,

indicating that once the waiting room is filled, no more customers can enter the system.
Let X(t) be the number of customers in the system at time t. If the arrival process is

Poisson at rate λ and a customer who arrives when there are n customers in the system
enters with probability pn, then the appropriate birth parameters are

λn = λpn for n= 0,1, . . . .

In the case of a single server, then µn = µ for n= 1,2, . . . , and we may evaluate the
stationary distribution πk of queue length by the usual means.

In systems with balking, not all arriving customers enter the system, and some are
lost. The input rate is the rate at which customers actually enter the system in the
stationary state and is given by

λI = λ

∞∑
n=0

πnpn.
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The rate at which customers are lost is λ
∑
∞

n=0 πnqn, and the fraction of customers
lost in the long run is

fraction lost=
∞∑

n=0

πnqn.

Let us examine in detail the case of an M/M/s system in which an arriving customer
enters the system if and only if a server is free. Then,

λk =

{
λ for k = 0,1, . . . ,s− 1,
0 for k = s,

and

µk = kµ for k = 0,1, . . . ,s.

To determine the limiting distribution, we have

θk =
1

k!

(
λ

µ

)k

for k = 0,1, . . . ,s,

and then

πk =

1

k!

(
λ

µ

)k

s∑
j=0

1
j!

(
λ

µ

)j for k = 0,1, . . . ,s. (9.39)

The long run fraction of customers lost is πsqs = πs, since qs = 1 in this case.

9.4.2 Variable Service Rates

In a similar vein, one can consider a system whose service rate depends on the num-
ber of customers in the system. For example, a second server might be added to a
single-server system whenever the queue length exceeds a critical point ξ . If arrivals
are Poisson and service rates are memoryless, then the appropriate birth and death
parameters are

λk = λ for k = 0,1, . . . , and µk =

{
µ for k ≤ ξ,

2µ for k > ξ.

More generally, let us consider Poisson arrivals λk = λ for k = 0,1, . . . , and arbi-
trary service rates µk for k = 1,2, . . . . The stationary distribution in this case is
given by

πk =
π0λ

k

µ1µ2 · · ·µk
for k ≥ 1, (9.40)
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where

π0 =

{
1+

∞∑
k=1

λk

µ1µ2 · · ·µk

}−1

. (9.41)

9.4.3 A System with Feedback

Consider a single-server system with Poisson arrivals and exponentially distributed
service times, but suppose that some customers, upon leaving the server, return to
the end of the queue for additional service. In particular, suppose that a customer
leaving the server departs from the system with probability q and returns to the
queue for additional service with probability p= 1− q. Suppose that all such deci-
sions are statistically independent, and that a returning customer’s demands for ser-
vice are statistically the same as those of a customer arriving from outside the system.
Let the arrival rate be λ and the service rate be µ. The queue system is depicted in
Figure 9.6.

Let X(t) denote the number of customers in the system at time t. Then, X(t)
is a birth and death process with parameters λn = λ for n= 0,1, . . . and µn = qµ
for n= 1,2, . . . . It is easily deduced that the stationary distribution in the case that
λ < qµ is

πk =

(
1−

λ

qµ

)(
λ

qµ

)k

for k = 0,1, . . . . (9.42)

9.4.4 A Two-Server Overflow Queue

Consider a two-server system where server i has rate µi for i= 1,2. Arrivals to the
system follow a Poisson process of rate λ. A customer arriving when the system is
empty goes to the first server. A customer arriving when the first server is occupied
goes to the second server. If both servers are occupied, the customer is lost. The flow
is depicted in Figure 9.7.

Arrivals Input Server

Feedback

Output Departures

q

p

Figure 9.6 A queue with feedback.



Queueing Systems 471

Poisson arrivals Overflow

if #1 is busy

Server #1
Rate μ1

Server #2
Rate μ2

Output

if #1 and #2 are busy

Overflow lost

Rate=λ

Figure 9.7 A two-server overflow model.

The system state is described by the pair (X(t),Y(t)), where

X(t)=

{
1 if Server #1 is busy,
0 if Server #1 is idle.

and

Y(t)=

{
1 if Server #2 is busy,
0 if Server #2 is idle.

The four states of the system are {(0,0), (1,0), (0,1), (1,1)}, and transitions among
these states occur at the rate given in the following table:

From To Transition
State State Rate Description

(0,0) (1,0) λ Arrival when system is empty
(1,0) (0,0) µ1 Service completion by #1 when #2 is free
(1,0) (1,1) λ Arrival when #1 is busy
(1,1) (1,0) µ2 Service completion by #2 when #1 is busy
(1,1) (0,1) µ1 Service completion by #1 when #2 is busy
(0,1) (1,1) λ Arrival when #2 is busy and #1 is free
(0,1) (0,0) µ2 Service completion by #2 when #1 is free

The process (X(t),Y(t)) is a finite-state, continuous-time Markov chain (see
Chapter 6, Section 6.6), and the transition rates in the table furnish the infinitesimal
matrix of the Markov chain:

A=

∥∥∥∥∥∥∥∥∥

(0,0) (0,1) (1,0) (1,1)

(0,0) −λ 0 λ 0

(0,1) µ2 −(λ+µ2) 0 λ

(1,0) µ1 0 −(λ+µ1) λ

(1,1) 0 µ1 µ2 −(µ1+µ2)

∥∥∥∥∥∥∥∥∥.
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From Chapter 6, equations (6.68) and (6.69), we find the stationary distribution π =
(π(0,0),π(0,1),π(1,0)π(1,1)) by solving πA= 0, or

−λπ(0,0) +µ2π(0,1) +µ1π(1,0) = 0,

−(λ+µ2)π(0,1) +µ1π(1,1) = 0,

λπ(0,0) −(λ+µ1)π(1,0) +µ2π(1,1) = 0,

λπ(0,1) +λπ(1,0)−(µ1+µ2)π(1,1) = 0,

together with

π(0,0)+π(0,1)+π(1,0)+π(1,1) = 1.

Tedious but elementary algebra yields the solution:

π(0,0) =
µ1µ2(2λ+µ1+µ2)

D
,

π(0,1) =
λ2µ1

D
, (9.43)

π(1,0) =
λµ2(λ+µ1+µ2)

D
,

π(1,1) =
λ2(λ+µ2)

D
,

where

D= µ1µ2(2λ+µ1+µ2)+ λ
2µ1+ λµ2(λ+µ1+µ2)

+ λ2(λ+µ2).

The fraction of customers that are lost, in the long run, is the same as the fraction of
time that both servers are busy, π(1,1) = λ2(λ+µ2)/D.

9.4.5 Preemptive Priority Queues

Consider a single-server queueing process that has two classes of customers, prior-
ity and nonpriority, forming independent Poisson arrival processes of rates α and β,
respectively. The customer service times are independent and exponentially distributed
with parameters γ and δ, respectively. Within classes there is a first come, first served
discipline, and the service of priority customers is never interrupted. If a priority cus-
tomer arrives during the service of a nonpriority customer, then the latter’s service
is immediately stopped in favor of the priority customer. The interrupted customer’s
service is resumed when there are no priority customers present.

Let us introduce some convenient notation. The system arrival rate is λ= α+β,
of which the fraction p= α/λ are priority customers and q= β/λ are nonpriority cus-
tomers. The system mean service time is given by the appropriately weighted means
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1/γ and 1/δ of the priority and nonpriority customers, respectively, or

1

µ
= p

(
1

γ

)
+ q

(
1

δ

)
=

1

λ

(
α

γ
+
β

δ

)
, (9.44)

where µ is the system service rate. Finally, we introduce the traffic intensities ρ = λ/µ
for the system, and σ = α/γ and τ = β/δ for the priority and nonpriority customers,
respectively. From (9.44) we see that ρ = σ + τ .

The state of the system is described by the pair (X(t),Y(t)), where X(t) is the num-
ber of priority customers in the system and Y(t) is the number of nonpriority cus-
tomers. Observe that the priority customers view the system as simply an M/M/1
queue. Accordingly, we have the limiting distribution from (9.11) to be

lim
t→∞

Pr{X(t)= m} = (1− σ)σm for m= 0,1, . . . (9.45)

provided σ = α/γ < 1.
Reference to (9.12) and (9.15) gives us, respectively, the mean queue length for

priority customers

Lp =
α

γ −α
=

σ

1− σ
(9.46)

and the mean wait for priority customers

Wp =
1

γ −α
. (9.47)

To obtain information about the nonpriority customers is not as easy, since these
arrivals are strongly affected by the priority customers. Nevertheless, (X(t),Y(t)) is a
discrete-state, continuous-time Markov chain, and the techniques of Chapter 6, Sec-
tion 6.6 enable us to describe the limiting distribution, when it exists. The transition
rates of the (X(t),Y(t)) Markov chain are described in the following table:

From To Transition
State State Rate Description

(m,n) (m+ 1,n) α Arrival of priority customer
(m,n) (m,n+ 1) β Arrival of nonpriority customer
(0,n) (0,n− 1) δ Completion of nonpriority service
n≥ 1
(m,n) (m− 1,n) γ Completion of priority service
m≥ 1

Let

πm,n = lim
t→∞

Pr{X(t)= m,Y(t)= n}
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be the limiting distribution of the process. Reasoning analogous to that of Chapter 6,
equations (6.68) and (6.69) (where the theory was derived for a finite-state Markov
chain) leads to the following equations for the stationary distribution:

(α+β)π0,0 = γπ1,0 + δπ0,1, (9.48)

(α+β + γ )πm,0 = γπm+1,0 +απm−1,0,

m≥ 1, (9.49)

(α+β + δ)π0,n = γπ1,n + δπ0,n+1+βπ0,n−1,

n≥ 1, (9.50)

(α+β + γ )πm,n = γπm+1,n +βπm,n−1+απm−1,n,

m,n≥ 1. (9.51)

The transition rates leading to equation (9.8) are shown in Figure 9.8.
In principle, these equations, augmented with the condition 6m6n πm,n = 1, may

be solved for the stationary distribution, when it exists. We will content ourselves with
determining the mean number Ln of nonpriority customers in the system in steady
state, given by

Ln =

∞∑
m=0

∞∑
n=0

nπm,n. (9.52)

Rate outRate in

State
m + 1, n 

State
m − 1, n

State
m, n − 1 

State
m, n

m ≥ 1,
n ≥ 1

πm + 1, n(γ )

πm, n − 1(β ) πm, n(α+β+ γ )

πm − 1, n(α )

Figure 9.8 In equilibrium, the rate of flow into any state must equal the rate of flow out. Illus-
trated here is the state (m,n) when m≥ 1 and n≥ 1, leading to equation (9.51).
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We introduce the notation

Mm =

∞∑
n=0

nπm,n =

∞∑
n=1

nπm,n, (9.53)

so that

Ln =M0+M1+ ·· · . (9.54)

Using (9.45), let

pm = Pr{X(t)= m} =
∞∑

n=0

πm,n = (1− σ)σ
m (9.55)

and

πn = Pr{Y(t)= n} =
∞∑

m=0

πm,n. (9.56)

We begin by summing both sides of (9.48) and (9.49) for m= 0,1, . . . to obtain

(α+β)π0+ γ

∞∑
m=1

πm,0 = γ

∞∑
m=1

πm,0+ δπ0,1+απ0,

which simplifies to give

βπ0 = δπ0,1. (9.57)

Next, we sum (9.50) and (9.51) over m= 0,1, . . . to obtain

(α+β)πn+ δπ0,n+ γ

∞∑
m=1

πm,n = γ

∞∑
m=1

πm,n+ δπ0,n+1+βπn−1+απn,

which simplifies to

βπn+ δπ0,n = βπn−1+ δπ0,n+1,

and inductively with (9.57), we obtain

βπn = δπ0,n+1 for n= 0,1, . . . . (9.58)

Summing (9.58) over n= 0,1, . . . and using 6 πn = 1, we get

β = δ

∞∑
n=0

π0,n+1 = δPr{X(t)= 0,Y(t) > 0},
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or

Pr{X(t)= 0,Y(t) > 0} =
∞∑

n=1

π0,n =
β

δ
= τ. (9.59)

Since (9.55) asserts that Pr{X(t)= 0} = 1− (α/γ )= 1− σ , we have

π0,0 = Pr{X(t)= 0,Y(t)= 0} = Pr{X(t)= 0}−Pr{X(t)= 0,Y(t) > 0}

= 1−
α

γ
−
β

δ
= 1− σ − τ when σ + τ < 1. (9.60)

With these preliminary results in hand, we turn to determining Mm =6
∞

n=1 nπm,n.
Multiplying (9.50) by n and summing, we derive

(α+β + δ)M0 = γM1+ δ

∞∑
n=1

nπ0,n+1+β

∞∑
n=1

nπ0,n−1

= γM1+ δM0− δ

∞∑
n=0

π0,n+1+βM0+β

∞∑
n=1

π0,n−1

= γM1+ δM0− δ

(
β

δ

)
+βM0+β(1− σ),

where the last line results from (9.55) and (9.59). After simplification and rearrange-
ment, the result is

M1 = σM0+
β

γ
σ. (9.61)

We next multiply (9.51) by n and sum to obtain

(α+β + γ )Mm = γMm+1+β

∞∑
n=1

nπm,n−1+αMm−1

= γMm+1+βMm+β

∞∑
n=1

πm,n−1+αMm−1.

Again, referring to (9.55) and simplifying, we see that

(α+ γ )Mm = γMm+1+αMm−1+β(1− σ)σ
m

for m= 1,2, . . . . (9.62)

Equation (9.61) and (9.62) can be solved inductively to give

Mm =M0σ
m
+
β

γ
mσm for m= 0,1, . . . ,
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which we sum to obtain

Ln =

∞∑
m=0

Mm =
1

1− σ

[
M0+

β

γ

σ

(1− σ)

]
. (9.63)

This determines Ln in terms of M0. To obtain a second relation, we multiply (9.58) by
n and sum to obtain

βLn = δ

∞∑
n=0

nπ0,n+1 = δM0− δ

∞∑
n=0

π0,n+1

= δM0− δ

(
β

δ

)
[see (9.59)],

or

M0 =
β

δ
(Ln+ 1)= τ(Ln+ 1). (9.64)

We substitute (9.64) into (9.63) and simplify, yielding

Ln =
1

1− σ

[
τ(Ln+ 1)+

β

γ

σ

1− σ

]
,(

1−
τ

1− σ

)
Ln =

1

1− σ

[
τ +

β

γ

σ

1− σ

]
,

and finally,

Ln =

(
τ

1− σ − τ

)[
1+

(
δ

γ

)
σ

1− σ

]
. (9.65)

The condition that Ln be finite (and that a stationary distribution exist) is that

ρ = σ + τ < 1.

That is, the system traffic intensity ρ must be less than one.
Since the arrival rate for nonpriority customers is β, we know that the mean waiting

time for nonpriority customers is given by Wn = Ln/β.
Some simple numerical studies of (9.46) and (9.65) yield surprising results con-

cerning adding priority to an existing system. Let us consider first a simple M/M/1
system with traffic intensity ρ whose mean queue length is given by (9.12) to be
L= ρ/(1− ρ). Let us propose modifying the system in such a way that a fraction
p= 1

2 of the customers have priority. We assume that priority is independent of ser-
vice time. These assumptions lead to the values α = β = 1

2λ and γ = δ = µ, whence
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σ = τ = ρ/2. Then, the mean queue lengths for priority and nonpriority customers are
given by

Lp =
σ

1− σ
=

ρ/2

1− (ρ/2)
=

ρ

2− ρ

and

Ln =

(
ρ/2

1− ρ

)[
1+

ρ/2

1− (ρ/2)

]
=

ρ

(2− ρ)(1− ρ)
.

The mean queue lengths L,Lp, and Ln were determined for several values of the
traffic intensity ρ. The results are listed in the following table:

ρ L Lp Ln

0.6 1.50 0.43 1.07
0.8 4.00 0.67 3.34
0.9 9.00 0.82 8.19
0.95 19.00 0.90 18.10

It is seen that the burden of increased queue length, as the traffic intensity increases,
is carried almost exclusively by the nonpriority customers!

Exercises

9.4.1 Consider a two-server system in which an arriving customer enters the system
if and only if a server is free. Suppose that customers arrive according to a
Poisson process of rate λ= 10 customers per hour, and that service times are
exponentially distributed with a mean service time of 6 min. In the long run,
what is the rate of customers served per hour?

9.4.2 Customers arrive at a checkout station in a small grocery store according to a
Poisson process of rate λ= 1 customer per minute. The checkout station can
be operated with or without a bagger. The checkout times for customers are
exponentially distributed, and with a bagger the mean checkout time is 30 s,
while without a bagger this mean time increases to 50 s. Suppose the store’s
policy is to have the bagger help whenever there are two or more customers in
the checkout line. In the long run, what fraction of time is the bagger helping
the cashier?

9.4.3 Consider a two-server system in which an arriving customer enters the system
if and only if a server is free. Suppose that customers arrive according to a
Poisson process of rate λ= 10 customers per hour, and that service times are
exponentially distributed. The servers have different experience in the job, and
the newer server has a mean service time of 6 min, while the older has a mean
service time of 4 min. In the long run, what is the rate of customers served per
hour? Be explicit about any additional assumptions that you make.
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9.4.4 Suppose that incoming calls to an office follow a Poisson process of rate λ= 6
per hour. If the line is in use at the time of an incoming call, the secretary has
a HOLD button that will enable a single additional caller to wait. Suppose that
the lengths of conversations are exponentially distributed with a mean length of
5 min, that incoming calls while a caller is on hold are lost, and that outgoing
calls can be ignored. Apply the results of Section 9.4.1 to determine the fraction
of calls that are lost.

Problems

9.4.1 Consider the two-server overflow queue of Section 9.4.4 and suppose the arrival
rate is λ= 10 per hour. The two servers have rates 6 and 4 per hour. Recommend
which server should be placed first. That is, choose between

µ1 = 6,

µ2 = 4
and

µ1 = 4,

µ2 = 6,

and justify your answer. Be explicit about your criterion.
9.4.2 Consider the preemptive priority queue of Section 9.4.5 and suppose that the

arrival rate is λ= 4 per hour. Two classes of customers can be identified, having
mean service times of 12 min and 8 min, and it is proposed to give one of these
classes priority over the other. Recommend which class should have priority.
Be explicit about your criterion and justify your answer. Assume that the two
classes appear in equal proportions and that all service times are exponentially
distributed.

9.4.3 Balking refers to the refusal of an arriving customer to enter the queue. Reneg-
ing refers to the departure of a customer in the queue before obtaining service.
Consider an M/M/1 system with reneging such that the probability that a spec-
ified single customer in line will depart prior to service in a short time interval
(t, t+1t] is rn(1t)+ o(1t) when n is the number of customers in the system.
(Note that r0 = r1 = 0.) Assume Poisson arrivals at rate λ and exponential ser-
vice times with parameter µ, and determine the stationary distribution when it
exists.

9.4.4 A small grocery store has a single checkout counter with a full-time cashier.
Customers arrive at the checkout according to a Poisson process of rate λ per
hour. When there is only a single customer at the counter, the cashier works
alone at a mean service rate of α per hour. Whenever there is more than one
customer at the checkout, however, a “bagger” is added, increasing the service
rate to β per hour. Assume that service times are exponentially distributed and
determine the stationary distribution of the queue length.

9.4.5 A ticket office has two agents answering incoming phone calls. In addition, a
third caller can be put on HOLD until one of the agents becomes available. If all
three phone lines (both agent lines plus the hold line) are busy, a potential caller
gets a busy signal, and is assumed lost. Suppose that the calls and attempted
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calls occur according to a Poisson process of rate λ, and that the length of a
telephone conversation is exponentially distributed with parameter µ. Deter-
mine the stationary distribution for the process.

9.5 Open Acyclic Queueing Networks

Queueing networks, composed of groups of service stations, with the departures of
some stations forming the arrivals of others, arise in computer and information pro-
cessing systems, manufacturing job shops, service industries such as hospitals and
airport terminals, and in many other contexts. A remarkable result often enables
the steady-state behavior of these complex systems to be analyzed component by
component.

9.5.1 The Basic Theorem

The result alluded to in the preceding paragraph asserts that the departures from
a queue with Poisson arrivals and exponentially distributed service times in sta-
tistical equilibrium also form a Poisson process. We give the precise statement as
Theorem 9.1. The proof is contained in an appendix at the end of this section. See
also Problem 9.2.5.

Theorem 9.1. Let {X(t), t ≥ 0} be a birth and death process with constant birth
parameters λn = λ for n= 0,1, . . . , and arbitrary death parameters µn for n=
1,2, . . . . Suppose there exists a stationary distribution πk ≥ 0 where

∑
kπk = 1 and

that Pr{X(0)= k} = πk for k = 0,1, . . . . Let D(t) denote the number of deaths in (0, t].
Then

Pr{X(t)= k,D(t)= j} = Pr{X(t)= k}Pr{D(t)= j}

= πk
(λt) je−λt

j!
for k, j≥ 0.

Remark The stipulated conditions are satisfied, e.g., when X(t) is the number of cus-
tomers in an M/M/s queueing system that is in steady state wherein Pr{X(0)= j} = πj,
the stationary distribution of the process. In this case, a stationary distribution exists
provided that λ < sµ, where µ is the individual service rate.

To see the major importance of this theorem, suppose that X(t) represents the num-
ber of customers in some queueing system at time t. The theorem asserts that the
departures form a Poisson process of rate λ. Furthermore, the number D(t) of depar-
tures up to time t is independent of the number X(t) of customers remaining in the
system at time t.

We caution the reader that the foregoing analysis applies only if the processes are
in statistical equilibrium where the stationary distribution πk = Pr{X(t)= k} applies.
In contrast, under the condition that X(0)= 0, then neither will the departures form a
Poisson process, nor will D(t) be independent of X(t).
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9.5.2 Two Queues in Tandem

Let us use Theorem 9.1 to analyze a simple queueing network composed of two single-
server queues connected in series as shown in Figure 9.9.

Let Xk(t) be the number of customers in the kth queue at time t. We assume steady
state. Beginning with the first server, the stationary distribution (9.11) for a single
server queue applies, and

Pr{X1(t)= n} =

(
1−

λ

µ1

)(
λ

µ1

)n

for n= 0,1, . . . .

Theorem 9.1 asserts that the departure process from the first server, denoted by
D1(t), is a Poisson process of rate λ that is statistically independent of the first queue
length X1(t). These departures form the arrivals to the second server, and therefore the
second system has Poisson arrivals and is thus an M/M/1 queue as well. Thus, again
using (9.11),

Pr{X2(t)= m} =

(
1−

λ

µ2

)(
λ

µ2

)m

for m= 0,1, . . . .

Furthermore, because the departures D1(t) from the first server are independent
of X1(t), it must be that X2(t) is independent of X1(t). We, thus, obtain the joint
distribution

Pr{X1(t)= n and X2(t)= m} = Pr{X1(t)= n}Pr{X2(t)= m}

=

(
1−

λ

µ1

)(
λ

µ1

)n(
1−

λ

µ2

)(
λ

µ2

)m

for n,m= 0,1, . . . .

We again caution the reader that the foregoing analysis applies only when the net-
work is in its limiting distribution. In contrast, if both queues are empty at time t = 0,

Server 1 Server 2

Rate
μ1

Rate
μ2

Poisson arrivals

Rate λ

Figure 9.9 Two queues in series in which the departures from the first form the arrivals for the
second.
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then neither will the departures D1(t) form a Poisson process nor will D1(t) and X1(t)
be independent.

9.5.3 Open Acyclic Networks

The preceding analysis of two queues in series applies to more general systems. An
open queueing network (see Figure 9.10) has customers arriving from and departing
to the outside world. (The repairman model in Chapter 6, Section 6.4 is a prototypical
closed queueing network.) Consider an open network having K service stations, and
let Xk(t) be the number of customers in queue k at time t. Suppose

1. The arrivals from outside the system to distinct servers form independent Poisson
processes.

2. The departures from distinct servers independently travel instantly to other servers, or leave
the system, with fixed probabilities.

3. The service times for the various servers are memoryless in the sense that

Pr{Server #k completes a service in (t, t+1t]|Xk(t)= n}

= µkn(1t)+ o(1t) for n= 1,2, . . . ,
(9.66)

and does not otherwise depend on the past.
4. The system is in statistical equilibrium (steady state).
5. The network is acyclic in that a customer can visit any particular server at most once. (The

case where a customer can visit a server more than once is more subtle, and is treated in the
next section.)

Then,

(a) X1(t),X2(t), . . . ,XK(t) are independent processes, where

Pr{X1(t)= n1,X2(t)= n2, . . . ,XK(t)= nK}

= Pr{X1(t)= n1}Pr{X2(t)= n2} · · ·Pr{XK(t)= nK}.
(9.67)

(b) The departure process Dk(t) associated with the kth server is a Poisson process, and Dk(t)
and Xk(t) are independent.

(c) The arrivals to the kth station form a Poisson process of rate λk.
(d) The departure rate at the kth server equals the rate of arrivals to that server.

DeparturesArrivals

1

4

3

2

5

Figure 9.10 An open queueing network.
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Let us add some notation so as to be able to express these results more explicitly.
Let

λ0k = rate of arrivals to station k from outside the system,

λk = rate of total arrivals to station k,

Pkj = probability that a customer leaving station k next visits station j.

Then, the arrivals to station k come from outside the system or from some other
station j. The departure rate from j equals the arrival rate to j, the fraction Pjk of which
go to station k, whence

λk = λ0k+
∑

j

λj Pjk. (9.68)

Since the network is acyclic, (9.68) may be solved recursively, beginning with sta-
tions having only outside arrivals. The simple example that follows will make the
procedure clear.

The arrivals to station k form a Poisson process of rate λk. Let

ψk(n)= πk0×
λn

k

µk1µk2 · · ·µkn
for n= 1,2, . . . , (9.69)

where

ψk(0)= πk0 =

{
1+

∞∑
n=1

(
λn

k

µk1µk2 · · ·µkn

)}−1

. (9.70)

Referring to (9.40) and (9.41) we see that (9.69) and (9.70) give the station-
ary distribution for a queue having Poisson arrivals at rate λk and memoryless ser-
vice times at rates µkn for n= 1,2, . . . . Accordingly, we may now express (9.67)
explicitly as

Pr{X1(t)= n1,X2(t)= n2, . . . ,XK = nk} (9.71)

= ψ1(n1)ψ2(n2) · · ·ψK(nK).

Example Consider the three-station network as shown in Figure 9.11.
The first step in analyzing the example is to determine the arrival rates at the

various stations. In equilibrium, the arrival rate at a station must equal its departure
rate, as asserted in (d). Accordingly, departures from state 1 occur at rate λ1 = 4,
and since these departures independently travel to stations 2 and 3 with respective

probabilities P12 =
1
3 and P13 =

2
3 , we determine the arrival rate λ=

(
1
3

)
4. At sta-

tion 3 the arrivals include both those from station 1 and those from station 2. Thus,

λ3 =

(
2
3

)
4+

(
1
3

)
4= 4.
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Poisson arrivals

Poisson departures

Rate= 4

Rate=

#1
μ11=3

μ1n= 6, n≥2

(   ) 4
1
3

(   ) 4
1
3

(   ) 4
2
3

P12 =
1
3

P13 =
2
3

Poisson,

Poisson, Rate=

Rate=λ01=4

Rate λ2=

#2
μ2n=2

#3
μ3n=6

Figure 9.11 A three-station open acyclic network. Two servers, each of rate 3, at the first station
give rise to the station rates µ11 = 3 and µ1n = 6 for n≥ 2. Stations 2 and 3 each have a single
server of rate 2 and 6, respectively.

Having determined the arrival rates at each station, we turn to determining the
equilibrium probabilities. Station 1 is an M/M/2 system with λ= 4 and µ= 3. From
(9.18), or (9.69) and (9.70), we obtain

Pr{X1(t)= 0} = π0 =

{
1+

(
4

3

)
+
(4/3)2

2(1/3)

}−1

= 0.2

and

Pr{X1(t)= n} =


(

4

3

)
(0.2) for n= 1,

(0.4)

(
2

3

)n

for n≥ 2.

Station 2 is an M/M/1 system with λ= 4
3 and µ= 2. From (9.11) we obtain

Pr{X2(t)= n} =

(
1

3

)(
2

3

)n

for n= 0,1, . . . .

Similarly station 3 is an M/M/1 system with λ= 4 and µ= 6, so that (9.11) yields

Pr{X3(t)= n} =

(
1

3

)(
2

3

)n

for n= 0,1, . . . .

Finally, according to Property (a), the queue lengths X1(t), X2(t), and X3(t) are inde-
pendent, so that

Pr{X1(t)= n1,X2(t)= n2,X3(t)= n3}

= Pr{X1(t)= n1}Pr{X2(t)= n2}Pr{X3(t)= n3}.
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9.5.4 Appendix: Time Reversibility

Let {X(t),−∞< t <+∞} be an arbitrary countable-state Markov chain having a sta-
tionary distribution πj = Pr{X(t)= j} for all states j and all times t. Note that the time
index set is the whole real line. We view the process as having begun indefinitely
far in the past, so that it now is evolving in a stationary manner. Let Y(t)= X(−t)
be the same process, but with time reversed. The stationary process {X(t)} is said
to be time reversible if {X(t)} and {Y(t)} have the same probability laws. Clearly,
Pr{X(0)= j} = Pr{Y(0)= j} = πj, and it is not difficult to show that both processes
are Markov. Hence, in order to show that they share the same probability laws it suf-
fices to show that they have the same transition probabilities. Let

Pij(t)= Pr{X(t)= j|X(0)= i},

Qij(t)= Pr{Y(t)= j|Y(0)= i}.

The process {X(t)} is reversible if

Pij(t)= Qij(t) (9.72)

for all states i, j and all times t. We evaluate Qij(t) as follows:

Qij(t)= Pr{Y(t)= j|Y(0)= i}

= Pr{X(−t)= j|X(0)= i}

= Pr{X(0)= j|X(t)= i} (by stationarity)

=
Pr{X(0)= j,X(t)= i}

Pr{X(t)= i}

=
πjPji(t)

πi
.

In conjunction with (9.72) we see that the process {X(t)} is reversible if

Pij(t)= Qij(t)=
πjPji(t)

πi
,

or

πiPij(t)= πjPji(t), (9.73)

for all states i, j and all times t.
As a last step, we determine a criterion for reversibility in terms of the infinitesimal

parameters

aij = lim
t↓0

1

t
Pr{X(t)= j|X(0)= i}, i 6= j.
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It is immediate that (9.73) holds when i= j. When i 6= j,

Pij(t)= aijt+ o(t), (9.74)

which substituted into (9.73) gives

πi[aijt+ o(t)]= πj[ajit+ o(t)],

and after dividing by t and letting t vanish, we obtain the criterion

πiaij = πjaji for all i 6= j. (9.75)

When the transition probabilities are determined by the infinitesimal parameters, we
deduce that the process {X(t)} is time reversible whenever (9.75) holds.

All birth and death processes satisfying Chapter 6, (6.21) and having stationary
distributions are time reversible! Because birth and death processes have

ai,i+1 = λi,

ai,i−1 = µi,

and

ai,j = 0 if |i− j|> 1,

in verifying (9.75) it suffices to check that

πiai,i+1 = πi+1ai+1,i,

or

πiλi = πi+1µi+1 for i= 0,1, . . . . (9.76)

But [see Chapter 6, equations (6.36) and (6.73)],

πi = π0

(
λ0λ1 · · ·λi−1

µ1µ2 · · ·µi

)
for i= 1,2, . . . ,

whence (9.76) becomes

π0

(
λ0λ1 · · ·λi−1

µ1µ2 · · ·µi

)
λi = π0

(
λ0λ1 · · ·λi

µ1µ2 · · ·µi+1

)
µi+1,

which is immediately seen to be true.
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9.5.5 Proof of Theorem 9.1

Let us consider a birth and death process {X(t)} having the constant birth rate λk = λ

for k = 0,1, . . . . and arbitrary death parameters µk > 0 for k = 1,2, . . . . This process
corresponds to a memoryless server queue having Poisson arrivals. A typical evo-
lution is illustrated in Figure 9.12. The arrival process for {X(t)} is a Poisson pro-
cess of rate λ. The reversed time process Y(t)= X(−t) has the same probabilistic
laws as does {X(t)}, so the arrival process for {Y(t)} also must be a Poisson process
of rate λ. But the arrival process for {Y(t)} is the departure process for {X(t)} (see
Figure 9.12). Thus, it must be that these departure instants also form a Poisson pro-
cess of rate λ. In particular, if D(t) counts the departures in the X(·) process over the
duration (0, t], then

Pr{D(t)= j} =
(λt) je−λt

j!
for j= 0,1, . . . . (9.77)

Moreover, looking at the reversed process Y(−t)= X(t), the “future” arrivals for
Y(−t) in the Y duration [−t,0) are independent of Y(−t)= X(t). (See Figure 9.12.)
These future arrivals for Y(−t) are the departures for X(·) in the interval (0, t].
Therefore, these departures and X(t)= Y(−t) must be independent. Since Pr{X(t)=
k} = πk, by the assumption of stationarity, the independence of D(t) and X(t) and
(9.77) give

Pr{X(t)= k,D(t)= j} = Pr{X(t)= k}Pr{D(t)= j}

=
πke−λt(λt) j

j!
,

and the proof of Theorem 9.1 is complete.

X(t)

t

Departures for X( ) 

Arrivals for X( ) Departures for Y( )

Future
for Y( ) 

Arrivals for Y( ) 

Y(−t)

Figure 9.12 A typical evolution of a queueing process. The instants of arrivals and departures
have been isolated on two time axes below the graph.
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Exercises

9.5.1 Consider the three-server network pictured here:

Arrivals

Poisson, Rate
λ = 2

Server #1
μ1n = 6, n ≥ 1

Server #2
μ2n = 3, n ≥ 1

Server #3
μ3n = 2, n ≥ 1

Departs with
probability 0.8

P12 = 0.6

P13 = 0.4

P21 = 0.2

In the long run, what fraction of time is server #2 idle while, simulta-
neously, server #3 is busy? Assume that all service times are exponentially
distributed.

9.5.2 Refer to the network of Exercise 9.5.1. Suppose that server #2 and server #3
share a common customer waiting area. If it is desired that the total number
of customers being served and waiting to be served not exceed the waiting
area capacity more than 5% of the time in the long run, how large should this
area be?

Problem

9.5.1 Suppose three service stations are arranged in tandem so that the departures
from one form the arrivals for the next. The arrivals to the first station are a
Poisson process of rate λ= 10 per hour. Each station has a single server, and
the three service rates are µ1 = 12 per hour, µ2 = 20 per hour, and µ3 = 15
per hour. In-process storage is being planned for station 3. What capacity C3
must be provided if in the long run, the probability of exceeding C3 is to be
less than or equal to 1%? That is, what is the smallest number C3 = c for which
limt→∞Pr{X3(t) > c} ≤ 0.01?

9.6 General Open Networks

The preceding section covered certain memoryless queueing networks in which a cus-
tomer could visit any particular server at most once. With this assumption, the depar-
tures from any service station formed a Poisson process that was independent of the
number of customers at that station in steady state. As a consequence, the numbers
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X1(t),X2(t), . . . , XK(t) of customers at the K stations were independent random vari-
ables, and the product form solution expressed in (9.67) prevailed.

The situation where a customer can visit a server more than once is more subtle.
On the one hand, many flows in the network are no longer Poisson. On the other hand,
rather surprisingly, the product form solution of (9.67) remains valid.

Example To begin our explanation, let us first reexamine the simple feedback model
of Section 9.4.3. The flow is depicted in Figure 9.13. The arrival process is Poisson,
but the input to the server is not. (The distinction between the arrival and input pro-
cesses is made in Figures 9.2 and 9.6.) The output process, as shown in Figure 9.13, is
not Poisson, nor is it independent of the number of customers in the system. Recall
that each customer in the output is fed back with probability p and departs with
probability q= 1− p. In view of this non-Poisson behavior, it is remarkable that the
distribution of the number of customers in the system is the same as that in a Pois-
son M/M/1 system whose input rate is λ/q and whose service rate is µ, as verified
in (9.42).

Example Let us verify the product form solution in a slightly more complex two-
server network, depicted in Figure 9.14.

Feedback
Not Poisson

Arrivals

Poisson λ Rate=λ
Input

Not Poisson

Output

Feedback with
probability p

Depart with probability q
Poisson departures

Not Poisson

Figure 9.13 A single server with feedback.

Arrivals

Server #2
μ2

Server #2
μ1

Feedback with
probability p

Depart with
probability q

Poisson, Rate λ

Figure 9.14 A two-server feedback system. For example, server #2 in this system might be an
inspector returning a fraction p of the output for rework.
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If we let Xj(t) denote the number of customers at station i at time t, for i= 1,2,
then X(t)= [X1(t),X2(t)] is a Markov chain whose transition rates are given in the
following table:

From To Transition
State State Rate Description

(m,n) (m+ 1,n) λ Arrival of new customer
(m,n) (m+ 1,n− 1) µ2 Input of feedback customer
n≥ 1
(m,n) (m− 1,n) qµ1 Departure of customer
m≥ 1
(m,n) (m− 1,n+ 1) pµ1 Feedback to server #2
m≥ 1

Let πm,n = limt→∞Pr{X1(t)= m,X2(t)= n} be the stationary distribution of the
process. Reasoning analogous to that of (6.68) and (6.69) of Chapter 6 (where the
theory was developed for finite-state Markov chains) leads to the following equations
for the stationary distribution:

λπ0,0 = qµ1π1,0, (9.78)

(λ+µ2)π0,n = pµ1π1,n−1+ qµ1π1,n, n≥ 1, (9.79)

(λ+µ1)πm,0 = λπm−1,0+ qµ1πm+1,0+µ2πm−1,1, m≥ 1, (9.80)

(λ+µ1+µ2)πm,n = λπm−1,n+ pµ1πm+1,n−1+ qµ1πm+1,n (9.81)

+µ2πm−1,n+1,m, n≥ 1.

The mass balance interpretation as explained following (6.69) in Chapter 6 may
help motivate (9.78) through (9.81). For example, the left side in (9.78) measures the
total rate of flow out of state (0,0) and is jointly proportional to π0,0, the long run
fraction of time the process is in state (0,0), and λ, the (conditional) transition rate out
of (0,0). Similarly, the right side of (9.78) measures the total rate of flow into state
(0,0).

Using the product form solution in the acyclic case, we will “guess” a solution
and then verify that our guess indeed satisfies (9.78) through (9.81). First we need to
determine the input rate, call it λ1, to server #1. In equilibrium, the output rate must
equal the input rate, and of this output, the fraction p is returned to join the new arrivals
after visiting server #2. We have

Input Rate = New Arrivals + Feedback.

which translates into

λ1 = λ+ pλ1,
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or

λ1 =
λ

1− p
=
λ

q
. (9.82)

The input rate to server #2 is

λ2 = pλ1 =
pλ

q
. (9.83)

The solution that we guess is to treat server #1 and server #2 as independent M/M/1
systems having input rates λ1 and λ2, respectively (even though we know from our
earlier discussion that the input to server #2, while of rate λ2, is not Poisson). That is,
we attempt a solution of the form

πm,n =

(
1−

λ1

µ1

)(
λ1

µ1

)m(
1−

λ2

µ2

)(
λ2

µ2

)n

=

(
1−

λ

qµ1

)(
λ

qµ1

)m(
1−

pλ

qµ2

)(
pλ

qµ2

)n

for m,n≥ 1.

It is immediate that

∞∑
m=0

∞∑
n=0

πm,n = 1,

provided that λ1 = (λ/q) < µ1 and λ2 = pλ/q< µ2.
We turn to verifying (9.78) through (9.81). Let θm,n = (λ/qµ1)

m
× (pλ/qµ2)

n. It
suffices to verify that θm,n satisfies (9.78) through (9.81), since πm,n and θm,n differ
only by the constant multiple π0,0 = (1− λ1/µ1) ×(1− λ2/µ2). Thus, we proceed to
substitute θm,n into (9.78) through (9.81) and verify that equality is obtained.
We verify (9.78):

λ= qµ1

(
λ

qµ1

)
= λ.

We verify (9.79):

(λ+µ2)

(
pλ

qµ2

)n

= pµ1

(
λ

qµ1

)(
pλ

qµ2

)n−1

+ qµ1

(
λ

qµ1

)(
pλ

qµ2

)n

,

or after dividing by (pλ/qµ2)
n and simplifying,

λ+µ2 =

(
pλ

q

)(
qµ2

pλ

)
+ λ= λ+µ2.
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We verify (9.80):

(λ+µ1)

(
λ

qµ1

)m

= λ

(
λ

qµ1

)m−1

+ qµ1

(
λ

qµ1

)m+1

+µ2

(
λ

qµ1

)m−1( pλ

qµ2

)
,

which, after dividing by (λ/qµ1)
m, becomes

(λ+µ1)= λ
(qµ1

λ

)
+ qµ1

(
λ

qµ1

)
+µ2

(qµ1

λ

)( pλ

qµ2

)
,

or

λ+µ1 = qµ1+ λ+ pµ1 = λ+µ1.

The final verification, that θm,n satisfies (9.81), is left to the reader as Exercise 9.6.1.

9.6.1 The General Open Network

Consider an open queueing network having K service stations, and let Xk(t) denote the
number of customers at station k at time t. We assume that

1. The arrivals from outside the network to distinct servers form independent Poisson pro-
cesses, where the outside arrivals to station k occur at rate λ0k.

2. The departures from distinct servers independently travel instantly to other servers, or leave
the system, with fixed probabilities, where the probability that a departure from station j
travels to station k is Pjk.

3. The service times are memoryless, or Markov, in the sense that

Pr{Server #k completes a service in (t, t+1t]|Xk(t)= n}

= µkn(1t)+ o(1t) for n= 1,2, . . . , (9.84)

and does not otherwise depend on the past.
4. The system is in statistical equilibrium (stationary).
5. The system is completely open in that all customers in the system eventually leave.

Let λk be the rate of input at station k. The input at station k is composed of cus-
tomers entering from outside the system, at rate λ0k, plus customers traveling from
(possibly) other stations. The input to station k from station j occurs at rate λjPjk,
whence, as in (9.68),

λk = λ0k+

K∑
j=1

λjPjk for k = 1, . . . ,K. (9.85)

Condition 5 above, that all entering customers eventually leave, ensures that (9.85)
has a unique solution.
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With λ1, . . . ,λK given by (9.86), the main result is the product form solution

Pr{X1(t)= n1,X2(t)= n2, . . . ,Xk(t)= nK}

= ψ1(n1)ψ2(n2) · · ·ψK(nK),
(9.86)

where

ψk(n)=
πk0λ

n
k

µk1µk2 · · ·µkn
for n= 1,2, . . . , (9.87)

and

ψk(0)= πk0 =

{
1+

∞∑
n=1

λn
k

µk1µk2 · · ·µkn

}
− 1. (9.88)

Example The example of Figure 9.13 (see also Section 9.4.3) corresponds to K = 1
(a single service station) for which P11 = p< 1. The external arrivals are at rate
λ01 = λ, and (9.86) becomes

λ1 = λ01+ λ1P11, or λ1 = λ+ λ1p,

which gives λ1 = λ/(1− p)= λ/q. Since the example concerns a single server, then
µ1n = µ for all n, and (9.88) becomes

ψ1(n)= π10

(
λ1

µ

)n

= π10

(
λ

qµ

)n

,

where

π10 =

(
1−

λ

qµ

)
,

in agreement with (9.42).

Example Consider next the two-server example depicted in Figure 9.14. The data
given there furnish the following information:

λ01 = λ, λ02 = 0,

P11 = 0, P12 = p,

P21 = 1, P22 = 0,

which substituted into (9.86) gives

λ1 = λ+ λ2(1),

λ2 = 0+ λ1(p),
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which readily yields

λ1 =
λ

q
and λ2 =

pλ

q
,

in agreement with (9.82) and (9.83). It is readily seen that the product solution of
(9.86) through (9.88) is identical with (9.84), which was directly verified as the solu-
tion in this example.

Exercise

9.6.1 In the case m≥ 1,n≥ 1, verify that θm,n as given following (9.84) satisfies the
equation for the stationary distribution (9.81).

Problem

9.6.1 Consider the three-server network pictured here:

Arrivals

Poisson, Rate
λ = 2

Server #1
μ1n = 6, n ≥ 1

Server #2
μ2n = 3, n ≥ 1

Server #3
μ3n = 2, n ≥ 1

Departs with
probability 0.8

P12 = 0.6

P13 = 0.4

P21 = 0.2

In the long run, what fraction of the time is server #2 idle while, simultaneously,
server #3 is busy? Assume that the system satisfies assumptions (1) through (5)
of a general open network.



10 Random Evolutions

In the previous chapters, we have examined stochastic models whose path functions
are either of the jump variety or related to Brownian motion—which is continuous
but has infinite velocity. The aim of this chapter is to introduce a class of continuous
parameter processes, which move in a piecewise linear fashion and whose slopes jump
at the times of a Poisson process. The transition probabilities satisfy a system of linear
partial differential equations. In the simplest case, the components of the system satisfy
the one-dimensional telegraph equation, which was studied by Mark Kac1 and Sidney
Goldstein2 in the 1950s.

10.1 Two-State Velocity Model

We begin with the simplest case of random evolution, based on a set of two real num-
bers v0 = 1,v1 =−1, which are interpreted as velocities. Meanwhile, we introduce a
probability space (�,F ,Pr) on which is defined a sequence of independent random
variables with the common exponential distribution

Pr[en > t]= e−λt, 0< t <∞, n= 1,2, . . . (10.1)

and λ > 0 is a parameter, interpreted as the rate.
An increasing sequence of times is defined by forming the sums

τn := e1+ ·· ·+ en, n= 1,2, . . . τ0 := 0. (10.2)

As we showed in Theorem 5.4, p. 242, τn has a gamma distribution with parameters
(n,λ) so that

Pr[τn ∈ dt]=
(λt)n−1

(n− 1)!
λe−λt dt. (10.3)

Closely associated to τn is the counting process, defined as

N(t) := #{k : τk ≤ t}. (10.4)

1 Kac, M. (1974). Rocky Mountain Journal of Mathematics, 4, 497–520.
2 Goldstein, S. (1951). Quarterly Journal of Mechanics and Applied Mathematics, 4, 129–156.
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Proposition 10.1. N(t) has a Poisson distribution with parameter λ.

Proof.

Pr[N(t)= k]= Pr[τk ≤ t < τk+1]

= Pr[τk+1 > t]−Pr[τk > t]

=

∞∫
t

(λs)k

k!
λe−λs ds−

∞∫
t

(λs)k−1

(k− 1)!
λe−λs ds

=−

∞∫
t

d

ds

[
(λs)k

k!
e−λs

]
ds

=
(λt)k

k!
e−λt,

which was to be proved. �

The two-state velocity process is defined by

V(t)=

{
1 for τ2k < t ≤ τ2k+1

−1 otherwise.

Equivalently, we can write V(t)= (−1)N(t). This process is a special case of the
two-state continuous Markov chain. The transition probabilities Pij(t) of a two-state
continuous Markov chain have been computed in Chapter 7. Alternatively, we can
exploit the symmetry of the problem and the initial conditions V(0)=+1. Then,
P00(t)= Pr[N(t)even]; the values of the process are ±1 so that the transition matrix
can be computed in terms of the oddness/evenness of the state variable. We have

P1,1(t)= Pr[V(t)= 1|V(0)= 1]= Pr[N(t) even]

=

∞∑
k=0

(λt)2k

(2k)!
e−λt

= e−λt coshλt

=
1

2

(
1+ e−2λt).

To compute Pr[V(t)=−1|V(0)= 1], use the fact that the sum of each row of the
matrix Pij(t) is equal to one. Thus, P1,−1(t)=

1
2

(
1− e−2λt

)
. Symmetry considerations

suggest that P1,−1(t)= P−1,1(t),P−1,−1(t)= P1,1(t).
From these considerations, we conclude that the transition matrix is

P(t)=


1

2

(
1+ e−2λt

) 1

2

(
1− e−2λt

)
1

2

(
1− e−2λt

) 1

2

(
1+ e−2λt

)
.
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The properties of the matrices Pij(t) are listed as follows:

Proposition 10.2

1. P(t+ s)= P(t)P(s) t,s> 0

2. lim
t→0

P(t)= I, I =

(
1 0
0 1

)
3. P′(t)= QP(t)= P(t)Q Q :=

(
−λ λ

λ −λ

)

4. lim
t→∞

P(t)=


1

2

1

2
1

2

1

2


Exercise 10.1
Suppose that P(t) is the family of transition matrices that correspond to a two-state
Markov chain with the values v1,v2 and

P[V(t)= v1|V(0)= v1]= 1− tb+ o(t),

P[V(t)= v2|V(0)= v2]= 1− ta+ o(t), t ↓ 0,

where a> 0,b> 0.

(a) Show that the transition matrix is given by the explicit formula

P(t)=
1

a+ b

((
a+ be−µt

) (
b− be−µt

)(
a− ae−µt

) (
b+ ae−µt

)),
where µ= a+ b.

(b) Show that

E[V(t)|V(0)= v1]=
av1+ bv2

a+ b
+ e−µt bv1− bv2

a+ b
.

(c) Show that

E[V(t)|V(0)= v2]=
av1+ bv2

a+ b
+ e−µt av2− av1

a+ b
.

(d) Show that E[V(t)2|V(0= v1]= av2
1+bv2

2
a+b + be−µt v2

1−v2
2

a+b .

(e) Show that E[V(t)2|V(0)= v2]= av2
1+bv2

2
a+b + ae−µt v2

2−v2
1

a+b .

(f) Re-work Problem 6.3.3 of Chapter 6, p. 304.

Many of the above properties of two-state Markov chains extend to the case of
several states. The transition matrix consists of a set of nonnegative functions Pij(t)
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so that

N∑
k=1

Pik(t)= 1, lim
t→0

Pij(t)= 0 (i 6= j), lim
t→0

Pij(t)= 1 (i= j).

Pij(s+ t)=
N∑

k=1

Pik(t)Pkj(s) or P(s+ t)= P(t)P(s).

We use these to conclude continuity of t→ P(t). P(t+ h)= P(t)P(h) proves that the
right-hand limit P+(t) exists and is equal to P(t). Furthermore, P(h) has an inverse
for small h so that we can write P(t)= P(t− h)P(h),P(t− h)= P(t)P(h)−1, which
implies that the left-hand limit exists with P(t−)= P(t).

We can also use these ideas to prove the differentiability of t→ P(t). Writing P(t+
s)= P(t)P(s), we have for a δ > 0

t+b∫
t

P(u)du= RP(t), R :=

δ∫
0

P(u)du.

If δ is sufficiently small, then the matrix R has an inverse and we can write for 0<h<δ

P(t)= R−1

t+h∫
t

P(u)du.

Any function of this form has a derivative, given by

P′(t)= R−1[P(t+ h)−P(t)].

In particular, we can set t = 0 to express P′(0)= R−1[P(h)− I]; this proves the exis-
tence of the rates P′ij(0) for all i,j—assuming only the continuity of Pij(t) at t = 0. The
set of numbers Qij = P′ij(0) is the infinitesimal matrix.

10.1.1 Two-State Random Evolution

Beginning with V(t), a Markov chain with two states, ±1, we define the associated
random evolution by

X(t)= x+

t∫
0

V(s)ds, (10.5)

where we assume unit rates: q1 = 1= q2. A major step is to determine a set of partial
differential equations, corresponding to the backward equations studied in Chapter 6,
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pp. 295–296. In order to determine these equations, we let f= ( f1, f−1) be a pair of
bounded and differentiable functions on R and define

u(x, t)= E

f

x+

t∫
0

V(s)ds

.
Fix t and consider the integrand separately on the sets τ1 ≤ t and τ1 > t. Thus,

u(x, t)= E

f(x+

t∫
0

V(s)ds

 Iτ1≤t+E

f(x+

t∫
0

V(s)ds

 Iτ1>t

=

t∫
0

u(x+ s)λe−λsds+ e−λtf(x+ t).

The event N(t)= 0 has probability e−λt
= 1− λt+ o(t), t→ 0. On this set, we have

V(t)= 1,X(t)= x+ t.
The event N(t)= 1 has probability λte−λt

= λt+ o(t), t→ 0. On this event, we
have V(t)=−1,X(t)= x− t.

The event N(t)≥ 1 has probability = o(t), t→ 0 and can be ignored. Combining
these yields the result

Tt f (x,v)= (1− λt)fi(x+ t)+ λtf−i(x+O(t))+ o(t).

When we subtract fi(x) from both sides and take the limit when t→ 0, we obtain

lim
t↓0

t−1[Tt f (x, i)− f (x, i)]= vi f ′− vi+ λ[ f−i− fi]. (10.6)

This information can be efficiently summarized in terms of a matrix-valued partial dif-
ferential equation. We are implicitly using the Markov property Tt+s f (x)= Tt (Ts f (x))
to extend (10.6) from s= 0 to all s> 0.

Corollary 10.1. Let f= ( f1, f−1) be bounded and differentiable. Then, we have the
system of backward equations

∂

∂t

(
u1

u−1

)
=

(
u′1+ λ(u−1− u1)

−u′
−1+ λ(u1− u−1)

)
, (10.7)

where ′ = d/dx.
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10.1.2 The Telegraph Equation

The telegraph equation with rate λ is, by definition, the following partial differential
equation for a function u of two variables (t,x):

∂2u

∂t2
+ 2λ

∂u

∂t
=
∂2u

∂x2
, (10.8)

where λ > 0 is a positive constant. The telegraph equation is related to random evolu-
tion in much the same way that the heat equation is related to Brownian motion.

The history of the telegraph equation in probability theory reveals a different
source: in 1951, Goldstein demonstrated that a two-step random walk, when properly
scaled, has a distributional limit that satisfies the telegraph equation. Our approach will
derive the telegraph equation directly from a continuous-time model, without taking
limits. To see this in detail, recall the backward equations that govern the evolution of
the distributions:

∂u1

∂t
=
∂u1

∂x
+ λ(u−1− u1)

∂u−1

∂t
=−

∂u−1

∂x
+ λ(u1− u−1).

(10.9)

On the one hand, the unique solution of the system (10.9) can be written as the operator
f→ u= E[f(· +

∫ t
0 V)]. Choosing f to be the indicator of an interval, then u is the

probability that X(t) falls in that interval. This gives a justification for studying the
solutions of the system (10.9).

We now proceed to demonstrate that the all solutions of (10.9) satisfy the telegraph
equation.

Set U = u1+ u−1,V = u1− u−1. With this notation, we have

∂U

∂t
=
∂V

∂x
, (10.10)

∂V

∂t
=
∂U

∂x
− 2λV. (10.11)

We differentiate (10.10) with respect to t to obtain

∂2U

∂t2
=
∂2V

∂x∂t

=
∂

∂x

(
∂U

∂x
− 2λV

)
=
∂2U

∂x2
− 2λ

∂V

∂x

=
∂2U

∂x2
− 2λ

∂U

∂t
,
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which proves that U satisfies the telegraph equation. On the other hand, from (10.11),
we have

∂2V

∂t2
=
∂

∂t

(
∂U

∂x
− 2λV

)
=
∂2U

∂t∂x
− 2λ

∂V

∂t

=
∂

∂x

(
∂V

∂x

)
− 2λ

∂V

∂t

=
∂2V

∂x2
− 2λ

∂V

∂t
,

which proves that V also satisfies the telegraph equation. But u1 = (U+V)/2,u−1 =

(U−V)/2 so that both components u1,u2 satisfy the telegraph equation utt+ 2λut =

uxx. We summarize these computations as follows:

Proposition 10.3. Let (u1,u−1) be a solution of the system (10.9). Then, each com-
ponent uj satisfies the telegraph equation (10.8) for j=±1.

The converse is false: if we are given two solutions v1,v−1 of the telegraph equa-
tion, it is not necessary that they be the components of a solution of a first-order system
of the form (10.9). For example, if v1 is a solution of the telegraph equation, then the
first equation of (10.9) implies that v−1 = v1+ (v1)t− (v1)x, proving that v−1 cannot
be arbitrary.

10.1.3 Distribution Functions and Densities in the Two-State Model

In order to discuss the explicit form of the distribution function of the two-state pro-
cess, we appeal to some elementary analysis. We have shown that the distribution of
the two-state process is a solution of the telegraph equation. On the other hand, if
we have a solution of the telegraph equation with the same initial conditions (Cauchy
data), then we can be assured that we have found the explicit distribution function.
We also present a computation of the distribution functions, which avoids the Fourier
transform. For notational simplicity, we take λ= 1.

Solution Using Fourier Analysis

In order to solve the telegraph equation, we use the method of characteristic functions,
otherwise known as the Fourier transform and defined by

P̂i,j(t,µ) :=

∞∫
−∞

e
√
−1µyPij(t,0,dy). (10.12)
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For simplicity, we take λ= 1. Here, µ is a real parameter that measures the spatial
frequencies which are present in P. The measure P has a density inside the interval of
length 2t and two weights at the ends of this interval.

The Fourier transform of the telegraph equation is

P̂′′+ 2P̂′+µ2P̂= 0. (10.13)

Exercise 10.2
Define the Fourier transform of an integrable function f by f̂ (y)=

∫
R f (x)e−iµx dx.

Show that if f (x, t) is a soluton of the telegraph equation, then f̂ = g is a solution of
the ordinary differential equation gtt+ 2gt+µ

2g= 0. Assume as much smoothness
and decay as you need.

The general solution of (10.13) is obtained by first finding the characteristic expo-
nents, solutions of the algebraic equation

r2
+ 2r+µ2

= 0, r =−1±
√

1−µ2

in case |µ|< 1 and with a corresponding formula if |µ|> 1.
The general solution of (10.13) for |µ|< 1 is written in terms of hyperbolic func-

tions:

P̂ij(µ)= Aij(µ)e
−t cosh t

√
1−µ2+Bij(µ)e

−t sinh t
√

1−µ2.

For |µ|> 1, the hyperbolic functions can be replaced by suitable trigonometric func-
tions. In this way, we can obtain the representation of the distribution function in terms
of its Fourier transform.

Exercise 10.3
Let g(x) be a solution of the differential equation g′′+ 2g′+µ2g= 0, where µ is a real
parameter. Find the general solution in case (1)|µ|< 1, (2)|µ| = 1, and (3)|µ|> 1.

In detail, we have the following results:

P̂1,1(t,µ)= e−t

[
cosh t

√
1−µ2+

iµ√
1−µ2

sinh t
√

1−µ2

]

P̂1,−1(t,µ)= e−t sinh t
√

1−µ2√
1−µ2

P̂−1,1(t,µ)= e−t sinh t
√

1−µ2√
1−µ2

P̂−1,−1(t,µ)= e−t

[
cosh t

√
1−µ2−

iµ√
1−µ2

sinh t
√

1−µ2

]
.
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These formulas may be inverted to obtain the densities dP/dy if we apply a classical
formula for the modified Bessel function3

sinh t
√

1−µ2√
1−µ2

=
1

2

t∫
−t

I0(
√

t2− x2)eiµx dx, (10.14)

where I0 is the modified Bessel function. Formula (10.14) makes it clear that P̂(t, ·)
is the Fourier transform of a measure of compact support. Hence, the distribution
Pij(t,x,y)= 0 for |y− x|> t, whereas |y− x| ≤ t gives the values

dP1,1

dy
= e−t

[
t+ y− x

2

I1(
√

t2− (x− y)2√
t2− (y− x)2

+ δ(y− (x+ t))

]
dP1,−1

dy
=

e−t

2
I0

(√
t2− (x− y)2

)
dP−1,1

dy
=

e−t

2
I0

(√
t2− (x− y)2

)
dP−1,−1

dy
= e−t

[
t− (y− x)

2
1(
√

t2− (x− y)2√
t2− (y− x)2

+ δ(y− (x− t))

]
.

Probabilistic Approach

For a more probabilistic approach, begin with the entire function

I0(2
√

z)=
∞∑

n=0

zn

(n!)2
.

We will group the exponential random variables en into odd and even indices, thus

Un = e1+ e3+ ·· ·+ e2n−1, Vn = e2+ e4+ ·· ·+ e2n.

For each n≥ 1, the random variables Un,Vn,e2n+1,e2n+2 are independent, and the
densities are given by

Pr[Un ∈ du]=
un−1

(n− 1)!
eu du= Pr[Vn ∈ du], n≥ 1

The random velocity process V(t) satisfies

V(t)= Un−Vn+ (t−Un−Vn)= t− 2Vn

on the set Un+Vn ≤ t < Un+Vn+ e2n+1

3 Bateman, Tables of Integral Transforms, 1, 57.
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and

V(t)= Un+1−Vn+ (t−Un+1−Vn)= 2Un+1− t

on the set Un+1+Vn ≤ t < Un+1+Vn+ e2n+2.

These events are disjoint and exhaust the sample space. Hence, the distribution func-
tions can be obtained by summation of the respective probabilities. Thus,

Pr[X(t)≤ y,V(t)= 1]=
∞∑

n=0

Pr[e2n+1 > t−Un−Vn, t− 2Vn ≤ y,Un+Vn ≤ t]

Pr[X(t)≤ y,V(t)=− 1]=
∞∑

n=0

Pr[e2n+2 > t−Un+1−Vn, t− 2Vn ≤ y,Un+1+Vn ≤ t].

The term with n= 0 in the first sum is Pr[e1 > t]= e−t. For the terms with n≥ 1,
note that the conditional probability of e2n+1 > t−Un−Vn given Un and Vn is equal
to e−(t−Un−Vn). Therefore, the required probability is given by the series of double
integrals

∞∑
n=1

∫ ∫
0≤u+v<t,v≥ 1

2 (t−y)

e−(t−u−v) un−1e−u

(n− 1)!

vn−1e−v

(n− 1)!

= e−t
∫ ∫

0≤u+v<t,v≥ 1
2 (t−y)

∞∑
n=1

(
un−1vn−1

(n− 1)!2

)
dudv

= e−t
∫ ∫

0≤u+v<t,v≥ 1
2 (t−y)

∞∑
n=1

∫ ∫
0≤u+v<t,v≥ 1

2 (t−y)

I0(2
√

uv)dudv.

The second sum is handled in a similar manner. For n= 0, we have

Pr[e2 > t−U1,2U1 ≤ t+ y,U1 ≤ t]= e−t t+ y

2
.

For n≥ 1, we have

∞∑
n=1

∫ ∫
0≤u+v<t,v≥ 1

2 (t−y)

e−(t−u−v) une−u

n!

vn−1e−v

(n− 1)!
dudv

= e−t
∫ ∫

0≤u+v<t,v≥ 1
2 (t−y)

∞∑
n=1

(
∞∑

n=1

∞∑
n=1

unvn−1

(n− 1)!2

)
dudv
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= e−t
∫ ∫

0≤u+v<t,v≥ 1
2 (t−y)

∞∑
n=1

1
2 (t+y)∫
0

(t− u)n

n!

un

n!
.

The term n= 0 is also given correctly by this formula so that we can perform the sum
for n≥ 0 in the form

e−t

1
2 (t+y)∫
0

∞∑
n=0

un(t− u)n

n!2
du= e−t

1
2 (t+y)∫
0

I0(2
√

u(t− u)du.

The above calculations show that the distribution functions of X(t) are given by

Pr[X(t)≤ y,V(t)= 1]= e−t

1+
∫ ∫

0≤u+v<t,v≥ 1
2 (t−y)

I0(2
√

uv)dudv


Pr[X(t)≤ y,V(t)=−1]=

∫
0≤ 1

2 (t+y)

I0(2
√

u(t− u)du.

10.1.4 Passage Time Distributions

In Chapter 8, Section 8.2.2, p. 407, we established the distributional properties of the
first hitting time of Brownian motion B(t), t > 0 defined as

τy := inf {t > 0 : B(t)= y}. (10.15)

An explicit formula was derived for the density of this random variable. This for-
mula shows, in particular, that the moments of order less than 1/2 are finite but higher
moments are infinite. We will now discuss the corresponding properties for two-state
random evolution.

In order to discuss the hitting time of the two-state random evolution process, we
use a discrete variable j ∈ {1,−1} as well as the continuous parameter y ∈ R, which
defines the position on the real line. We define

Ty,j = inf {t > 0 : (X(t),V(t))= (y, j)}. (10.16)

In order to obtain some perspective, think of a two-state process where the velocities
do not sum to zero; in that case, the process tends to infinity and cannot be expected
to hit all points.

To generate a computational algorithm, consider the Laplace transform, defined as

φi(α,x,y)= E
(
e−αTy,1 |X(0)= x,V(0)= i

)
, i=±1. (10.17)
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For x< y, they satisfy the following system of integral equations

φ1(α,x,y)= e−(1+α)(y−x)
+

y−x∫
0

e−(1+α)sφ−1(α,x+ s,y)ds (10.18)

φ−1(α,x,y)=

∞∫
0

e−(1+α)sφ1(α,x− s,y)ds. (10.19)

When we differentiate (10.18) with respect to x and simplify, we obtain the following
first-order system:

∂φ1

∂x
+ (φ−1−φ1)= αφ1 (10.20)

−
∂φ−1

∂x
+ (φ1−φ−1)= αφ−1. (10.21)

Both components φ1,φ−1 are solutions of the single second-order equation ∂2φ/∂x2
=

α(α+ 2)φ and are bounded functions when x< y. Hence, one cannot use the exponent
that is positive. Substituting into (10.20), this can be solved to obtain

φ1(α,x,y)= e−(y−x)
√
α(α+2) x< y (10.22)

φ−1(α,x,y)= e−(y−x)
√
α(α+2) [1+α+

√
α(α+ 2)]−1. (10.23)

These Laplace transforms can be inverted in terms of the modified Bessel functions
if we apply the formula of (Bateman, Higher Transcendental Functions, vol. 2, p. 200,
no. 18):

Pr[Ty,1 ∈ ds|V(0)= 1,X(0)= x]= (y− x)e−s I1(
√

s2− (y− x)2√
s2− (y− x)2

. s< y− x

(10.24)

For s> y− x, the density function is zero, whereas there is a point mass of weight
ey−x at the point s= y− x, corresponding to those polygonal paths that have suffered
no changes of direction.

The above formulas can be applied to study the recurrence of the Kac–Goldstein
process. In general, we say that a point is recurrent if and only if P[τy <∞|X(0)= y,
V(0)= i]= 1. In this case, we have

P[τy <∞|X(0)= x,V(0)= i]= lim
α→0

φ(α,x,y)= 1

for all y< x. Taking y→ x yields the conclusion.

Proposition 10.4. The passage time distributions of the two-state random evolution
are given by (10.24). Every point is recurrent.
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10.2 N-State Random Evolution

We now generalize the notion of random evolution to systems based on a Markov
chain in continuous-time with an arbitrary finite number of states. We first discuss
the random velocity model—a Markov chain with finitely many states. The spectral
properties of the Markov chain are used to prove the law of large numbers and the
central limit theorem.

10.2.1 Finite Markov Chains and Random Velocity Models

A continuous-time finite-state Markov chain is associated with a one-parameter family
of matrices P(t)= Pij(t),1≤ i, j≤ N, which has the properties

Pij(t)≥ 0,
N∑

j=1

Pij(t)= 1,1≤ i≤ N

Pij(t+ s)=
N∑

k=1

Pik(t)Pkj(s), lim
t→0

P(t)= I.

From the results in Chapter 6, Section 6.6, we recall that t→ P(t) is continuous at
every t > 0 and the derivative P′(t) exists, especially at t = 0. This defines the infinites-
imal rates of the Markov chain:

qij := lim
t→0

Pij(t)− δij

t
,

which satisfies
∑N

j=1 qij = 0,qii ≤ 0. The row sums of Q are zero, and the diagonal ele-
ments of Q are negative or zero, so we can define qi :=−qii,1≤ i≤ N where qi ≥ 0.
The case qi = 0 is trivial and is excluded, so we can divide by qj to obtain a stochastic
matrix

pij =
qij

qj
. 1≤ i 6= j≤ N, pjj = 0

The matrix pij is a stochastic matrix, since

pij ≥ 0,
N∑

j=1

pij = 1.

10.2.2 Constructive Approach of Random Velocity Models

Given a Q matrix, as above, and a finite set of real numbers

3= {v1 < v2 < · · ·< vN},
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let W be the set of all piecewise constant, right continuous functions t→ V(t,ω).
We construct a family of random process Prx,x ∈3 on W as follows:
A pair of stochastic sequences (en,Zn)n≥1 ∈ R×3 is defined by:

Prx(e1 > t)= e−qx , Prx[Z1 = z|e1]= qxz/qx.

Assuming that e1,Z1, . . .eN,ZN have been defined, the conditional distributions of
eN+1,ZN+1 are postulated as follows:

Pr[eN+1 > t|e1, . . . ,eN,ZN]= e−tqZN ,Pr[ZN+1 = z|e1, . . . ,eN,ZN]= qZN ,z/qZn .

It is directly verified that

l The random variables Zn,n≥ 1 form a discrete-time Markov chain.
l If qx is constant for x ∈3, then the random variables en,n≥ 1 are independent and identi-

cally distributed: Prx[en > t]= e−qxt.

10.2.3 Random Evolution Processes

Having constructed the random velocity model, we can define the random evolution
process on R×3 by setting

Zx(t,ω)=

x+

t∫
0

V(s,ω)ds,V(t,ω)

. (10.25)

Although the second component (V(t)) has the Markov property, this is not true for the
first component alone. However, the joint process Z(t) enjoys the Markov property,
written in the form

Pr[Z· ∈ A|Zr,r ≤ s)

that depends only upon Zs.
The next theorem is the backward equation for the general random evolution

process. It gives the time evolution of the probabilities of general sets, through
the equation P(Z(t) ∈ A|Z(0)= x)= E(1A(Z(t))|Z(0)= x), where 1A is the indicator
function of the set A: 1A = 1 on A, 1A = 0 on Ac.

Theorem 10.1. Let f= ( f1, f2, . . . , fN) be an n-tuple of differentiable functions.
u(t,x,v) := E[f(Z(t))|Z(0)= (y,v)]. Then, u satisfies the system of partial differential
equations

∂u

∂t
(t,x,vi)= v

∂u

∂x
(t,x,vi)+

N∑
j=1

qiju(t,x,vj), v= vi,x ∈ R, t > 0, i≤ i≤ N.

(10.26)

This is proved using a corresponding system of integral equations.



Random Evolutions 509

Proposition 10.5. If f= ( f1, . . . , fN) is an n-tuple of differentiable functions and
v= vi,x ∈ R, t > 0,1≤ i≤ N, then

u(t,x,v)= e−tqx fv(x+ vt)+
∑
j6=i

qij

t∫
0

e−sqiu(t− s,x+ vis)ds. (10.27)

This is proved in the same manner as in the case N = 2 studied in Section 10.1. At a
fixed moment t > 0, either the first jump has not occurred and this event has probabil-
ity qx or the first jump occurs at some time τ , which is distributed on the interval [0, t]
according to the exponential distribution with density qxe−sqx .

10.2.4 Existence-Uniqueness of the First-Order System (10.26)

Quite apart from the probabilistic model, it is important to know the properties of the
system (10.26).

Proposition 10.6. If f= ( f1, . . . , fN) is an n-tuple of differentiable functions, the equa-
tion (10.26) has a solution u(t, ·) that is unique within the class of bounded functions
and satisfies u(0, ·)= f .

Proof of Existence. Let

u0(t,x,vi)= e−tqi fi(x+ vit)
(10.28)

un+1(t,x,vi)= e−tqi fi(x+ vit)+
∑
j6=i

qij

t∫
0

e−sqiun(t− s,x+ vis,vj) n≥ 0.

Since u0 is in C(3), mathematical induction shows that un(t, ·) ∈ C(3) for all n≥ 0.
Now,

un+1(t,x,vi)− un(t,x,vi)

=

∑
j6=i

qij

t∫
0

e−sqi
(
un(t− s,x+ vis,vj)− un−1(t− s,x+ vis,vj)

)
ds.

Let

φn(t)= sup
a,v,s≤t

|un+1(s,a,v)− un(s,a,v)|.

Upon iteration, this becomes the factorial estimate

φn(t)≤
(Qt)n

n!
φ0(t),
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which shows that the series u0+
∑
∞

0 (un+1− un) converges uniformly in a to a
continuous limit u∞. Using this uniform convergence, it follows that u∞ is a solu-
tion of (10.26). �

Proof of Uniqueness. Let u1,u2 be two solutions and set U := u1− u2. It satisfies

U(t,x,vi)=
∑
j6=i

qij

t∫
0

e−qisU(t− s,x+ vis,vj)ds.

Letting 8(t)= supa,t U(a, t), we find that 8(t)≤ Q
∫ t

08(s)ds whose only solution is
8(t)= 0. �

10.2.5 Single Hyperbolic Equation

The system of first-order partial differential equations

∂ui

∂t
= vi

∂ui

∂x
+

N∑
j=1

qijuj 1≤ i≤ N (10.29)

can be related to a single partial differential equation of the Nth order, satisfied by
each of the component functions ui,1≤ i≤ N. In case N = 2 and v1 = 1=−v2,q1 =

q= q2, this PDE includes the telegraph equation with rate q, which has been shown in
the previous section.

Lemma 10.1. Let Q,V be N-dimensional real matrices. A polynomial P is defined by

P(λ,µ)= det(Q+ λV −µ)=
∑

k+l≤N

aklλ
kµl

for suitable constants akl. A differential operator on functions is defined by

H := det(Q+V∂x− ∂t)=
∑

k+l≤N

akl∂
k
t ∂

l
x, ∂t :=

∂

∂t
,∂x :=

∂

∂x
(10.30)

meaning that we compute P(λ,µ) and make the substitution λ→ ∂x,µ→ ∂t. In full
detail, H=

∑
k+l≤N akl∂

k
x ∂

l
t .

Let u= (ui) be a solution of the first-order linear system

∂tu= V∂xu+Qu.

Then, for each i,1≤ i≤ N, we have Hui = 0.
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Proof. For any matrix A, we have the identity det A= (adj A)×A; apply this to the
case A= Q+ λV −µ. A is a linear function of (λ,µ) and the classical adjoint adj A
is also a polynomial in λ,µ, of degree N− 1. Applying this to A= Q+ λV −µ, we
have

P(λ,µ)= (adj A)(Q+ λV −µ).

Making the substitutions for λ,µ, we have for each i,1≤ i≤ N

Hui = (adj A)(Q+V∂x− ∂t)u= 0.

Hence for each i, we have Hui = 0, as required. �

Returning to equation (10.29), it follows that each component u= ui satisfies the
(scalar) PDE

det


q11+ v1∂x− ∂t q12 . . . q1n

q21 q22+ v2∂x− ∂t . . . . . .
...

...
...
...

qn1 qn2 . . . qnn+ vn∂x− ∂t

ui = 0. (10.31)

In case N = 2, q1 = q= q2,v1 = 1=−v2, this is the statement that both compo-
nents satisfy the telegraph equation with rate q:

det

(
−1− ∂/∂t+ ∂/∂x 1

1 −1− ∂/∂t− ∂/∂x

)
u= 0.

Example The most general two-state random evolution has v1 6= v2, q1 6= q2. In this
case, the second-order PDE (10.31) is(

∂2

∂t2
− (v1+ v2)

∂2

∂t∂x
+ v1v2

∂2

∂x2
+ (q1+ q2)

∂

∂t
− (q1v2+ q2v1)

∂

∂x

)
u= 0.

(10.32)

In the special case q1 = q2 = 1,v1 = 1=−v2, we obtain the telegraph equation with
rate 1: utt+ 2ut− uxx = 0.

Exercise 10.4
Show that (10.32) follows from (10.31), when we take N = 2.

If we write the PDE (10.31) in the form

Hu=
∑

k+l≤2

aklD
k
t Dl

xu= 0, (10.33)

then a20 = 1, a11 = (v1+ v2), a02 = v1v2, a10 = q1+ q2, a01 = v1q2+ v2q1, a0 = 0.
Then, a short calculation shows that



512 An Introduction to Stochastic Modeling

(i) The polynomial λ2
+ a11λ+ a02 = 0 has two distinct real roots v1 < v2.

(ii) a10 > 0.
(iii) v1 < a01/a10 < v2.

Conversely, one may characterize the coefficients as follows: suppose that we are
given a second-order constant coefficient linear PDE written in the form (10.33) and
satisfying the conditions (i)-(ii)-(iii). Then, there exist constants v1 < v2,q1 > 0,q2 >

0 such that (10.32) holds.

Exercise 10.5
Prove that any PDE of the form (10.33) satisfies conditions (i)-(ii)-(iii), when one
writes it in the form (10.33).

Exercise 10.6
Suppose that we are given constants v1 < v2,q1 > 0,q2 > 0 satisfying the conditions
(i)-(ii)-(iii). Then, we can define a10,a01 so that (10.33) holds.

Example Let N = 3 and (vi,qij) be otherwise arbitrary. Then, the system (10.29)
becomes the single third-order equation

L := D3
t − (v1+ v2+ v3)D2

t Dx+ (v1v2+ v1v3+ v2v3)DtD2
x − v1v2v3D3

x

−(q11+ q22+ q33)D2
t + q11(v2+ v3)+ q22(v1+ v3)+ q33(v1+ v2)DtDx

−(q11v2v3+ q22v1v3+ q33v1v2)D2
x

+(q11q33− q13q31+ q11q22+ q12q21+ q22q33− q23q32)Dt

+(v1(q23q32− q22q33)+ v2(q13q31− q11q33)+ v3(q12q21− q11q22)u= 0.

WritingH in the form (10.33), it is easy to see that the coefficients obey the following
necessary conditions:

(i’) The polynomial λ3
+ a21λ

2
+ a12λ+ a03 has distinct real roots.

(ii’) a20 > 0,v1+ v2 < a11/a20 < v2+ v3, ;a02/a20 ∈ [mini6=j vivj,maxi6=j vivj].
(iii’) There exists δ > 0 such that δ < a10 < q1q2+ q1q3+ q2q3. In case qi is constant q, then

δ = (9q2/4).

Exercise 10.7
Prove the necessary conditions (i’), (ii’), and (iii’).

10.2.6 Spectral Properties of the Transition Matrix

In this section, we return briefly to study N-state Markov chains. The results will be
used to obtain the central limit theorem and the law of large numbers for the random
evolution process.

To study the asymptotic properties of the transition matrix P(t), we need to obtain
information about its eigenvalues. Clearly, the complex number γ = 0 is an eigenvalue
with eigenvector (1,1, . . . ,1)T . The next lemma gives further information.
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Lemma 10.2. If γ is any eigenvalue of the matrix Q, then Reγ ≤ 0.
If γ is a purely imaginary eigenvalue of the matrix Q, then γ = 0.

Proof. If γ is any eigenvalue, then there exists a set of complex numbers (ck), not all
zero, so that

N∑
k=1

qikck = γ ci. 1≤ i≤ N

Moving the term qiici to the other side and taking the modulus, we have

|γ + qi||ci| =

∣∣∣∣∣∣
∑
k 6=i

qikck

∣∣∣∣∣∣ 1≤ i leN

≤max
k

∣∣∣∣∣∣
∑
k 6=i

qikck

∣∣∣∣∣∣
=max

k
|ck|qi.

Now, choose i to maximize |ci|. This allows one to cancel a common factor, resulting
in the inequality |γ + qi| ≤ qi which states that γ lies in a circle of radius qi, centered
at −qi. In particular Reγ ≤ 0, with equality if and only if γ = 0.

In order to treat the law of large numbers and the central limit theorem, we need
to develop the properties of the matrix Q+ iξV , where ξ is real, V is a real diagonal
matrix, and Q is the infinitesimal matrix of an irreducible continuous-time Markov
chain. In particular, the matrix Q has a simple eigenvalue γ = 0, and all other eigen-
values lie in the strict left half-plane Re(γ ) < 0. The detailed behavior is in the next
proposition. �

Proposition 10.7. With the above assumptions, we have the following behavior: there
exist eigenvalues γ1(ξ), . . . ,γN(ξ) of Q+ iξ −V and δ > 0 so that

Reγk(ξ)≤−δ < 0 if−∞< ξ <∞, 2≤ k ≤ N, (10.34)

Reγ1(ξ)≤−δ < 0 if|ξ |> δ, (10.35)

γ1(ξ)= φ̄ξ +
σ 2ξ2

2
+O

(
ξ3), ξ → 0 φ̄ :=

∑
j

vjπj. (10.36)

Proof. To prove the first two statements, we recall that P(γ,λ)=
∑

k+l≤N aklλ
kγ l

and that γ (λ) is obtained by solving P(γ,λ)= 0. Let ν(λ) := λγ (1/λ). Then,
B(ν,λ) :=

∑
ak+l≤Nν

k λn−k−l
= 0. Setting λ= 0, it follows that

∑
ak+l=Nν

k
= 0.

This shows that limν→0 ν(λ)= i vj for some j. Since (vj) are distinct, it follows that
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ν(λ)= ivj+ λφ(1/λ) for some smooth function φ(λ). Translating back into the λ lan-
guage, this is written as

γ (λ)= iλvj+φ(1/λ),

where λ→∞. If we substitute this expansion into the original equation det(Q+
λV − γ )= 0, it follows that φ(0)= qjj, which was to be proved. �

The eigenvalue equation for γ (ξ) is

(Q+ iξV)c= γ c
N∑

k=1

qjkck+ iξvjcj = γ cj 1≤ j≤ N

∑
k 6=j

qjkck = (γ − iξvj− qj)cj

|γ − iξvj+ qj|cj ≤maxj |cj|
∑
k 6=j

qjk = |cj|qj.

Choose j so that |cj| =maxk |ck|, which leads to the inequality

|γ + qj− iξvj| ≤ qj.

This is the equation of a disk centered at (−qj,vjξ) of radius qj. A glance at the γ
plane shows that every point in the disk satisfies the inequality Re(γ )≥ qj− |vj|> 0.
But Reγ (0) < 0 for 2≤ k ≤ N from which (10.34) and (10.35) follow.

To prove (10.36), recall that the eigenvectors and eigenvalues have asymptotic
expansions about a simple eigenvalue, e.g., γ = 0. Thus,

e(ξ)= e0+ e1ξ +O
(
|ξ |2

)
(10.37)

γ (ξ)= γ0+ γ1ξ + γ2ξ
2
+O

(
|ξ3). (10.38)

The coefficients need to be chosen so that (Q+ iξV)e= γ (ξ)e. This requires that

Qe0 = γ0e0 (10.39)

Qe1+ iVe0 = γ1e0+ γ0e1 (10.40)

Qe2+ iVe1 = γ2e0+ γ1e1+ γ0e2 (10.41)

and so forth. Equation (10.39) is solved by taking γ0 = 0,e0 = 1. To solve the sec-
ond equation, take the inner product of each side with the stationary distribution πj,
solution of

∑
jπjqjk = 0. The final term is already zero from the choice of γ0. We are



Random Evolutions 515

left with two terms involving Ve0 and γ1, which yield the first nonzero term in the
expansion (10.38) of the eigenvalue. The next term is obtained by computing the inner
product of e0 and Qe2.

10.2.7 Recurrence Properties of Random Evolution

It is well known (see Section 4.3.3) that a random walk in one dimension is recurrent if
and only if the common distribution has mean value zero. The same holds true for one-
dimensional Brownian motion: the process is recurrent if and only if the drift (mean
value) is zero.

When we come to random evolution a similar criterion is valid: the process is recur-
rent if and only if the overall process has mean zero. As in the case of irreducible
Markov chains, returning once is equivalent to returning infinitely often, which we
make precise below.

Let 3= R×{1,2, . . .N} be the state space of a random evolution process Z(t)=
(X(t),Y(t)). If z= (a, i) ∈3, w= (b, j) ∈3, we write the hitting time as the extended
random variable

Tw = inf{t > 0 : Z(t)= w}, Tw =+∞ otherwise

π(z,w) := Pz[Tw <∞]

is the hitting probability of w starting at z. In these terms, recurrence means that
π(z,z)= 1, for all pairs z ∈3.

The proof hinges on a system of integral equations satisfied by the Laplace trans-
form of the hitting time distribution, defined by

uα(z,w)= Ez
[
e−αTw

]
z,w ∈3,α > 0. (10.42)

Lemma 10.3. If I(z)= I(w) and (b− a)/vi > 0, then

uα(z,w)= e−(α+qi)(b−a)/vi +

∑
k 6=i

qik

(b−a)/vi∫
0

e−(α+qi)suα(zs,w)ds, (10.43)

where zs := (a+ vis), I(z)= i.
If I(z) 6= I(w) or (b− a)/vi ≤ 0, then

uα(z,w)=
∑
k 6=i

qik

∞∫
0

e−(α+qi)suα(zs,w)ds. (10.44)

In the first case, the random process hits w (with a positive probability) before chang-
ing directions. In the second case, the process changes direction before hitting w, with
probability one.
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Letting α→ 0, we have the system of integral equations for the hitting probabili-
ties.

Lemma 10.4. If I(z)= I(w) and (b− a)vi > 0, then π(z,w)= e−(qi(b−a)/vi

+
∑

k 6=i

∫ (b−a)/vi
0 e−qisπ(zs,w)ds.

If I(z) 6= I(w) or (b− a)/vi ≤ 0, then π(z,w)=
∑

k 6=i

∫
∞

0 e−qIsπ(zs,w)ds.

These integral equations allow us to deduce the smoothness properties of the hitting
probabilities.

Lemma 10.5. For fixed w= (b, j), the mapping z→ π(z,w) is continuous everywhere,
with the possible exception of the place z= w. The mapping is infinitely differentiable
for z 6= w provided that vi 6= 0.

This is proved by changing variables in the integrals, which represent π . The proof
is left to the reader.

A simple example shows that the statement of the lemma cannot be improved

in general. To see this, take N = 2, Q=

(
−1 1

1 −1

)
, and v1 > 0> v2,v1+ v2 > 0.

Direct computation using lemma (10.4) yields the formulas

π(x,1;0,2)=
v2

v1+ v2
(1− eµx)1(−∞,0)(x)

π(x,2;0,2)=
1

v1+ v2
(v2+ v1eµx)1(−∞,0)(x),

where µ= (v1+ v2)/v1v2 > 0. This reflects the fact that if we start at the left of zero
and are moving to the right, then we almost certainly hit zero, moving to the right; if
we start at the left of zero and are moving to the left, the probability of hitting zero
from the left is nearly zero.

The corresponding local statements follow immediately.

Lemma 10.6. If (b, j) is fixed, then the hitting probabilities are harmonic functions of
(x, i):

viπ
′
i (x)+

N∑
k=1

qikπk(x)= 0, 1≤ i≤ N (10.45)

10.3 Weak Law and Central Limit Theorem

The normal distribution plays a fundamental role in the theory of probability and
stochastic processes. Brownian motion furnishes a family of normally distributed ran-
dom variables with mean zero and variance proportional to the time t. Many other
nonnormal distributions are well approximated by the normal distribution if one takes
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sufficiently many independent components. This leads to the central limit theorem—
the subject of deep analysis on the one hand and numerical confidence levels on the
other hand.

In the case of random evolutions, there is a counterpart of these limit theorems.
Consider a finite-state Markov chain V(t) with real numbers v1 < v2 < · · ·< vN and
form

Mt :=

t∫
0

(V(s)−m)ds. (10.46)

With the proper choice of m, we will have Ex[Mt]= 0 Var[M2
t ]∼ σ 2t. The weak

law of large numbers asserts the weak convergence of Mt/t to the constant m. The cen-
tral limit theorem asserts the weak convergence of the distributions of (Mt−mt)/

√
t

to a normal distribution whose variance will be computed.
Based on the analogy with Brownian motion, we can formulate and prove the

analogs of the classical weak law of large numbers and the central limit theorem.
The setup is based on a continuous-parameter finite-state Markov chain V(t), t ≥ 0
with one ergodic class and no transient states. A real-valued function φ is written
φ(vi),1≤ i≤ N. For maximum flexibility, we consider a continuous additive func-
tional defined by

X(t)=

t∫
0

φ(V(s))ds,

where φ is a real-valued function. The weak law of large numbers states that

lim
T→∞

1

T

T∫
0

φ(V(s))ds=
N∑
1

π(k)φ(vk), (10.47)

where the convergence is in probability, i.e., for every δ > 0

P

ω :

∣∣∣∣∣∣ 1

T

T∫
0

φ(V(s)ds−
N∑
1

π(k)φ(vk)

∣∣∣∣∣∣> δ
→ 0 N→∞.

(10.47) is equivalent to the condition that for every bounded and continuous f

lim
T→∞

Ef

 1

T

T∫
0

φ(s)ds

= f

(
N∑
1

π(k)φ(vk)

)
= 0.

For example, suppose that φ(v)= 1 for v= v1 and φ(v)= 0 otherwise. Then, the
left side of (10.47) is the limiting fraction of time in the interval [0,T] that the Markov
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chain spends at v1. The right side of (10.47) is the stationary measure of the point v1.
In other words,

THE TIME AVERAGE EQUALS THE SPACE AVERAGE.

We can obtain an intuitive idea of the validity of (10.47) by computing expectations.
Then,

E[X(t)|V(0)= vi]=

t∫
0

E[φ(V(s))|V(0)= vi]ds

=

t∫
0

N∑
j=1

φ(vj)Pij(s)ds.

Recalling that limt→∞Pij(t)= πj, we obtain

lim
t→∞

t−1E[X(t)|V(0)= vi]=
N∑

j=1

φ(vj) lim
t→∞

t−1

t∫
0

Pij(s)ds

=

N∑
j=1

φ(vj)πj := φ̄.

This calculation shows that the mean value of the time average tends to the space
average, as expressed through the stationary distribution. The weak law of large num-
bers shows that the mean value can be omitted in the previous sentence.

The central limit theorem is a refinement of the weak law of large numbers. Using
the same notation as above, it states that

P

[
X(t)− φ̄t
√

t
< x

]
→8

( x

σ

)
, t→∞

where σ > 0 and8 is the standard normal distribution function, defined by the integral

8(x)=

x∫
−∞

e−y2/2

√
2π

dy, −∞< x<∞.

The proof will be organized in a non-probabilistic fashion, using the Fourier trans-
form of the various random variables. In what follows, we will use the indices ( j,k)
in place of (i, j), since we want to save the letter i for

√
−1.

WLLN : E
[
eiξX(t)/t1k(V(t))|V(0)= j

]
→ eiξ φ̄πk, ξ ∈ R, 1≤ j,k ≤ N

CLT : E

[
e

iξ X(t)−φ̄t
√

t 1k(V(t))|V(0)= j

]
→ e−γ2ξ

2
πk, ξ ∈ R, 1≤ j,k ≤ N
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The constant γ2 > 0 indicates the amount of randomness in the original Markov chain.
The proof will be broken into several stages, each of which involves elementary

calculations. The common hypothesis is that the matrix Q has one single ergodic class
and no transient states. In particular, zero is a simple eigenvalue and all other eigen-
values of Q are strictly in the left half-plane.

Step 1: (Solution of Poisson’s equation) The matrix equation QH = HQ=−I+5
has the solution Hij =

∫
∞

0 (Pij(t)−πj)dt where the convergent of the integral is expo-
nentially fast, and πj is the stable probability distribution, solution of πQ= 0.

Step 2: (Quadratic forms in the Q matrix) The matrix Q satisfies the identity

< Qv,v>π :=
N∑

i,j=1

πiqijvivj =−
1

2

N∑
i,j=1

πiqij(vi− vj)
2
≤ 0

with equality iff v= c(1,1, . . . ,1) for some constant c.
Let P̂jk(t,ξ) be the Fourier transform, defined by

P̂jk(t,ξ)= E
[
eiξX(t) 1V(t)=k|V(0)= j

]
.

Step 3: The Fourier transform can be written as the matrix exponential

P̂jk(t,ξ)= E
[
et(Q+iξφ)

]
jk
. (10.48)

From the elementary theory of matrices, it is known that the solutions of the equa-
tion (Q+ iξφ)e(ξ)= γ (ξ)e(ξ) have expansions as analytic functions of ξ . The solu-
tion γ 1 tends to zero while the other branches satisfy Re(γj)≤−δ < 0 for some δ > 0
and all ξ,−∞< ξ <∞.

Step 4: There exists a solution of the eigenvalue problem (Q+ iξφ)e= γ (ξ)e(ξ)
with the expansions about ξ = 0

γ (ξ)= φ̄ξ + σ2ξ
2
+O

(
ξ3), ξ → 0 (10.49)

e(ξ)= 1+ e1(ξ)+O
(
ξ2), ξ → 0. (10.50)

Proof of the WLLN. We have the matrix exponential representation

E (exp(iX(t)/t))jk = exp t(Q+ iξ/t)= etγ (ξ/t)
+O

(
e−tδ), t→∞.

When t→∞, the right-hand side converges to eitφ̄ξ . The continuity theorem proves
that the distribution functions converge to a distribution concentrated at the point x=
φ̄ :=

∑
jπjφj. �

Proof of the CLT. We have the matrix exponential representation

E
(

exp(i(X(t)−mt)/
√

t)]jk

)
= exp t(Q+ iξ/t)j,k =

N∑
l=1

etγl(ξ/t).
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Applying Step 4, we have

lim
t→∞

E

[
exp

[
iξ

X(t)− tφ̄
√

t

]
1v(t)=j

]
= πje

γ2ξ
2
.

We outline the main steps to prove Step 1. The other proofs are left to the reader. �

Proposition 10.8. If zero is a simple eigenvalue of Q, then πk = limt→∞ pjk(t) exists,
is independent of j, and satisfies πQ= 0. The convergence is exponentially fast and
the integral

Hij =

∞∫
0

(pij(t)−πj)dt (10.51)

is convergent. It satisfies the equations H1= 0, < Hv,1>= 0, for any vector v and
satisfies the Poisson equation

QH = HQ=−I+5,

where 5 is the projection onto the constant vectors, defined by 5f =
∑N

1 fkπk.

Proof. The exponential convergence is guaranteed by the location of the eigenvalues
in the left half-plane, coupled with the Jordan canonical form. From the differential
equation P′(t)= QP(t)= P(t)Q, we take t→∞ to obtain that the limiting matrix R
satisfies QR= RQ= 0. In particular, the columns of R are eigenvectors with eigen-
value zero, hence each column of R is a constant: Rij = πj. Furthermore, the equation
RQ= 0 shows that the row vector πi is a left eigenvector, solution of πQ= 0. Finally,
we come to the H matrix:

N∑
k=1

pik(s)Hkj =

N∑
k=1

pik(s)

∞∫
0

(pkj(t)−πj)dt

=

∞∫
0

(pij(s+ t)−πj)dt

=

∞∫
s

(pij(u)−πj)du.

Therefore,

n∑
k=1

qikHkj =
d

ds

∞∫
s

(pij(u)−πj)du|s=0 = πj− δij.

�
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10.4 Isotropic Transport in Higher Dimensions

In this section, we consider models of random motion in several dimensions. The finite
Markov chain models of the previous sections are not well suited for this purpose,
since one needs a continuum of directions as soon as the dimension is two or greater.

10.4.1 The Rayleigh Problem of Random Flights

The classical theory of probability provides a starting point for the higher-dimensional
case, by means of the Rayleigh problem of random flights. This was first posed by
Karl Pearson in 1905 in the following terms: “A man starts from a point O and walks l
yards in a straight line; he then turns through any angle whatever and walks another l
yards in a second straight line. He repeats this process n times. It is required to find
the probability that after n stretches he is at a distance between r and r+ dr from his
starting point O.”

To solve Pearson’s problem, we assume that each step is a random variable and
that the collection of steps forms a sequence of R2-valued independent and isotropic
random variables with the same distribution. This is written

Sn = X1+ ·· ·+Xn, Pr[x1 ∈ dr× dθ ]= f (r)dr dθ, (10.52)

where f (r) is a nonnegative f on [0,∞) normalized so that
∫
∞

0 f (r)dr = 1/2π .
The behavior of the sum is most effectively studied by means of the Fourier

transform

8n(λ) := E
[
eiλṠn

]
= E

[
eiλ·X1

]n
=

 ∞∫
0

2π∫
0

ei|λ|r cosθ f (r)dr dθ

n

=

2π

∞∫
0

J0(|λ|r f (r)dr

n

2.

Thus,

Prob[Sn ∈ (r,r+ dr)]

dx
=

1

(2π)2

∫
R2

8n(λ)e
−iλ·xdλ1 dλ2

=
1

(2π)2

2π∫
0

∞∫
0

8(λ)e−iλr cosφλdλdφ

=

∞∫
0

J0(rλ)8n(rλ)λdλ.
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The solution of Pearson’s problem is given formally by

P[Sn ∈ r,r+ dr)]

dr
=

∞∫
0

J0(rλ)8n(λ)rλdλ. (10.53)

The exact computation of the integral defining 8n(λ) may be difficult, depending
on the form of the density function f (r). Moreover, the inversion of the resultant nth
power may be formidable. Nevertheless, it is straightforward to obtain the analog of
the law of large numbers and the central limit theorem for this model. We recall the
asymptotic behavior of the Bessel function J0:

J0(x)=
1

2π

2π∫
0

eizcosθ

=
1

2π

2π∫
0

[
1+ ixcosθ −

x2

2
cos2 θ +O

(
|x|3

)]
dθ

= 1−
x2

4
+O

(
|x|3

)
, x→ 0

When we replace λ by λ/n, the integral = 1+O(1/n2), which, when taken to the nth
power, tends to 1. This gives the law of large numbers in the form

lim
n→∞

E
[
eiλ·Sn/n

]
= 1 λ ∈ R2. (10.54)

To obtain the appropriate form of the central limit theorem, we replace λ by λ/
√

n,
which yields an integral of the form 1−

(
π |λ|2/2n

)∫
∞

0 r2 f (r)dr+O
(
1/n3/2

)
. When

we take this to the nth power, we obtain the central limit theorem in the form

lim
n→∞

E
[
eiλSn/

√
n
]
= e−λ

2σ 2/2, (10.55)

where σ 2
=
∫
∞

0 πr2 f (r)dr.
These results are the counterparts of the asymptotic results obtained for the

two-state velocity model, studied in Section 10.1, which is the one-dimensional
continuous-time analog of the Rayleigh problem of random flights. The variance
parameter σ 2 depends on the form of the radial density function f (r).

Exercise 10.8
Suppose that we have an exponential distribution with radial density function f (r)=
(2πa)−1e−r/a. Then, σ 2e−r/a dr = a2.
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10.4.2 Three-Dimensional Rayleigh Model

The three-dimensional counterpart of Pearson’s problem can be solved by reduction
to a well-studied one-dimensional problem—as is often the case in three-dimensional
spherically symmetric models.

Let {Xn} be a sequence of independent and uniformly distributed random variables
on the unit sphere in three-dimensional space; Sn := X1+ ·· ·+Xn. The radial density
function f (r) is defined as the quotient

fn(r)=
P[|Sn| ∈ (r,r+ dr)]

dr
. (10.56)

This can be expressed in terms of the density function of a sum of independent and
uniformly distributed random variables on the interval [−1,1], as follows.

Proposition 10.9. The density function is expressed in the form

fn(r)=−rg′n(r),

where

gn(r)=
P[[Y1+ ·· ·+Yn] ∈ (r,r+ dr)]

dr

and where {Yn,n≥ 1} is a sequence of real-valued and independent random variables
with the uniform distribution on [−1/2,1/2].

Proof. We have

E
[
eiλ·Sn

]
= E

[
eiλ·X1

]n
=

 1

4π

2π∫
0

π∫
0

eiλcosθ sinθ dθ dφ


=

(
sinλ

λ

)n

P[Sn ∈ dx]

dx
=

(
1

2π

)3 ∫
R3

(
sinλ

λ

)n

e−iλ·xd3x

=

(
1

2π

)3 ∞∫
0

(
sinλ

λ

)n

λ2dλ

2π∫
0

π∫
0

e−iλr cosθ sinθ dθ dφ

=
1

2π2

∞∫
0

(
sinλ

λ

)n( sinλr

λr

)
λ2dλ
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fn(r)=
P[Sn ∈ (r,r+ dr)]

dr

= 4π2 1

2π2

∞∫
0

(
sinλ

λ

)n( sinλr

λr

)
λ2 dλ

=
2

π

∞∫
0

(
sinλ

λ

)n

rλsin(rλ)dλ.

On the other hand, the density of the sum S̄n := Y1+ ·· ·+Yn is computed as

E
[
eitS̄n

]
= E

[
eitX1

]n
=

1

2

1∫
−1

eity dy

n

=

(
sin t

t

)
so that

gn(x)=
P[Sn ∈ dx]

dx

=
2

π

∞∫
0

(
sin t

t

)n

cos txdt

g′n(x)=−
2

π

∞∫
0

(
sin t

t

)n

t sin txdt,

which completes the proof that fn(r)=−rg′n(r). The functions gn(r) are polynomials
on the interval 0≤ r ≤ n and can be directly computed. �

The Rayleigh model can be generalized to an arbitrary number of dimensions, where
the Bessel function J0 is replaced by J(p−2)/2 in dimension p. It can also be carried
out in the case of a continuous parameter t: a skater moves along a straight line at
constant velocity for an exponentially distributed amount of time, at the end of which
he or she chooses a new direction at random according to a uniform distribution on
the unit sphere. In fact, the displacement after n changes of direction will be given by
a discrete-time model with an exponential distribution of radial displacement. These
considerations can be carried out on a surface or higher dimensional manifold.



11 Characteristic Functions and
Their Applications

The moment generating function (m.g.f.) of a random variable X is defined as the
average of the exponential function:

MX(t) := E
(
etX)
=

∫
R

etxF(dx)=
∞∑

n=0

tn

n!
E(Xn).

For example, if X is normally distributed with mean zero and variance 1, then

MX(t)= (2π)
−1/2

∫
R

etxe−x2/2 dx= (2π)−1/2 et2/2
∫
R

e−(t−x)2/2 dx= et2/2.

From this, the moments are computed by expanding both sides in powers of t, which
yields E(X2n)= (2n)!/2nn! for even moments and zero for odd moments.

The m.g.f. is a useful computational device, which can be used to tabulate the
moments of a large class of probability distributions, both discrete and continuous.
However, the m.g.f. is not defined for all random variables, e.g., a Cauchy distribu-
tion, where MX(t)= (1/π)

∫
R etx/

(
1+ x2

)
dx=+∞, for t 6= 0. Accordingly, we now

introduce a universal label for an arbitrary distribution function, known as the charac-
teristic function and defined as follows. We recall the complex exponential function,
which satisfies eit

= cos t+ i sin t, where t is a real number and i=
√
−1.

Exercise 11.1
If X is normally distributed with mean zero and variance 1, then E(X2n)= (2n)!/2nn!
for even moments and zero for odd moments.

11.1 Definition of the Characteristic Function

The characteristic function of a random variable X is defined as

φX(t) := E
(
eitX)
= E (cos tX)+ iE (sin tX), −∞< t <∞

The expectation is finite for all real values of t. In case X is a discrete random variable
with discrete density fX , we can write

φX(t)=
∑

x

eitxfX(x), (11.1)

An Introduction to Stochastic Modeling. DOI: 10.1016/B978-0-12-381416-6.00011-3
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whereas if X is continuous with density fX , then

φX(t)=

∞∫
−∞

eitxfX(x)dx. (11.2)

If all the moments of X are finite, then the characteristic function can be computed
by expanding the complex exponential function in its power series. We illustrate with
the normal distribution n

(
µ,σ 2

)
, for which we know the central moments. In this case,

E
[
eitX]
= eitµE

[
eit(X−µ)

]
= eitµ

∞∑
m=0

(it)m

m!
E(X−µ)m

= eitµ
∞∑

k=0

(
−t2

)k
(2k)!

E(X−µ)2k

= eitµ
∞∑

k=0

(
−t2

)k
(2k)!

σ 2k(2k)!

2kk!

= eitµ
∞∑

k=0

(
−σ 2t2/2

)k
k!

= eitµe−σ
2t2/2.

which shows that the characteristic function has a normal-type dependence in the
variable t.

If X is an arbitrary random variable, the characteristic function is a bounded con-
tinuous function of t with |φX(t)| ≤ 1,φX(0)= 1. This clearly holds for a normally
distributed random variable and is easily proved in general. Additional smoothness
properties of the characteristic function depend on the existence of higher moments,
which is satisfied by the normal distribution, but not for an arbitrary random variable.

Exercise 11.2
Let X be a real-valued random variable. Show that the characteristic function is con-
tinuous in t.

Exercise 11.3
Let X be a real-valued random variable. Show that |φX(t)| ≤ 1 and φX(0)= 1.

11.1.1 Two Basic Properties of the Characteristic Function

In general, the characteristic function defines a homomorphism, converting sums of
independent random variables into products. The precise statement is the following:
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Theorem 11.1. If X1,X2 are independent random variables, then

φX1+X2(t)= φX1(t)φX2(t)

The proof is a one-liner: if X1,X2 are independent, then

φX1+X2(t)= E
[
eit(X1+X2)

]
= E

[
eitX1eitX2

]
= E

[
eitX1

]
E
[
eitX2

]
= φX1(t)φX2(t)

where we have first used the properties of the exponential function followed by inde-
pendence in the last step.

The other important property of the characteristic function is that it serves as a
label for the distribution function of the random variable. This is formalized as follows.

Theorem 11.2. If X1,X2 are random variables with φX1(t)= φX2(t) for all t, then
FX1(x)= FX2(x) for all x.

A theorem of this type can be proved by first proving an inversion formula, where
we explicitly display the density/distribution in terms of the characteristic function.

11.2 Inversion Formulas for Characteristic Functions

We first illustrate the proof of Theorem 11.2 in case of discrete random variables,
where the characteristic function is written as an infinite series:

φX(t)=
∑
x∈R

eitxfX(x).

We fix y ∈ R, multiply by the complex exponential e−ity, and average on the interval
−L≤ t ≤ L with the result

e−ityφX(t)=
∑
x∈R

eit(x−y)fX(x)

1

2L

L∫
−L

e−ityφX(t)dt =
∑
x∈R

 1

2L

L∫
−L

eit(x−y)dt

 fX(x)

=

∑
x∈R

sinL(x− y)

L(x− y)
fX(x). (11.3)

(If x= y, then the integral on the right side has the value 2L, which agrees with the
limiting value of the indicated quotient.) In particular, if X takes only integer values
0,±1,±2, . . . and y is an integer, then we can take L= π and note that all of the terms
on the right side are zero, except in the case that x= y, an integer. From this, we obtain
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the inversion formula for integer-valued random variables:

X ∈ Z=⇒ fX(y)=
1

2π

π∫
−π

e−ityφX(t)dt y= 0,±1,±2, . . . (11.4)

Example If X has a binomial distribution B(n,p), then

φX(t)=
n∑

k=0

eitk
(

n

k

)
pkqn−k

=
(
q+ peit)n (11.5)

The inversion formula (11.4) takes the form

(
n

y

)
pyqn−y

=
1

2π

π∫
−π

e−ity (q+ peit)n dt, y= 0,1, . . . ,n

Formula (11.4) will be used to prove the local limit theorem of de Moivre and
Laplace.

Example If X has a Poisson distribution P(λ), then

φX(t)=
∞∑

k=0

eitk λ
k

k!
e−λ = eλ(e

it
−1)

and the inversion formula (11.4) takes the form

λy

y!
e−λ =

1

2π

π∫
−π

e−ityeλ(e
it
−1) dt, y= 0,1,2, . . . (11.6)

This will be used to do the proof of Stirling’s formula.
In the case of a more general discrete random variable, we can take the limit L→∞

in (11.3). The terms on the right side are bounded by an absolutely convergent series
and tend to zero, save for x= y, so that we obtain the inversion formula for discrete
random variables:

X ∈ D=⇒ fX(y)= lim
L→∞

1

2L

L∫
−L

e−ityφX(t)dt, y ∈ R (11.7)

where D is the set of possible values of X, with
∑

x∈D fX(x)= 1. Formula (11.7) shows
explicitly that φX determines fX and thus FX , since FX(x)=

∑
z≤x fX(x). Hence, we

have proved Theorem 11.2 in the case of general discrete random variables.
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We can make a similar argument in the continuous case, when X has a density:

φX(t)=

∞∫
−∞

eitxfX(x)dx.

Again, we multiply by e−ity and integrate over the real line tempered with the factor
e−σ

2t2/2— to ensure convergence of the improper integral; explicitly

∞∫
−∞

φX(t)e
−itye−σ

2t2/2 dt =

∞∫
−∞

 ∞∫
−∞

eit(x−y)e−σ
2t2/2 dt

 fX(x)dx. (11.8)

The inner integral is
√

2π/σ× the characteristic function of a normal density with
mean zero and variance 1/σ 2. In the special case, where φX is integrable over the
real line, we can take the limit σ → 0 to obtain the Fourier inversion formula for
integrable characteristic functions:

∞∫
−∞

|φ(t)|dt <∞=⇒
1

2π

∞∫
−∞

φX(t)e
−ity dt = fX(y) (11.9)

valid at all continuity points of fX . More generally, if the limit f̄X of fX exists in some
averaged sense at x= y, then we can take the limit in equation (11.8) to obtain the
inversion formula

fX(y+ 0)= fX(y− 0)=⇒
1

2π
lim
σ→0

∞∫
−∞

φX(t)e
−itye−σ

2t2/2 dt = f̄X(y) (11.10)

If, e.g., fX has a simple jump at y, then the right side of (11.10) needs to be inter-
preted as the average of the left and right limits at y.

Example In the case of the bilateral exponential density f (x)= 1
2 e−|x|, the character-

istic function is computed directly as φ(t)= 1/
(
1+ t2

)
. This is an integrable function

on the real line, so that the inversion formula (11.9) applies, to yield

1

2
e−|y| =

1

2π

∞∫
−∞

1

1+ t2
e−ity dt, t ∈ R

As a by-product, we can change the roles of y and t to obtain the characteristic func-
tion of the Cauchy density fX(x)= 1/π

(
1+ x2

)
, namely φX(t)= e−|t|. Since this is

integrable, we also have the inversion formula (11.9) without any limiting procedure.
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Example In the case of the uniform density fX(x)= (1/(b− a))1[a,b](x), the char-
acteristic function is φX(t)=

(
eitb
− eita

)
/(it(b− a)), which is not integrable over the

real line. Hence, we must use the general form (11.10) of the inversion formula.

Example In the case of a triangular density, e.g., f (x)= 1− |x| for |x| ≤ 1 and zero
elsewhere, we may justify the inversion formula (11.9) by noting that f is the convo-

lution of two uniform densities on
[
−

1
2 ,

1
2

]
, for which φ(t)= O(1/t), t→∞. Hence,

by Theorem 11.1, the characteristic function of f is O(1/t2), t→∞. Hence, we can
apply (11.9) to obtain the Fourier inversion formula.

11.2.1 Fourier Reciprocity/Local Non-Uniqueness*

The previous example can be re-written as a pair of Fourier integrals: Let φ(t)= 1− |t|
for |t|< 1 and zero elsewhere.

f (x) :=

∞∫
−∞

φ(t)eitx dt =

1∫
−1

(1− |t|)eitx dt = 2
1− cosx

x2
x 6= 0, f (0)= 1.

Applying the inversion formula for integrable characteristic functions, we have

φ(t)=
1

2π

∞∫
−∞

e−itx2
1− cosx

x2
dx, t ∈ R

which shows that φ(t) is a characteristic function. Now, we periodize by defining

8(t) :=
∑
k∈Z

φ(t− 2kπ)

which is a 2π periodic function on the line and which agrees with φ(t) for |t|< 1. Its
Fourier coefficients are computed by

1

2π

π∫
−π

8(t)e−int dt =
1

2π

π∫
−π

∑
k∈Z

φ(t− 2kπ)e−int dt

=
1

2π

∑
k∈Z

(2k+1)π∫
−(2k−1)π

φ(y)e−in(y+2kπ) dy

=
1

2π

∞∫
−∞

φ(y)e−iny dy

=
1

π

1− cosk

k2

∗ This section can be omitted without loss of continuity.
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leading to the absolutely convergent Fourier series:

8(t)=
1

π

∑
k∈Z

1− cosk

k2
eikt, t ∈ R.

This allows one to define an integer-valued random variable by the distribution

pk =
1− cosk

πk2
, 0 6= k ∈ Z, p0 =

1

2π

which is clearly nonnegative and sums to 8(0)= 1. Since this distribution is concen-
trated on the integers, its characteristic function must be a periodic function, namely
8(t). Clearly 8(t)= φ(t) for |t|< 1, but the equality fails outside of the interval
[−1,1]. In summary,

THERE EXIST TWO DISTINCT CHARACTERISTIC FUNCTIONS WHICH
AGREE ON THE INTERVAL [−1,1].

11.2.2 Fourier Inversion and Parseval’s Identity

The ideas used to prove the inversion formula (11.9) can be extended to treat the
Fourier transform of an absolutely integrable function ψ , where we define

ψ̂(t)=

∞∫
−∞

ψ(x)eitx dx (11.11)

If ψ is the probability density of a random variable X, then ψ̂ = φX , the characteristic
function of X. In the more general case, we can apply the same transformations to ψ̂
as above, namely multiply (11.11) by e−itye−σ

2t2/2 and integrate, to obtain

∞∫
−∞

ψ̂(t)e−itye−σ
2t2/2 dt =

∞∫
−∞

 ∞∫
−∞

eit(x−y)e−σ
2t2/2 dt

ψ(x)dx

= 2π

∞∫
−∞

e−(x−y)2/2σ 2

√
2πσ 2

ψ(x)dx

If ψ̂ is also absolutely integrable, then we can take the limit σ → 0 and obtain the
Fourier inversion formula

ψ(y)=
1

2π

∞∫
−∞

ψ̂(t)e−ity dt. (11.12)

Applied to a random variable y= X(ω) and taking the expectation, we obtain a useful
corollary.
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Proposition 11.1 (Parseval’s identity). Suppose that ψ,ψ̂ are absolutely integrable.
Then, we have the inversion formula (11.12) and for any random variable X, we have
Parseval’s identity:

Eψ(X)=
1

2π

∞∫
−∞

ψ̂(t)φX(−t)dt (11.13)

This will be used in the proof of the continuity theorem, below.

11.3 Inversion Formula for General Random Variables

In the general case, the random variable X is neither discrete nor continuous. It is still
possible to obtain an inversion formula in this general case by inserting an additional
integration. We begin with the symbolic formula

φX(t)=

∞∫
−∞

eitxFX(dx)

The distribution function FX may be purely discrete, purely continuous, or a combina-
tion of both types. We use the above steps to write

∞∫
−∞

φX(t)e
−itye−σ

2t2/2 dt = 2π

∞∫
−∞

e−(x−y)2/2σ 2

√
2πσ 2

FX(dx)

Now, we integrate on the left side over the interval a≤ y≤ b to obtain

∞∫
−∞

φX(t)

(
e−itb
− e−ita

−it

)
e−σ

2t2/2 dt = 2π

∞∫
−∞

 b∫
a

e−(x−y)2/2σ 2

√
2πσ 2

dy

FX(dx)

(11.14)

The integrand on the left side of (11.14) is defined by continuity at t = 0. The inte-
gral inside the parentheses on the right side can be written in terms of the normal
distribution function 8 as 8((x− a)/σ )−8((x− b)/σ ). Using the properties that
8(+∞)= 1,8(0)= 1

2 ,8(−∞)= 0, we see that

lim
σ→0

[8((x− a)/σ )−8((x− b)/σ )]= 1 a< x< b

lim
σ→0

[8((x− a)/σ )−8((x− b)/σ )]=
1

2
x= a or x= b

lim
σ→0

[8((x− a)/σ )−8((x− b)/σ )]= 0 x< a or x> b
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Therefore, we obtain the general form of the inversion formula

1

2π
lim
σ→0

∞∫
−∞

φX(t)

(
e−itb
− e−ita

−it

)
e−σ

2t2/2 dt

= P[a< X < b]+
1

2
P[X = a]+

1

2
P[X = b], (11.15)

which completes the proof of Theorem 11.2 in the most general case.

Corollary 11.1. If the distribution function of the random variable X is continuous at
the points x= a,x= b, then

1

2π
lim
σ→0

∞∫
−∞

φX(t)

(
e−itb
− e−ita

−it

)
e−σ

2t2/2 dt = P[a< X < b] (11.16)

Proof. Indeed, in this case P[X = a]= 0= P[X = b]. �

11.4 The Continuity Theorem

In order to use the characteristic function to prove limit theorems, we need to know
that convergence of a sequence of characteristic functions implies convergence of the
corresponding distribution functions, in an appropriate sense. The general result of this
type is known as the continuity theorem, which is stated as follows.

Theorem 11.3. Let (Xn,n≥ 1) be a sequence of random variables with characteristic
functions φn(t). If for each real number t, we have

lim
n→∞

φn(t)= φX(t)

for some random variable X, then

lim
n→∞

P[a≤ Xn ≤ b]= P[a≤ X ≤ b]

provided that P[X = a]= 0= P[X = b]; in particular, this occurs if X has a continuous
distribution function.

Example Apply the continuity theorem to the (suitably normalized) binomial distri-
bution with p= 1

2 .
Solution. If we have the binomial distribution with p= 1

2 , then the characteristic func-
tion of Xn = (Sn− n/2)/

√
n/4 is φn(t)= cos(t/

√
n)n. When n→∞, we have

lim
n
φn(t)= e−t2/2
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which is the characteristic function of the standard normal distribution. Applying the
continuity theorem shows that we have a limiting normal distribution.

If the limiting random variable X has a continuous distribution function, then
P[X = a]= 0= P[X = b], so that we can assert that the probabilities of all intervals
converge to the corresponding probabilities for the limiting random variable. In this
case, we can assert that the probability of any interval, e.g., [a,b), (a,b] or (a,b) con-
verges to the same limit.

The next example illustrates what can happen if the limiting distribution is not
continuous.

Example Let the random variable Xn := (−1)n/n, so that Xn→ 0 when n→∞. The
distributions satisfy

P[0≤ Xn ≤ 1]= 1 if n is even, P[0≤ Xn ≤ 1]= 0 if n is odd

so that limn P[0≤ Xn ≤ 1] does not exist. This illustrates the possible limiting behavior
when the limiting random variable has a discontinuous distribution function.

11.4.1 Proof of the Continuity Theorem*

The proof uses the notion of upper limit and lower limit of a sequence of real numbers.
We begin with the test functions ψε±(x), depending on an additional parameter ε > 0
and defined as follows: ψε+(x)= 1 on the interval [a,b] and ψ(x)= 0 if x≤ a− ε
or x≥ b+ ε. Otherwise, ψε+ is a linear function, which interpolates between these
values: ψ+(x)= (x− a+ ε)/ε for a− ε ≤ x≤ a and ψε+(x)= (b+ ε− x)/ε for b≤
x≤ b+ ε. In the same manner, we define ψε−, which is piecewise linear, equal to 1 if
a+ ε ≤ x≤ b− ε and is zero for x≤ a and x≥ b. In particular, we have the double
system of inequalities

ψε−(x)≤ 1[a,b](x)≤ ψ
ε
+(x) (11.17)

On the other hand, both ψε± have trapezoidal profiles and can, thus, be expressed as
the difference of two triangular profiles, both of which have integrable characteristic
functions, from Equation (11.2). Hence, the Fourier inversion formula (11.12) and
Parseval’s identity (11.13) apply to both ψε− and ψε+. Applying both sides of (11.17)
to Xn and taking the expectation, we have

E
(
ψε−(Xn)

)
≤ P[a≤ Xn ≤ b]≤ E

(
ψε+(Xn)

)
. (11.18)

But for each n, we can use the Parseval’s identity (11.13) to write

E
(
ψε±(Xn)

)
=

1

2π

∞∫
−∞

φn(t)ψ̂
ε
±(−t)dt.

∗ This section may be skipped on the first reading.



Characteristic Functions and Their Applications 535

Taking the limit n→∞, we see that the right side converges, hence we have

lim
n

E
(
ψε±(Xn)

)
=

1

2π

∞∫
−∞

φ(t)ψ̂ε±(−t)dt = E
(
ψε±(X)

)
where we have used Parseval’s identity again. Referring to (11.18), we have the double
system of inequalities

limsup
n

P[a≤ Xn ≤ b]≤ E
(
ψε+(X)

)
≤ P[a− ε ≤ X ≤ b+ ε],

liminf
n

P[a≤ Xn ≤ b]≥ E
(
ψε−(X)

)
≥ P[a+ ε ≤ X ≤ b− ε].

But the upper and lower limits do not depend on ε. Taking ε→ 0, we obtain

P[a< X < b]≤ liminf
n

P[a≤ Xn ≤ b]≤ limsup
n

P[a≤ Xn ≤ b]≤ P[a≤ X ≤ b]

If P[X = a]= 0= P[X = b], then the two extreme members are equal and we have
proved the required result.

Exercise 11.4
Show that the above proof applies equally well to compute limn P[a< Xn < b] or
limn P[a≤ Xn < b] or limn P[a< Xn ≤ b].

11.5 Proof of the Central Limit Theorem

The main application of the continuity theorem is to prove the classical CLT:

Theorem 11.4. Let Yn,n≥ 1 be a sequence of independent and identically distributed
random variables with mean µ and variance σ 2 with 0< σ 2 <∞. Denoting Sn :=
Y1+ ·· ·+Yn, then for every pair of reals a< b

lim
n

P

[
a≤

Sn− nµ

σ
√

n
≤ b

]
=

b∫
a

e−u2/2

√
2π

du. (11.19)

Proof. This is proved by reducing to the case µ= 0,σ = 1 as follows. Letting Y ′i :=
(Yi−µ)/σ,S′n = Y ′1+ ·· ·+Y ′n, it is immediate that Y ′i has mean zero and variance 1.
Furthermore (Sn− nµ)/σ

√
n= S′n/

√
n.

Assuming that µ= 0,σ = 1, we have the characteristic function φ(t)= φY1(t),
a twice differentiable function with

|φ(t)| ≤ 1, φ(0)= 1, φ′(0)= 0, φ′′(0)=−1.
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From Taylor’s formula with remainder

φ(s)= 1−
s2

2
+ ε1(s), lim

s→0

ε1(s)

s2
= 0 (11.20)

e−
s2
2 = 1−

s2

2
+ ε2(s), lim

s→0

ε2(s)

s2
= 0. (11.21)

The characteristic function of the normalized sum is

φn(t) := E

[
e

it Sn√
n

]
= E

[
e

it
Y1√

n

]n

= φ

(
t
√

n

)n

The characteristic function of the standard normal distribution is e−t2/2, so that the
difference is written using the identity An

−Bn
= (A−B)

(
An−1
+ ·· ·+Bn−1

)
:

φn(t)− e−t2/2
= φ

(
t
√

n

)n

−

(
e−t2/2n

)n

=

[
φ

(
t
√

n

)
− e−t2/2n

][
An−1
+ ·· ·+Bn−1

]
where A= φ(t/

√
n),B= e−t2/2n. Each of the n terms on the right is less than 1 in

modulus, so that we can write∣∣∣φn(t)− e−t2/2
∣∣∣≤ n

∣∣∣∣φ( t
√

n

)
− e−t2/2n

∣∣∣∣.
Setting s= t/

√
n in (11.20) and (11.21) with t fixed, we have

φ

(
t
√

n

)
= 1−

t2

2n
+ ε1

(
t
√

n

)
, e−t2/2n

= 1−
t2

2n
+ ε2

(
t
√

n

)
.

Subtracting these two expressions, the first two terms cancel and we are left with
terms of the form nε(t/

√
n), which tend to zero when n→∞ and t is fixed. We have

proved that φn(t) converges to the standard normal characteristic function, which has
a continuous distribution function. Hence, by the continuity theorem, the probabilities
of all intervals converge, as required. �

11.6 Stirling’s Formula and Applications

Often, we encounter the factorial function of a large integer argument. The numerical
evaluation of these expressions can be cumbersome, which leads one to search for an



Characteristic Functions and Their Applications 537

asymptotic formula, meaning a simpler formula, which provides a good approximation
for large arguments.

Stirling’s formula is the following limiting statement involving n!:

lim
n

n!

nn+ 1
2 e−n

=
√

2π (11.22)

where e= 2.71828 · · · is the base of the natural logarithms. This is also written in the
form

n!∼ nn+ 1
2 e−n
√

2π, n→∞ (11.23)

where the tilde sign means that the ratio of the two terms tends to 1 when n→∞.
The Stirling’s approximation (11.23) is already extremely accurate for small values
of n; for example, if n= 5, then n!= 120, whereas the Stirling’s approximation gives
118.019, an error of less than 2%. For n= 10, we have the exact value of 3,628,800,
whereas Stirling’s approximation is 3,598,690, an error of less than 1%.

We will prove Stirling’s formula by representing the reciprocal of n! in terms of a
Poisson distribution, which we can estimate. No previous knowledge of the Poisson
distribution is assumed.

11.6.1 Poisson Representation of n!

The Poisson distribution with parameter λ > 0 is defined by the sequence

p(k;λ)=
λk

k!
e−λ, k = 0,1,2, . . . (11.24)

It is immediate that p(k;λ) > 0 and
∑
∞

k=0 p(k;λ)= 1, so that we have a probabil-
ity distribution on the nonnegative integers. The characteristic function is the follow-
ing trigonometric series, which can be summed in closed form and which defines a
2π -periodic function:

p̂(θ;λ)=
∞∑

k=0

p(k;λ)eikθ
= eλ

(
eiθ
−1
)
, θ ∈ R. (11.25)

For each λ > 0, the series (11.25) converges uniformly on R, as well as the series
obtained by multiplying by e−ikθ . Hence, we can integrate term-by-term on any period
interval to obtain

p(k;λ)=
1

2π

π∫
−π

p̂(θ,λ)e−ikθdθ, λ > 0,k = 0,1,2, . . . (11.26)
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Now, we are free to take λ= k, to obtain the useful representation of the reciprocal
factorial function:

p(k;k)=
kk

k!
e−k
=

1

2π

π∫
−π

ek
(
eiθ
−1−iθ

)
dθ, k = 0,1,2, . . . . (11.27)

11.6.2 Proof of Stirling’s Formula

We, now, make the substitution ψ = θ
√

k to obtain the integral formula

kk+ 1
2

k!
e−k
=

1

2π

π
√

k∫
−π
√

k

e
k
(

eiψ/
√

k
−1−iψ/

√
k
)

dψ, k = 1,2, . . . . (11.28)

When k→∞, the integrand on the right side tends to e−ψ
2/2 and is pointwise domi-

nated by e−δψ
2
, where δ := inf0<|θ |≤π (1− cosθ)/θ2

= 2/π2, since the modulus of the
exponential is the exponential of the real part, namely k(cosθ − 1), which is bounded
above by −kδθ2 for |θ | ≤ π . Hence, by the dominated convergence theorem, we have

lim
k→∞

kk+ 1
2

k!
e−k
=

1

2π

∞∫
−∞

e−ψ
2/2 dψ =

1
√

2π
(11.29)

which is the statement of Stirling’s formula, where we have used the normalization of
the standard normal density:

∫
∞

−∞
e−ψ

2/2 dψ =
√

2π .

Exercise 11.5
Prove the limiting relation limz→0

(
eiz
− 1− iz

)
/z2
=−1/2.

Exercise 11.6
If z= α+ iβ is an arbitrary complex number, show that

∣∣eα+iβ
∣∣= eα.

Exercise 11.7
Prove the upper and lower bounds 2θ/π ≤ sinθ ≤ θ for 0≤ θ ≤ π/2.
Hint: Look at the graphs of these three functions.

Exercise 11.8
Prove that

∫
R e−x2/2dx=

√
2π .

Hint: Square both sides and use polar coordinates.
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11.7 Local deMoivre–Laplace Theorem

We define the characteristic function and its normalized version by

F(θ) := q+ peiθ , F0(θ) := e−ipθF(θ)= qe−ipθ
+ peiqθ (11.30)

The binomial probability is the Fourier coefficient of the characteristic function, which
can be represented as a suitable integral on (−π,π).

Lemma 11.1. For n= 0,1,2, . . . and k = 0,1, . . . ,n, let x= x(k,n)= (k− np)/
√

npq.
Then,

Pkn =:

(
n

k

)
pkqn−k

=
1

2π

π∫
−π

F(θ)ne−ikθ dθ (11.31)

=
1

2π

π∫
−π

F0(θ)
ne−iθ(k−np) dθ (11.32)

=
1

2π
√

npq

π
√

npq∫
−π
√

npq

F0

(
ψ
√

npq

)n

e−ixψ dψ (11.33)

Proof. From the binomial theorem

F(θ)n =
(
q+ peiθ )n

=

n∑
j=0

(
n

k

)
p jqn−jeijθ,

Multiply both sides by e−ikθ and integrate on (−π,π), from which we conclude

Pk,n =

(
n

k

)
pkqn−k

=
1

2π

π∫
−π

F(θ)ne−ikθdθ. (11.34)

Formula (11.32) comes from the definition of F0(θ). The final formula (11.33) comes
from the definition of x= x(k,n) and the substitution of ψ = θ

√
npq, which completes

the proof.
Now, we note

F0(0)= 1,F′0(0)= 0,F′′0 (0)=−pq

|F0(θ)|
2
= q2
+ p2
+ 2pqcosθ = 1− 2pq(1− cosθ)

≤

(
1− 4pqθ2/π2

)
≤ e−4pqθ2/π2

, |θ |< π

|F0(θ)| ≤ e−2pqθ2/π2
|θ |< π

lim
n→∞

F0

(
ψ
√

npq

)n

= e−ψ
2/2 ψ ∈ R
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For any real number x, let k→∞,n→∞ so that (k− np)/
√

npq→ x. Then, by the
dominated convergence theorem,

lim
n→∞

√
npqPkn =

1

2π

∞∫
−∞

e−ψ
2/2e−ixψdψ =

1
√

2π
e−x2/2

which is the statement of the local central limit theorem of de Moivre and Laplace.
This can be rewritten in a more intuitive form:

P(k,n)= pkqn−k
(

n

k

)
∼

e−x2/2

√
2πnpq

, (n→∞)

�
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Answers to Exercises

Chapter 1

1.2.1 Because B and Bc are disjoint events whose union is the whole sample space, the law of
total probability (Section 1.2.1) applies to give the desired formula.

1.2.3 (b) f (x)=


0 for x≤ 0;
3x2 for 0< x< 1;
0 for x≥ 1.

(c) E[X]= 3
4 .

(d) Pr
{

1
4 ≤ X ≤ 3

4

}
=

26
64 .

1.2.4 (b) E[Z]= 9
8 .

(c) Var[Z]= 55
64 .

1.2.7 (a) FX(x)=


0 for x< 0;
xR for 0≤ x≤ 1;
1 for 1< x.

(b) E[X]= R/(1+R).

(c) Var[X]= R/
[
(R+ 2)(R+ 1)2

]
.

1.2.8 f (v)= A(1− v)A−1 for 0≤ v≤ 1;
E[V]= 1/(A+ 1);
Var[V]= A/

[
(A+ 2)(A+ 1)2

]
.

1.2.9 FX(x)=


0 for x< 0;
1
2 x2 for 0≤ x≤ 1;

1− 1
2 (2− x)2 for 1< x≤ 2;

1 for x> 2.

E[X]= 1;Var[X]= 1
6 .

1.3.1 Pr{X = 3} = 10
32 .

1.3.2 Pr{0 defective} = 0.3151.
Pr{0 or 1 defective} = 0.9139.

1.3.3 Pr{N = 10} = 0.0315.

1.3.4 Pr{X = 2} = 2e−2
= 0.2707.

Pr{X ≤ 2} = 5e−2
= 0.6767.

1.3.5 Pr{X ≥ 8} = 0.1334.

1.3.6 (a) Mean= n+1
2 ;Variance= n2

−1
12 .
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(b) Pr{Z = m} =

{
m+1

n2 for m= 0, . . . ,n;
2n+1−m

n2 for m= n+ 1, . . . ,2n.

(c) Pr{U = k} = 1+2(n−k)
(n+1)2 for k = 0, . . . ,n.

1.4.1 Pr{X > 1.5} = e−3
= 0.0498.

Pr{X = 1.5} = 0.

1.4.2 Median= 1
λ

log2;Mean= 1
λ

.

1.4.3 Exponential distribution with parameter λ/2.54.

1.4.4 Mean= 0;Variance= 1.

1.4.5 α∗ =
σ 2

Y−ρσXσY

σ 2
X+σ

2
Y−2ρσXσY

for ρ 6= ±1.

1.4.6 (a) fY (y)= e−y for y≥ 0.

(b) fW (w)=
1
n

(
1
w

)(n−1)/n
for 0< w< 1.

1.4.7 R has the gamma density fR(r)= λ2re−λr for r > 0.

1.5.1 Pr{X ≥ 1} = 0.6835938
Pr{X ≥ 2} = 0.2617188
Pr{X ≥ 3} = 0.0507812
Pr{X ≥ 4} = 0.0039062.

1.5.2 Mean= 5
7 .

1.5.3 E[X]= 1
λ

.

1.5.4 (a) E[XA]= 1
2 ;E[XB]= 1

3 ;

(b) E[min{XA,XB}]= 1
5 ;

(c) Pr{XA < XB} =
2
5 ;

(d) E[XB−XA|XA < XB]= 1
3 .

1.5.5 (a) Pr{Naomi is last} = 1
2 ;

(b) Pr{Naomi is last} = 282
2500 = 0.1128;

(c) c= 2+
√

3.

Chapter 2

2.1.1 Pr{N = 3,X = 2} = 1
16 ;

Pr{X = 5} = 1
48 ;

E[X]= 7
4 .

2.1.2 Pr{two nickel heads|N = 4} = 3
7 .

2.1.3 Pr{X ≥ 1|X ≥ 1} = 0.122184.
Pr{X > 1|Ace of spades} = 0.433513.

2.1.4 Pr{X = 2} = 0.2204.

2.1.5 E[X|X is odd]= λ
(

eλ+e−λ

eλ−e−λ

)
.

2.1.6 Pr{U = u,Z = z} = ρ2(1− ρ)z, 0≤ u≤ z;
Pr{U = u|Z = n} = 1

n+1 , 0≤ u≤ n.



Answers to Exercises 545

2.2.1 Pr{Game ends in a 4} = 1
4 .

2.2.3 Pr{Win} = 0.468984.

2.3.1 k Pr{Z = k} E[Z]= 7
4 ;

0 0.16406 Var[Z]= 1.604167.
1 0.31250
2 0.25781
3 0.16667
4 0.07552
5 0.02083
6 0.00260

2.3.2 E[Z]= 3
2 ; Var[Z]= 9

8 ;

Pr{Z = 2} = 0.29663.

2.3.3 E[Z]= µ2; Var[Z]= µ(1+µ)σ 2.

2.3.4 Pr{X = 2} = 0.2204;
E[X]= 2.92024.

2.3.5 E[Z]= 6; Var[Z]= 26.

2.4.1 Pr{X = 2} = 1
4 .

2.4.2 Pr{System operates} = 1
2 .

2.4.3 Pr
{

U > 1
2

}
= 1− 1

2 (1+ log2)= 0.1534.

2.4.4 fZ(z)=
1

(1+z)2 for 0< z<∞.

2.4.5 fU,V (u,v)= e−(u+v) for u> 0,v> 0.

2.5.1 x 1
2 1 2

Pr{X > x} 0.61 0.37 0.14
1
x E[X] 2 1 1

2 .

2.5.2 Pr{X ≥ 1} = E[X]= p.

Chapter 3

3.1.1 0.

3.1.2 0.12, 0.12.

3.1.3 0.03.

3.1.4 0.02, 0.02.

3.1.5 0.025, 0.0075.

3.2.1 (a) P2
=

0.47 0.13 0.40
0.42 0.14 0.44
0.26 0.17 0.57

.

(b) 0.13.
(c) 0.16.
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3.2.2
n 0 1 2 3 4

Pr{Xn = 0|X0 = 0} 1 0 1
2

1
4

3
8

3.2.3 0.264, 0.254.

3.2.4 0.35.

3.2.5 0.27, 0.27.

3.2.6 0.42, 0.416.

3.3.1

P=

∥∥∥∥∥∥∥∥∥∥∥∥

−1 0 1 2 3

−1 0 0 0.3 0.3 0.4

0 0 0 0.3 0.3 0.4

1 0.3 0.3 0.4 0 0

2 0 0.3 0.3 0.4 0

3 0 0 0.3 0.3 0.4

∥∥∥∥∥∥∥∥∥∥∥∥
3.3.2 Pii =

( i
N

)
p+

(N−i
N

)
q;

Pi,i+1 =
(N−i

N

)
p;

Pi,i−1 =
( i

N

)
q.

3.3.3

P=

∥∥∥∥∥∥∥∥∥∥∥∥

−1 0 1 2 3

−1 0 0 0.1 0.4 0.5

0 0 0 0.1 0.4 0.5

1 0.1 0.4 0.5 0 0

2 0 0.1 0.4 0.5 0

3 0 0 0.1 0.4 0.5

∥∥∥∥∥∥∥∥∥∥∥∥
3.3.4 ∥∥∥∥∥∥∥∥∥∥∥∥∥∥

−2 −1 0 1 2 3

−2 0 0 0.2 0.3 0.4 0.1

−1 0 0 0.2 0.3 0.4 0.1

0 0 0 0.2 0.3 0.4 0.1

1 0.2 0.3 0.4 0.1 0 0

2 0 0.2 0.3 0.4 0.1 0

3 0 0 0.2 0.3 0.4 0.1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
3.3.5

P=

∥∥∥∥∥∥∥
0 1 2

0 0 1 0

1 1
2 0 1

2

2 0 1 0

∥∥∥∥∥∥∥
3.4.1 v03 = 10.

3.4.2 (a) u10 =
1
4 ;

(b) v1 =
5
2 .

3.4.3 (a) u10 =
40

105 ;

(b) v1 =
10
3 .
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3.4.4 v0 = 6.

3.4.5 uH,TT =
1
3 .

3.4.6 (a) u10 =
6

23 ;

(b) v1 =
50
23 .

3.4.7 w11 =
20
11 ; w12 =

25
11

v1 =
45
11 .

3.4.8 w11 = 1.290; w12 = 0.323
v1 = 1.613.

3.4.9 u10 =
9

22 = 0.40909 . . . ;

P(2)10 = 0.17;

P(4)10 = 0.2658;

P(8)10 = 0.35762 . . . ;

P(16)
10 = 0.40245 . . . .

3.5.1 0.71273.

3.5.2 (a) 0.8044; 0.99999928 . . ..
(b) 0.3578; 0.00288 . . ..

3.5.3 P2
=

∥∥∥∥0.58 0.42
0.49 0.51

∥∥∥∥ .
P3
=

∥∥∥∥0.526 0.474
0.553 0.447

∥∥∥∥ .
P4
=

∥∥∥∥0.5422 0.4578
0.5341 0.4659

∥∥∥∥ .
P5
=

∥∥∥∥0.53734 0.46266
0.53977 0.46023

∥∥∥∥ .
3.5.4

P=

∥∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1
2

1
2 0 0

1 1
2 0 1

2 0

2 1
2 0 0 1

2

3 0 0 0 1

∥∥∥∥∥∥∥∥∥∥
.

3.5.5 P(8)GG = 0.820022583.

3.5.6 2.73.

3.5.7 u10 = 0.3797468.

3.5.8 p0= α,r0 = 1−α;
pi = α(1−β),qi = β(1−α),
rj = αβ + (1−α)(1−β), for i≥ 1.

3.5.9 p0 = 1, q0 = 0,
pi = p, qi = q, ri = 0 for i≥ 1.
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3.6.1 (a) u35 =
3
5 ;

(b) u35 =

[
1−

(
q
p

)3
]/[

1−
(

q
p

)5
]

.

3.6.2 u10 = 0.65.

3.6.3 v= 2152.777 . . ..

3.6.4 v1 = 2.1518987.

3.7.1 W=

∥∥∥∥∥
20
11

25
11

10
11

40
11

∥∥∥∥∥.

(a) u10 =
9

22 ;

(b) w11 =
20
11 ; w12 =

25
11 .

3.7.2 W=

∥∥∥∥∥ 100
79

70
79

30
79

100
79

∥∥∥∥∥.

(a) uI0 =
30
79 ;

(b) w11 =
100
79 ; w12 =

70
79 .

3.8.1 M(n)= 1, V(n)= n.

3.8.2 µ= b+ 2c; σ 2
= b+ 4c− (b+ 2c)2.

3.8.3 n 1 2 3 4 5
un 0.5 0.625 0.695 0.742 0.775

3.8.4 M(n)= λn, V(n)= λn
(

1−λn

1−λ

)
, λ 6= 1.

3.9.1 n 1 2 3 4 5
un 0.333 0.480 0.564 0.619 0.658
u∞ = 0.82387.

3.9.2 ϕ(s)= p0+ p2s2.

3.9.3 ϕ(s)= p+ qsN .

3.9.4 ϕ(s)−ϕ(0)
1−ϕ(0) .

Chapter 4

4.1.1 π0 =
10
21 , π1 =

5
21 , π2 =

6
21 .

4.1.2 π0 =
31
66 , π1 =

16
66 , π2 =

19
66 .

4.1.3 π1 =
3

13 .

4.1.4 2.94697.

4.1.5 π0 =
10
29 , π1 =

5
29 , π2 =

5
29 , π3 =

9
29 .

4.1.6 π0 =
5

14 , π1 =
6
14 , π2 =

3
14 .

4.1.7 π0 =
140
441 , π1 =

40
441 , π2 =

135
441 , π3 =

126
441 .

4.1.8 πu =
4

17 .
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4.1.9 π0 =
2
7 , π1 =

3
7 , π2 =

2
7 .

4.1.10 πlate =
17
40 .

4.2.1 πs =
8
9 .

4.2.2 One facility: Pr{Idle} = q2

1+p2 ;

Two facilities: Pr{Idle} = 1
1+p+p2 .

4.2.3 (a) p 0 0.02 0.04 0.06 0.08 0.10
AFI 0.10 0.11 0.12 0.13 0.14 0.16

AOQ 0 0.018 0.036 0.054 0.072 0.090
(b) p 0 0.02 0.04 0.06 0.08 0.10

AFI 0.20 0.23 0.27 0.32 0.37 0.42
AOQ 0 0.016 0.032 0.048 0.064 0.080

4.2.4 p 0.05 0.10 0.15 0.20 0.25
R1 0.998 0.990 0.978 0.962 0.941
R2 0.998 0.991 0.981 0.968 0.952

4.2.5 πA =
1
5 .

4.2.6 π0 =
1
3 .

4.2.7 (a) 0.6831;

(b) π1 = π2 =
10
21 , π3 =

1
21 ;

(c) π3 =
1

21 .

4.2.8 π3 =
8

51 .

4.3.1
{

n≥ 1;P(n)00 > 0
}
= {5,8,10,13,15,16,18,20,21,23,24,25,26,28, . . .}

d(0)= 1, P(37)
5,7 = 0, P(38)

i,j > 0 for all i, j.

4.3.2 Transient states: {0,1,3}.
Recurrent states: {2,4,5}.

4.3.3 (a) {0,2}, {1,3}, {4,5};
(b) {0}, {5}, {1,2}, {3,4}.

4.3.4 {0},d = 1;
{1},d = 0;
{2,3,4,5},d = 1.

4.4.1 πk = pk/
(
1+ p+ p2

+ p3
+ p4

)
for k = 0, . . . ,4.

4.4.2 (a) π0 =
1449
9999 .

(b) m10 =
8550
1449 .

4.4.3 π0 = π1 = 0.2, π2 = π3 = 0.3.

4.5.1 limP(n)00 = limP(n)10 = 0.4;

limP(n)20 = limP(n)30 = 0;

limP(n)40 = 0.4.
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4.5.2 (a) 3
11 , (e) 3

11 ,

(b) 0, (f) X,

(c) 2
33 , (g) 1

3 ,

(d) 2
9 , (h) 4

27 .

Chapter 5

5.1.1 (a) e−2;
(b) e−2.

5.1.2 (pk/pk−1)= λ/k, k = 0,1, . . ..

5.1.3 Pr{X = k|N = n} =

(
n
k

)
pk(1− p)n−k, p= α

α+β
.

5.1.4 (a) (λt)ke−λt

k! , k = 0,1, . . .;

(b) Pr{X(t)= n+ k|X(s)= n} = [λ(t−s)]ke−λ(t−s)

k! ,
E[X(t)X(s)]= λ2ts+ λs.

5.1.5 Pr{X = k} = (1− p)pk for k = 0,1, . . . where p= 1/(1+ θ).

5.1.6 (a) e−12;
(b) Exponential, parameter λ= 3.

5.1.7 (a) 2e−2;
(b) 64

3 e−6;

(c)
(

6
2

)(
1
3

)2 (
2
3

)4
;

(d) 32
3 e−4.

5.1.8 (a) 5e−2;
(b) 4e−4;
(c) 1−3e−2

1−e−2 .

5.1.9 (a) 4;
(b) 6;
(c) 10.

5.2.1 k 0 1 2
(a) 0.290 0.370 0.225
(b) 0.296 0.366 0.221
(c) 0.301 0.361 0.217

5.2.2 Law of rare events, e.g., (a) Many potential customers who could enter store, small prob-
ability for each to actually enter.

5.2.3 The number of distinct pairs is large; the probability of any particular pair being in sample
is small.

5.2.4 Pr{Three pages error free} ≈ e−12.

5.3.1 e−6.

5.3.2 (a) e−6
− e−10;

(b) 4e−4.
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5.3.3 1
4 .

5.3.4
(5

2

)( 1
3

)2 (
2
3

)3
=

80
243 .

5.3.5
(n

m

)( t
T

)m (1− t
T

)n−m, m= 0,1, . . . ,n.

5.3.6 F(t)=
(
1− e−λt

)n
.

5.3.7 t+ 2
λ

.

5.3.8
(12

5

)( 1
2

)5 (
1
2

)7
.

5.3.9 Pr{Wr ≤ t} = 1−
r−1∑
k=0

(λt)ke−λt

k! .

5.4.1 1
n+1 .

5.4.2 1
4 .

5.4.3 5
2 .

5.4.4 See equation (5.23).

5.4.5
[
1− 1−e−α

α

]5
.

5.5.1 0.9380.

5.5.2 0.05216.

5.5.3 0.1548.

5.6.1 0.0205.

5.6.2 Mean= λt
θ
,Variance= 2λt

θ2 .

5.6.3 e−λG(z)t
−e−λt

1−e−λt .

5.6.4 (a) 1
9 ;

(b) 11
27 .

5.6.5 Pr{M(t)= k} = 3(t)ke−3(t)

k! , where 3(t)= λ

t∫
0

[1−G(u)]du.

Chapter 6

6.1.1 P0(t)= e−t;

P1(t)=
1
2 e−t
−

1
2 e−3t;

P2(t)= 3
[

1
2 e−t
+

1
2 e−3t

−
1
2 e−2t

]
P3(t)= 6

[
1
8 e−t
+

1
4 e−3t

−
1
3 e−2t

−
1

24 e−5t
]
.

6.1.2 (a) 11
6 ;

(b) 25
6 ;

(c) 49
36 .
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6.1.3 X(t) is a Markov process (memoryless property of exponential distribution) for which the
sojourn time in state k is exponentially distributed with parameter λk.

6.1.4 (a) Pr{X = 0} = (1−αh)n = 1− nαh+ o(h);
(b) Pr{X = 1} = nαh(1−αh)n = nαh+ o(h);
(c) Pr{X ≥ 2} = 1−Pr{X = 0}−Pr{X− 1} = o(h).

6.1.5 E[X(t)]= 1
p , Var[X(t)]= 1−p

p2 , where p= e−βt.

6.1.6 (a) P1(t)= e−5t;

(b) P2(t)= 5
[

1
2 e−3t

−
1
2 e−5t

]
(c) P3(t)= 15

[
1

20 e−3t
−

1
16 e−5t

+
1

80 e−13t
]
.

6.2.1 P3(t)= e−5t;

P2(t)= 5
[

1
3 e−2t

−
1
3 e−5t

]
;

P1(t)= 10
[

1
6 e−5t

+
1
3 e−2t

−
1
2 e−3t

]
;

P0(t)= 1−P1(t)−P2(t)−P3(t).

6.2.2 (a) 31
30 ;

(b) 29
15 ;

(c) 361
900 .

6.2.3 P3(t)= e−t;

P2(t)=
[
e−t
− e−2t

]
;

P1(t)= 2
[

1
2 e−t
− e−2t

+
1
2 e−3t

]
;

P0(t)= 1−P1(t)−P2(t)−P3(t).

6.2.4 P2(t)= 10e−4t
(
1− e−2t

)3
.

6.3.1 λn = λ,µn = nµ for n= 0,1, . . ..

6.3.2 Assume that Pr{Particular patient exits in [t, t+ h)|k patients} = 1
mk

h+ o(h).

6.4.2 πk =

(
N
k

)
pk(1− p)N−k, where p= α

α+β
.

6.4.3 πk =
λke−λ

k! , where λ= α
β

.

6.4.4 (a) π0 = 1

/(
1+ λ

µ
+

1
2

(
λ
µ

)2
)

;

(b) π0 = 1

/(
1+ λ

µ
+

(
λ
µ

)2
)

.

6.4.5 πk = (k+ 1)(1− θ)2θk.

6.4.6 πk =
θ ke−θ

k! , where θ = λ
µ

.

6.5.1 Use log 1
1−x = 1+ x+ 1

2 x2
+ ·· · |x|< 1.

6.5.2 Use K
K−i
∼= 1 for K� i.

6.6.1 1−
(

βA
αA+βA

)(
βB

αB+βB

)
.
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6.6.2 P00(t)=
{

µ
λ+µ
+

λ
λ+µ

e−(λ+µ)t
}2

.

6.7.1 f (t)= 2−
√

2
4 e−(2+

√
2)t
+

2+
√

2
4 e−(2−

√
2)t.

6.7.2 f ′0(t)=−
√

2
4 e−(2−

√
2)t
+

√
2

4 e−(2+
√

2)t;

f ′1(t)=−
2−
√

2
4 e−(2−

√
2)t
−

2+
√

2
4 e−(2+

√
2)t.

Chapter 7

7.1.1 The age δt of the item in service at time t cannot be greater than t.

7.1.2 F2(t)= 1− e−λt
− λte−λt.

7.1.3 (a) True;
(b) False;
(c) False.

7.1.4 (a) Wk has a Poisson distribution with parameter λk.

(b) Pr{N(t)= k} =
t∑

n=0

e−λk(λk)n

n! −

t∑
n=0

e−λ(k+1)(λk+λ)n

n! .

7.2.1 1
a +

1
b .

7.2.2 The system starts from an identical condition at those instants when first both components
are OFF.

7.2.3 n M(n) u(n)
1 0.4 0.4
2 0.66 0.26
3 1.104 0.444
4 1.6276 0.5236
5 2.0394 0.41184
6 2.4417 0.4023
7 2.8897 0.44798
8 3.3374 0.44769
9 3.7643 0.42693

10 4.1947 0.4304

7.3.1 e−λs
; t+ 1

λ
.

7.3.2 The inter-recording time is a random sum with a geometric number of exponential terms
and is exponential with parameter λp. (See the example following Chapter 2, (2.34)).

7.3.3 Pr{N(t)= n,WN(t)+1 > t+ s}

=

{
(λt)ne−λt

n!

}
e−λs.

7.4.1 M(t)≈ 3
2 t− 7

16 .

7.4.2 3
8 .

7.4.3 T∗ =
√√

273−15
8 .

7.4.4 c(T) is a decreasing function of T .



554 Answers to Exercises

7.4.5 h(x)= 2(1− x) for 0≤ x≤ 1.

7.4.6 (a) α
α+β

;

(b) 13 α
α+β

;

(c) 7
α+β

.

7.5.1 µλ
1+µλ .

7.5.2 2
9 .

7.5.3 T∗ =∞.

7.6.1–7.6.2 n vn un

0 0.6667 1.33333
1 1.1111 0.88888
2 0.96296 1.03704
3 1.01235 0.98765
4 0.99588 1.00412
5 1.00137 0.99863
6 0.99954 1.00046
7 1.00015 0.99985
8 0.99995 1.00005
9 1.00002 0.99998

10 0.99999 1.00001

7.6.3 E[X]= 1;6bk = 1.

Chapter 8

8.1.1 (a) 0.8413.
(b) 4.846.

8.1.2 Cov[W(s),W(t)]=min{s, t}.

8.1.3 ∂p
∂t =

1
2ϕ(z)t

−
3
2
[
z2
− 1

]
;

∂p
∂x =

1
t zϕ(z).

8.1.4 (a) 0.
(b) 3u2

+ 3uv+ uw.

8.1.5 (a) e−|s−t|;
(b) t(1− s) for 0< t < s< 1;
(c) min{s, t}.

8.1.6 (a) Normal, µ= 0,σ 2
= 4u+ v;

(b) Normal, µ= 0,σ 2
= 9u+ 4v+w.

8.1.7 s
S .

8.2.1 (a) 0.6826.
(b) 4.935.

8.2.2 If tanθ =
√

s/t, then cosθ =
√

t/(s+ t).

8.2.3 0.90.
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8.2.4 Reflection principle: Pr{Mn ≥ a,Sn < a} =
Pr{Mn ≥ a,Sn > a}(= Pr{Sn > a}).
Also, Pr{Mn ≥ a,Sn = a} = Pr{Sn = a}.

8.2.5 Pr{τ0 < t} = Pr{B(u) 6= 0 for all t ≤ u< a} = 1−ϑ(t,a).

8.2.6 Pr{τ1 < t} = Pr{B(u)= 0 for some u,b< u< t}.

8.3.1 Pr{R(t) < y|R(0)= x}
= Pr{−y< B(t) < y|B(0)= x}
= Pr{B(t) < y|B(0)= x}−Pr{B(t) <−y|B(0)= x}.

8.3.2 0.3174, 0.15735.

8.3.3 0.83995.

8.3.4 0.13534.

8.3.5 No, No.

8.4.1 0.05.

8.4.2 0.5125, 0.6225, 0.9933.

8.4.3 0.25, 24.5, 986.6.

8.4.4 τ = 43.3 versus E[T]= 21.2

8.4.5 0.3325.

8.4.6 (a)
E
[
(ξ − a)+

]
=

∞∫
a

xϕ(x)dx− a

∞∫
a

ϕ(x)dx

= ϕ(a)− a[1−8(a)].

(b) (X− b)+ = σ
(
ξ −

b−µ
σ

)+
.

8.5.1 0.8643, 0.7389, 0.7357.

8.5.2 0.03144, 0.4602, 0.4920.

8.5.3 (a) E[Vn]= (1−β)nν
Cov[Vn,Vn+k]= (1−β)k.

(b) E[1V|Vn = v]=−βv
Var[1V|Vn = v]= 1.

Chapter 9

9.1.1 (a) Probability waiting planes exceed available air space.
(b) Mean number of cars in lot.

9.1.2 The standard deviation of the exponential distribution equals the mean.

9.1.3 1 1
2 days.

9.2.1 25
36 .

9.2.3 L= 1 versus L= 5.

9.3.1 ν = 1
µ
,τ 2
=

1
µ2 ,L=

ρ
1−ρ .
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9.3.2 L= ρ+ ρ2(1+α)
2α(1−ρ) .

9.3.3 3 1
4 .

9.3.4 27
36 versus 3.

9.3.5 M(t)= λ

t∫
0

[1−G(y)]dy→ λν.

9.4.1 8 per hour.

9.4.2 5
16 .

9.4.3 8.55.

9.4.4 0.0647.

9.5.1 1
5

(
4
5

)
=

4
25 .

9.5.2 Pr{Z ≤ 20} = 0.9520.
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A
Absorbed Brownian motion, 412–414
Absorbing Markov chain, 102–105
Absorbing state, 99, 139, 149

in birth and death process, 316–326
Absorption probability, 90
Absorption time, 97

in birth and death process, 318–326
Accounts receivable model, 135
Addition law, 5
Age, 37, 363–365

in a Poisson process, 358–360
in a renewal process, 120
limiting distribution of, 368–369

Age replacement, 183–185, 363–365, 375
Airline reservation model, 179
Aperiodic, 198, 204
Arrival process, 447, 450, 487
Astronomy application, 261–262
Availability, 180, 189, 193, 305
Average fraction inspected, 182
Average outgoing quality, 183, 189

B
Backward equations, 299, 500
Bacteria, 25, 237, 262
Balking, 449, 468–469
Basic limit theorem of Markov chain,

203–211
Batch processing, 123
Bernoulli distribution, 20
Bernoulli random variables, sum of, 26
Beta distribution, 31, 69
Beta function, 44
Bid model, 56, 71, 122, 275–276
Bilateral exponential, 529
Binary message, 82, 86
Binomial distribution, 20–21, 23, 252

convolution of, 26
Binomial expansion, 224
Binomial theorem, 44, 282

Bird problem, 362
Birth and death process, 295–303

limiting distribution of, 305–307
postulates for, 295–296
with absorbing states, 316–318

Birth process, 277–283
linear, 287

Black–Scholes, 426–430
Block replacement, 354–357, 375, 378
Borel set, 16
Branching process, 75, 146–150, 152–161

multiple, 159–161
Brand switching model, 189
Breakdown rule, 291, 294
Brownian bridge, 414–416
Brownian meander, 416–417
Brownian measure, 441–445
Brownian motion, 392–396

absorbed, 412–414
geometric, 426–430
integrated, 442
maximum of, 405–409, 423–424
of pollen grain, 434
reflected, 411–412
standard, 395
two dimensional, 418
with drift, 419–430

Burn-in, 334–336
Busy period, 455, 461

C
Cable fatigue model, 290–293
Cable strength model, 399–402
Call option, 427, 432, 438
Car problem, 214
Carrying capacity, 321, 324
Cash management, 132–134
Cauchy distribution, 525
Central limit principle, 399, 416, 440
Central limit theorem, 27, 62,

396–397, 517
Certain event, 5
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Chapman–Kolmogorov equation, 296
Characteristic function, 525
Chebyshev inequality, 77
Chemical reaction, 294, 314
Cigar problem, 111
Collards, 304
Communicate, 195, 215
Complex exponential, 526
Compound Poisson process, 264–267
Compression testing model, 404
Computer challenge, 111, 139, 146, 241,

259, 405
Computer coding, 240
Conditional

density function, 63, 67
dependence, 71
distribution function, 58
expectation, 67
expected value, 49, 50
independence, 71
mass function, 47
probability, 11–12

Continuity theorem, 533
Continuous random variable, 7, 65–69
Continuous sampling, 181–183
Control limit rule, 187
Convolution, 10

of binomial distribution, 20–21
of geometric distribution, 21–22
of Poisson, 22–24

Correlation coefficient, 9, 18, 32, 70
Counter model, 353, 362
Covariance, 9, 71

matrix, 398
Covariance function, 396, 433

for Brownian bridge, 414–416
for Brownian motion, 396
of Ornstein–Uhlenbeck process, 433

Cox process, 227–228, 338, 339
Crack failure model, 270
Craps, 52–56
Cumulative process, 374
Current life, See age
Customer waiting time, 448

D
Damage, 110
Death process, 286–293

linear, 287–290

Defects, 226, 263
Delayed renewal process, 371–372
Departure process, 481, 487
Detector model, 258
Dice

shaved, 54–56
weighted, 57

Differential equations, 277, 299–303, 508
and limiting distribution, 305
backward, 299
for Cox process, 343
for M(t), 301
for two state Markov chain, 329
forward, 300
Kolmogorov, 299, 300

Diffusion equation, 392
Discount factor, 109
Discrete random variable, 6
Disease spread, 82, 284
Disjoint, 5
Dispatch model, 231
Dispersal of offspring, 151
Distribution function, 5, 501
Do men have more sisters, 52
Doubly stochastic, 170–171, 227

Poisson process, 227

E
Ehrenfest urn model, 89–90, 440, 446
Eigenvalue, 512
Electron multiplier model,

147, 151
Elementary renewal theorem, 363–365
Embedded Markov chain, 329,

462–463
Embedded random walk, 316
Empirical distribution function, 415
Entire function, 503
Equal load sharing, 399
Equally likely outcomes, 2
Excess life, 344, 349, 359, 368–369

for Poisson process, 359
limiting distribution of, 368–369

Expected value, 7–8
of sum, 10

Exponential distribution, 28–30,
37–40

Extinction, 286, 320
mean time to, 320, 321, 324
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Extinction probability, 149–150, 154–157
and generating function, 154–157

F
Failure, 21, 120

crack model for, 270
Failure rate, 29, 291
Fair game, 72, 77
Family name survival, 147
Family size, 75, 152
Fatigue, 285, 290–293
Fecundity model, 103–105
Feedback, 470, 489
Fiber, See filament
Fibrous composite, 263
Filament, strength of, 271–273
First come–first served, 447
First return, 198–203

mean, 212
First step analysis, 84, 95–105, 139–144

infinitesimal, 419–421
Flashlight problem, 42
Flea beetle model, 304
Forward equations, 305, 313, 340, 460
Fourier transform, 501
Fundamental matrix, 142

G
Gauge length, 271
Gambler, 75
Gambler’s ruin, 78, 117, 119, 124, 420–424

mean duration of, 136
Gambling, 18, 72, 77
Game show, 123
Gamma distribution, 30–31, 242
Gamma function, 43
Gaussian process, 398–402
Gene frequency model, 90, 91, 436
Generating function, 111, 154–159, 230

and extinction probability, 154–157
and sums of rv’s., 148

Geometric Brownian motion, 424–430
Geometric distribution, 21, 49, 97, 111

convolution of, 10
generalized, 26

Geometric series, 45

H
Hazard rate, 29, 291, 335
History, 178–179

Hitting probability, 143
Hitting time, 124, 407, 420, 505, 515

mean of, 136, 138
Home helicopter, 285
Homomorphism, 526
Hyperbolic equation, 510
Hyperbolic functions, 502

I
Idle period, 455
Immigration, 284, 300, 306
Impossible event, 5
Impulse response function, 253
Imputed volatility, 430
Independent events, 20
Independent increments, 359, 396
Independent Poisson processes, 273
Independent random variables, 9

defining a Markov chain, 114–116
Indicator

function, 36
of event, 20
random variable, 18

Industrial mobility, 331–334
Infinitesimal first step analysis, 419–421
Infinitesimal generator, 296, 298
Infinitesimal matrix, 301, 498
Infinitesimal parameter, 298
Infinitesimal probability, 277, 278
Infinitesimal rates, 507
Input process, 447, 450
Input rate, 468
Integral equation, 508
Integrated Brownian motion, 442
Intersection, 5
Invariance principle, 396–397, 420
Inventory model, 87–89, 93–95, 132
Inversion formula, 527
Irreducible, 195, 215
Irreducible Markov chain, 195–196, 204
Isotropic transport, 521

J
Joint distribution, 8–9

L
L = λW, 448–449
Label, 527
Laplace transform, 259, 505
Last step analysis, 300, 340
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Law of large numbers, 3, 517
Law of rare events, 22, 23, 148, 232–238
Law of total probability, 5, 11, 39, 47–50,

53, 59, 61, 67, 150, 228, 230, 278,
339, 340, 381, 382, 383, 464

Lazy professor, 379
Learning model, 247
Length biased sampling, 360
Limiting distribution, 92, 165–168, 179, 305

and differential equations, 305
for birth and death process, 301
interpretation of, 171–173
of age and excess life, 368–369

Limiting transition probability, 174, 191
Linear birth process, See Yule process
Linear death process, 286–290
Linear growth, 316

with immigration, 300–301, 306–307
Loaded dice, 57
Local deMoivre Laplace theorem, 539
Logistic process, 309
Lognormal distribution, 28
Long run relative frequency, 2, 3

M
M/G/1 queue, 449, 463
M/G/∞ queue, 456, 465–467
M/M/1 queue, 449, 453, 481
M/M/S queue, 459, 480
M/M/∞ queue, 449, 456
Marginal distribution, 8
Marked Poisson process, 267–273, 465
Markov chain, 79

embedded, 329, 462–463
in continuous time, 277, 337, 338
two state, 112–113, 203, 301–303, 329–331

Markov inequality, 73
Markov process, 79
Marlene, 390, See also Martha
Martha, 124, See also Marlene
Martingale, 71–77, 432

systems theorems, 72, 77
Match, 18
Matrix exponential, 519
Maximal inequality, 73–74
Maximum of Brownian motion, 423–424
Maze, 100–102, 108, 135
Mean, 7
Measurable, 14

Median, 7, 32
Memoryless property, 29, 40, 289, 452, 461
Mode, 25
Modified Bessel function, 503
Moment, 7–8
Moment generating function, 525
Multinomial distribution, 24

N
Naomi, 41
Negative binomial distribution, 49, 69
Neutron chain reaction, 147
Normal distribution, 27–28

bivariate, 31
conditional, 58–59
multivariate, 32, 398
notation for, 394
table of, 393

Null recurrent, 204

O
Offspring, 61
Optimal replacement model, 185–189
Option pricing, 426–430
Ornstein–Uhlenbeck process, 432–445

and Brownian motion, 434–437
stationary, 439

Overflow, 450, 470–472

P
Parseval’s identity, 532
Partial differential equation, 498
Partial sums, 115–116, 146
Passage time distributions, 505
Pattern search, 94, 103
Period of state, 196
Periodic, 210–211, 218
Peter principle, 331–334, 373–374
Planned replacement, See Age replacement
Poisson

decomposition, 224
sum of, 245

Poisson counting process, 241
Poisson distribution, 22–24, 148, 223–228

and uniform distribution, 247–257
convolution of, 25

Poisson point process, 241
definition, 241
nonhomogeneous, 269
postulates for, 277–278
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Poisson process, 225–226
as a renewal process, 358–360
compound, 264–267
doubly stochastic, 227
marked, 267–273
mixed, 228, 232
nonhomogeneous, 227
postulates for, 277–278
repositioning of, 274
spatial, 259–262
with Markov intensity, 338–343

Population size model, 75, 282, 287, 300,
320, 323, 325

with age structure, 384–387
Population stability, 301
Position process, 437–439
Positive recurrent, 204
Preemptive priority, 472–478
Premium, 427
Priority, preemptive, 472–478
Priority queue, 450, 472–478
Probability density function, 6
Probability mass function, 6
Probability measure, 12
Probability of absorption, 101, 137
Probability of extinction, 149–150
Probability space, 13
Process control, 376
Product form, 489
Production process, 24, 83, 177, 191, 375
Pure birth process, See birth process
Pure death process, See death process

Q
Queue discipline, 447
Queueing model, 58, 94, 447

discrete, 92
Queueing network, 450

general open, 480–494
open acyclic, 480–487

Quiz show, 70

R
Radioactive decay, 234

alpha particles, 250
Random environment, 70
Random evolution, 498
Random flights, 521

Random sum, 148
distribution of, 61–64
moments of, 59–61

Random variable, 5–6
continuous, 7
discrete, 7

Random velocity model, 507
Random walk, 116–119, 124–134, 196, 265,

295, 297, 316
simple, 119, 139

Random walk hypothesis, 265
Recurrence, 506
Recurrent, 198–201
Recurrent state, 203
Reducible Markov chain, 215–220
Redundancy, 179–181, 191, 334–336
Reflected Brownian motion, 411–412
Reflection principle, 405–408, 411, 413, 419
Regular Markov chain, 165, 195
Regular transition matrix, 171
Reliability model, 179–181
Reneging, 479
Renewal argument, 379, 380
Renewal equation, 379–383, 387–388
Renewal function, 348, 349, 354, 355, 358,

366, 371
for Poisson process, 363

Renewal process, 120, 353–357, 358–360,
362–369

definition, 347
delayed, 371–372
in Markov chain, 354
in queues, 354
stationary, 372

Renewal theorem, 365–367, 372, 373, 383,
388, 455, 460

elementary, 363–365, 371, 374, 377
Repair model, 450
Repairman model, 307–309
Replacement model, 373, 375

optimal, 370
Risk theory, 58, 265, 375
Rumor spread, 110

S
Sample space, 12, 504
Sampling

continuous, 181–183
length biased, 360
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Sampling (Continued)
sum quota, 255–257
wildlife, 58

Sequential decisions, 422–423
Sequential hypothesis test, 423
Server utilization, 454
Service distribution, 447
Shaved dice, 56
Shewhart control chart, 376
Shock model, 265–277
Shot noise, 253–254
Sigma-algebra, 13–16
Size effect, 271, 341
Sojourn, 142, 241, 243, 279, 286, 287, 289,

296–299, 329
in Poisson process, 241

Spectral properties, 512
Spread

of disease, 82, 284
of rumor, 110

Stable age distribution, 389
Standard normal distribution function, 518
State space, 4, 119, 515
Stationary

Cox process, 339
distribution, 188, 205, 210, 217, 218, 305,

448, 469, 480
intensity, 339
Ornstein–Uhlenbeck process,

439–440
renewal process, 372
transition probability, 79

Sterile male insect control,
322–326

Stirling’s formula, 43, 200, 528, 536–538
Stochastic, 1, 62, 170
Stochastic process, 4, 72, 298, 391,

392–396
Stock prices, 62–64, 73, 265, 304, 346,

438–439
Stop and go traveler, 304, 346
Strength

of cable, 399–402
of filaments, 271–273

Striking price, 427
Subjective probability, 3
Success runs, 120–121, 134
Successive maxima, 114–116
Sum quota sampling, 255–257, 361

Sums of numbers, 45
System, 41, 185, 282, 357, 468–470,

482, 492
System throughput, 448

T
Tail probability, 34–37, 349
Tandem queues, 481–482
Telegraph equation, 495
Tensile strength, 341–343
Time reversal, 485–486
Total life, 349, 360

for Poisson process, 360
Tracking error, 435
Traffic flow, 353
Traffic intensity, 454, 457, 477, 478
Transient state, 99, 102, 142, 196, 198–201,

217
Transition probability, 79

for two state Markov chain, 203, 357
limit of, 166, 171
matrix, 80, 83–84
n-step, 84
regular, 165–173
stationary, 79, 83

Triangular density, 530
Trigonometric functions, 502

U
Uncorrelated, 9
Uniform density, 530
Uniform distribution, 30, 77, 261

and Poisson process, 247–257
discrete, 25

Union, 4
Urn, 11, 52, 76, 77, 93–95, 109–110, 139, 440

V
Variable service rates, 469–470
Variance, 7
Velocity, 434
Volatility, 429

W
Waiting time

in Poisson process, 241, 242, 258, 264, 269
in renewal process, 348

Wald’s approximation, 423
Warrant, 426
Wear, 110, 225
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Weibull distribution, 341, 401
Weighted dice, 57
Wildlife sampling, 58

Y
You Be the Judge, 23–24
Yule process, 278, 282–283

with immigration, 284

Z
Zero-Seeking device, 108, 145
Zeros of Brownian motion, 408–409


	Cover
	Preface
	Front Matter
	Copyright
	Preface to the 4th Edition
	Preface to the 3rd Edition
	Preface to the 1st Edition
	To the Instructor
	Acknowledgements

	1 Introduction
	2
Conditional Probability
and Conditional Expectation
	3
Markov Chains: Introduction
	4
The Long Run Behavior of
Markov Chains
	5
Poisson Processes
	6
Continuous Time Markov Chains
	7
Renewal Phenomena
	8
Brownian Motion and Related
Processes
	9
Queueing Systems
	10
Random Evolutions
	11
Characteristic Functions and
Their Applications
	Further Reading
	Answer to Exercises
	Index

	ctip Field 1: 
	ctip Field 2: 
	ctip Field 3: 
	ctip Field 4: 
	ctip Field 5: 
	ctip Field 6: 
	ctip Field 7: 
	ctip Field 8: 
	ctip Field 9: 
	ctip Field 10: 
	ctip Field 11: 
	ctip Field 12: 
	ctip Field 13: 
	ctip Field 14: 
	ctip Field 15: 
	ctip Field 16: 


