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Preface to the Fourth Edition

Since the publication of the third edition in 1998, some new developments have
occurred. Samuel Karlin died in 2007, leaving a gap at the authorship level and the
new designation of authors.

In the fourth edition, we have added two new chapters: Chapter 10 on random evo-
lution and Chapter 11 on characteristic functions. Random Evolution denotes a set
of stochastic models, which describe continuous motion with piecewise linear sample
functions. Explicit formulas are available in the simplest cases. In the general case, one
has a central limit theorem, which is pursued more generally in Chapter 11, “Char-
acteristic Functions and Their Applications.” Here the necessary tools from Fourier
Analysis are developed and applied when necessary. Many theorems are proved in
full detail, while other proofs are sketched—in the spirit of the earlier Chapters 1-9.
Complete proofs may be found by consulting the intermediate textbooks listed in the
section on further reading. Instructors who have taught from the third edition may
be reassured that Chapters 1-9 of the new edition are identical to the corresponding
chapters of the new book.

We express our thanks to Michael Perlman of the University of Washington and
Russell Lyons of Indiana University for sharing their lists of errata from the third edi-
tion. We would also like to thank Craig Evans for useful advice on partial differential
equations.

Biographical Note

Samuel Karlin earned his undergraduate degree from the Illinois Institute of Technol-
ogy and his doctorate from Princeton University in 1947 at age 22. He served on the
faculty of Caltech from 1948—-1956 before joining the faculty of Stanford University,
where he spent the remainder of his career. Karlin made fundamental contributions to
mathematical economics, bioinformatics, game theory, evolutionary theory, biomolec-
ular sequence analysis, mathematical population genetics, and total positivity.

Karlin authored 10 books and more than 450 articles. He was a member of the
American Academy of Arts and Sciences and the National Academy of Sciences.
In 1989, he received the National Medal of Science for his broad and remarkable
researches in mathematical analysis, probability theory, and mathematical statistics
and in the application of these ideas to mathematical economics, mechanics, and genet-
ics. He died on December 18, 2007.

Mark A. Pinsky
Department of Mathematics
Northwestern University
Evanston, IL 60208-2730



Preface to the Third Edition

The purposes, level, and style of this new edition conform to the tenets set forth in the
original preface. We continue with our objective of introducing some theory and appli-
cations of stochastic processes to students having a solid foundation in calculus and
in calculus-level probability, but who are not conversant with the “epsilon—delta” def-
initions of mathematical analysis. We hope to entice students toward the deeper study
of mathematics that is prerequisite to further work in stochastic processes by showing
the myriad and interesting ways in which stochastic models can help us understand the
real world.

We have removed some topics and added others. We added a small section on
martingales that includes an example suggesting the martingale concept as appropriate
for modeling the prices of assets traded in a perfect market. A new chapter introduces
the Brownian motion process and includes several applications of it and its variants
in financial modeling. In this chapter the Black—Scholes formula for option pricing
is evaluated and compared with some reported prices of options. A Poisson process
whose intensity is itself a stochastic process is described in another new section.

Some treatments have been updated. The law of rare events is presented via an
inequality that measures the accuracy of a Poisson approximation for the distribution
of the sum of independent, not necessarily identically distributed, Bernoulli random
variables. We have added the shot noise model and related it to a random sum.

The text contains more than 250 exercises and 350 problems. Exercises are elemen-
tary drills intended to promote active learning and to develop familiarity with concepts
through use. They often simply involve the substitution of numbers into given formu-
las or reasoning one or two steps away from a definition. They are the kinds of simple
questions that we, as instructors, hope that students would pose and answer for them-
selves as they read a text. Answers to the exercises are given at the end of the book so
that students may gauge their understanding as they go along.

Problems are more difficult. Some involve extensive algebraic or calculus ma-
nipulation. Many are “word problems” wherein the student is asked, in effect, to model
some described scenario. As in formulating a model, the first step in the solution of a
word problem is often a sentence of the form “Let x =....” A manual containing the
solutions to the problems is available from the publisher.

A reasonable strategy on the part of the teacher might be to hold students respon-
sible for all of the exercises, but to require submitted solutions only to selected prob-
lems. Every student should attempt a representative selection of the problems in order
to develop his or her ability to carry out stochastic modeling in his or her area of
interest.
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A small number of problems are labeled “Computer Challenges.” These call for
more than pencil and paper for their analyses, and either simulation, numerical explo-
ration, or symbol manipulation may prove helpful. Computer Challenges are meant
to be open-ended, intended to explore what constitutes an answer in today’s world of
computing power. They might be appropriate as part of an honors requirement.

Because our focus is on stochastic modeling, in some instances, we have omitted a
proof and contented ourselves with a precise statement of a result and examples of its
application. All such omitted proofs may be found in A First Course in Stochastic Pro-
cesses, by the present authors. In this more advanced text, the ambitious student will
also find additional material on martingales, Brownian motion, and renewal processes,
and presentations of several other classes of stochastic processes.



Preface to the First Edition

Stochastic processes are ways of quantifying the dynamic relationships of sequences
of random events. Stochastic models play an important role in elucidating many areas
of the natural and engineering sciences. They can be used to analyze the variability
inherent in biological and medical processes, to deal with uncertainties affecting man-
agerial decisions and with the complexities of psychological and social interactions,
and to provide new perspectives, methodology, models, and intuition to aid in other
mathematical and statistical studies.

This book is intended as a beginning text in stochastic processes for students famil-
iar with elementary probability calculus. Its aim is to bridge the gap between basic
probability know-how and an intermediate-level course in stochastic processes—for
example, A First Course in Stochastic Processes, by the present authors.

The objectives of this book are as follows: (1) to introduce students to the standard
concepts and methods of stochastic modeling; (2) to illustrate the rich diversity of
applications of stochastic processes in the sciences; and (3) to provide exercises in the
application of simple stochastic analysis to appropriate problems.

The chapters are organized around several prototype classes of stochastic pro-
cesses featuring Markov chains in discrete and continuous time, Poisson processes
and renewal theory, the evolution of branching events, and queueing models. After
the concluding Chapter 9, we provide a list of books that incorporate more advanced
discussions of several of the models set forth in this text.



To the Instructor

If possible, we recommend having students skim the first two chapters, referring as
necessary to the probability review material, and starting the course with Chapter 3, on
Markov chains. A one-quarter course adapted to the junior—senior level could consist
of a cursory (1-week) review of Chapters 1 and 2, followed in order by Chapters 3
through 6. For interested students, Chapters 7, 8, and 9 discuss other currently active
areas of stochastic modeling. Starred sections contain material of a more advanced or
specialized nature.
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1 Introduction

1.1 Stochastic Modeling

A quantitative description of a natural phenomenon is called a mathematical model of
that phenomenon. Examples abound, from the simple equation S = % gt* describing the
distance § traveled in time ¢ by a falling object starting at rest to a complex computer
program that simulates a biological population or a large industrial system.

In the final analysis, a model is judged using a single, quite pragmatic, factor, the
model’s usefulness. Some models are useful as detailed quantitative prescriptions of
behavior, e.g., an inventory model that is used to determine the optimal number of units
to stock. Another model in a different context may provide only general qualitative
information about the relationships among and relative importance of several factors
influencing an event. Such a model is useful in an equally important but quite different
way. Examples of diverse types of stochastic models are spread throughout this book.

Such often mentioned attributes, such as realism, elegance, validity, and repro-
ducibility, are important in evaluating a model only insofar as they bear on that model’s
ultimate usefulness. For instance, it is both unrealistic and quite inelegant to view the
sprawling city of Los Angeles as a geometrical point, a mathematical object of no size
or dimension. Yet, it is quite useful to do exactly that when using spherical geometry to
derive a minimum-distance great circle air route from New York City, another “point.”

There is no such thing as the best model for a given phenomenon. The pragmatic
criterion of usefulness often allows the existence of two or more models for the same
event, but serving distinct purposes. Consider light. The wave form model, in which
light is viewed as a continuous flow, is entirely adequate for designing eyeglass and
telescope lenses. In contrast, for understanding the impact of light on the retina of
the eye, the photon model, which views light as tiny discrete bundles of energy, is
preferred. Neither model supersedes the other; both are relevant and useful.

The word “‘stochastic” derives from a Greek word (ctoxaleoOar: to aim, to
guess) and means “random” or “chance.” The antonym is “sure,” “deterministic,” or
“certain.” A deterministic model predicts a single outcome from a given set of cir-
cumstances. A stochastic model predicts a set of possible outcomes weighted by their
likelihoods or probabilities. A coin flipped into the air will surely return to earth some-
where. Whether it lands heads or tails is random. For a “fair” coin, we consider these
alternatives equally likely and assign to each the probability %

However, phenomena are not in and of themselves inherently stochastic or deter-
ministic. Rather, to model a phenomenon as stochastic or deterministic is the choice of
the observer. The choice depends on the observer’s purpose; the criterion for judging
the choice is usefulness. Most often the proper choice is quite clear, but controversial

An Introduction to Stochastic Modeling. DOI: 10.1016/B978-0-12-381416-6.00001-0
(© 2011 Elsevier Inc. All rights reserved.
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situations do arise. If the coin once fallen is quickly covered by a book so that the
outcome ‘“heads” or “tails” remains unknown, two participants may still usefully
employ probability concepts to evaluate what is a fair bet between them; i.e., they
may usefully view the coin as random, even though most people would consider the
outcome now to be fixed or deterministic. As a less mundane example of the con-
verse situation, changes in the level of a large population are often usefully modeled
deterministically, in spite of the general agreement among observers that many chance
events contribute to their fluctuations.

Scientific modeling has three components: (1) a natural phenomenon under study,
(2) a logical system for deducing implications about the phenomenon, and (3) a con-
nection linking the elements of the natural system under study to the logical system
used to model it. If we think of these three components in terms of the great-circle
air route problem, the natural system is the earth with airports at Los Angeles and
New York; the logical system is the mathematical subject of spherical geometry; and
the two are connected by viewing the airports in the physical system as points in the
logical system.

The modern approach to stochastic modeling is in a similar spirit. Nature does not
dictate a unique definition of “probability,” in the same way that there is no nature-
imposed definition of “point” in geometry. “Probability” and “point” are terms in pure
mathematics, defined only through the properties invested in them by their respective
sets of axioms. (See Section 1.2.8 for a review of axiomatic probability theory.) There
are, however, three general principles that are often useful in relating or connecting the
abstract elements of mathematical probability theory to a real or natural phenomenon
that is to be modeled. These are (1) the principle of equally likely outcomes, (2) the
principle of long run relative frequency, and (3) the principle of odds making or subjec-
tive probabilities. Historically, these three concepts arose out of largely unsuccessful
attempts to define probability in terms of physical experiences. Today, they are rel-
evant as guidelines for the assignment of probability values in a model, and for the
interpretation of the conclusions of a model in terms of the phenomenon under study.

We illustrate the distinctions between these principles with a long experiment. We
will pretend that we are part of a group of people who decide to toss a coin and observe
the event that the coin will fall heads up. This event is denoted by H, and the event of
tails, by 7.

Initially, everyone in the group agrees that Pr{H} = % When asked why, people
give two reasons: Upon checking the coin construction, they believe that the two pos-
sible outcomes, heads and tails, are equally likely; and extrapolating from past experi-
ence, they also believe that if the coin is tossed many times, the fraction of times that
heads is observed will be close to one-half.

The equally likely interpretation of probability surfaced in the works of Laplace in
1812, where the attempt was made to define the probability of an event A as the ratio of
the total number of ways that A could occur to the total number of possible outcomes of
the experiment. The equally likely approach is often used today to assign probabilities
that reflect some notion of a total lack of knowledge about the outcome of a chance
phenomenon. The principle requires judicious application if it is to be useful, however.



Introduction 3

In our coin tossing experiment, for instance, merely introducing the possibility that the
coin could land on its edge (E) instantly results in Pr{H} = Pr{T} = Pr{E} = %

The next principle, the long run relative frequency interpretation of probability, is a
basic building block in modern stochastic modeling, made precise and justified within
the axiomatic structure by the law of large numbers. This law asserts that the relative
fraction of times, in which an event occurs in a sequence of independent similar exper-
iments, approaches, in the limit, the probability of the occurrence of the event on any
single trial.

The principle is not relevant in all situations, however. When the surgeon tells a
patient that he has an 80-20 chance of survival, the surgeon means, most likely, that
80% of similar patients facing similar surgery will survive it. The patient at hand is
not concerned with the long run, but in vivid contrast, he is vitally concerned only in
the outcome of his, the next, trial.

Returning to the group experiment, we will suppose next that the coin is flipped
into the air and, upon landing, is quickly covered so that no one can see the outcome.
What is Pr{H} now? Several in the group argue that the outcome of the coin is no
longer random, that Pr{H} is either O or 1, and that although we do not know which it
is, probability theory does not apply.

Others articulate a different view, that the distinction between “random’ and “lack
of knowledge” is fuzzy, at best, and that a person with a sufficiently large computer
and sufficient information about such factors as the energy, velocity, and direction used
in tossing the coin could have predicted the outcome, heads or tails, with certainty
before the toss. Therefore, even before the coin was flipped, the problem was a lack of
knowledge and not some inherent randomness in the experiment.

In a related approach, several people in the group are willing to bet with each other,
at even odds, on the outcome of the toss. That is, they are willing to use the calculus of
probability to determine what is a fair bet, without considering whether the event under
study is random or not. The usefulness criterion for judging a model has appeared.

While the rest of the mob were debating “random” versus “lack of knowledge,” one
member, Karen, looked at the coin. Her probability for heads is now different from
that of everyone else. Keeping the coin covered, she announces the outcome “Tails,”
whereupon everyone mentally assigns the value Pr{H} = 0. But then her companion,
Mary, speaks up and says that Karen has a history of prevarication.

The last scenario explains why there are horse races; different people assign differ-
ent probabilities to the same event. For this reason, probabilities used in odds making
are often called subjective probabilities. Then, odds making forms the third principle
for assigning probability values in models and for interpreting them in the real world.

The modern approach to stochastic modeling is to divorce the definition of probabil-
ity from any particular type of application. Probability theory is an axiomatic structure
(see Section 1.2.8), a part of pure mathematics. Its use in modeling stochastic phenom-
ena is part of the broader realm of science and parallels the use of other branches of
mathematics in modeling deterministic phenomena.

To be useful, a stochastic model must reflect all those aspects of the phenomenon
under study that are relevant to the question at hand. In addition, the model must
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be amenable to calculation and must allow the deduction of important predictions or
implications about the phenomenon.

1.1.1 Stochastic Processes

A stochastic process is a family of random variables X;, where ¢ is a parameter running
over a suitable index set 7. (Where convenient, we will write X(¢) instead of X,.) In a
common situation, the index ¢ corresponds to discrete units of time, and the index set is
T ={0,1,2,...}. In this case, X; might represent the outcomes at successive tosses of
a coin, repeated responses of a subject in a learning experiment, or successive obser-
vations of some characteristics of a certain population. Stochastic processes for which
T = [0, co) are particularly important in applications. Here ¢ often represents time, but
different situations also frequently arise. For example, t may represent distance from
an arbitrary origin, and X; may indicate the number of defects in the interval (0, ¢]
along a thread, or the number of cars in the interval (0, f] along a highway.

Stochastic processes are distinguished by their state space, or by the range of pos-
sible values for the random variables X;, by their index set 7', and by the dependence
relations among the random variables X;. The most widely used classes of stochas-
tic processes are systematically and thoroughly presented for study in the following
chapters, along with the mathematical techniques for calculation and analysis that are
most useful with these processes. The use of these processes as models is taught by
example. Sample applications from many and diverse areas of interest are an integral
part of the exposition.

1.2 Probability Review*

This section summarizes the necessary background material and establishes the book’s
terminology and notation. It also illustrates the level of the exposition in the following
chapters. Readers who find the major part of this section’s material to be familiar and
easily understood should have no difficulty with what follows. Others might wish to
review their probability background before continuing.

In this section, statements frequently are made without proof. The reader desiring
justification should consult any elementary probability text as the need arises.

1.2.1 Events and Probabilities

The reader is assumed to be familiar with the intuitive concept of an event. (Events are
defined rigorously in Section 1.2.8, which reviews the axiomatic structure of probabil-
ity theory.)

Let A and B be events. The event that at least one of A or B occurs is called
the union of A and B and is written A U B; the event that both occur is called the

* Many readers will prefer to omit this review and move directly to Chapter 3, on Markov chains. They can
then refer to the background material that is summarized in the remainder of this chapter and in Chapter 2
only as needed.
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intersection of A and B and is written A N B, or simply AB. This notation extends to
finite and countable sequences of events. Given events A1, Az, ..., the event that at
least one occurs is written A UA, U -+ = U?ilA,-, the event that all occur is written
A1NAN--- = m;‘ﬁ]Ai'

The probability of an event A is written Pr{A}. The certain event, denoted by €2,
always occurs, and Pr{Q} = 1. The impossible event, denoted by @, never occurs, and
Pr{@} = 0. It is always the case that 0 < Pr{A} < 1 for any event A.

Events A and B are said to be disjointif AN B = @, i.e., if A and B both cannot occur.
For disjoint events A and B, we have the addition law Pr{A U B} = Pr{A} 4 Pr{B}.
A stronger form of the addition law is as follows: Let A1, A, ... be events with A;
and A; disjoint whenever i # j. Then, Pr{U?ilAi} = X2, Pr{A;}. The addition law
leads directly to the law of total probability: Let A1, A,, ... be disjoint events for which
Q=A1UA,U--. . Equivalently, exactly one of the events Ay, A, ... will occur. The
law of total probability asserts that Pr{B} = X°, Pr{BN A;} for any event B. The law
enables the calculation of the probability of an event B from the sometimes more easily
determined probabilities Pr{B NA;}, where i = 1, 2, .... Judicious choice of the events
Aj is prerequisite to the profitable application of the law.

Events A and B are said to be independent if Pr{A N B} = Pr{A} x Pr{B}. Events
A1,Az, ... are independent if

Pr{A; NA;, N---NA;,} =Pr{A; } Pr{A,} - -Pr{a; }

for every finite set of distinct indices iy, i3, . .., iy-

1.2.2 Random Variables

An old-fashioned but very useful and highly intuitive definition describes a random
variable as a variable that takes on its values by chance. In Section 1.2.8, we sketch
the modern axiomatic structure for probability theory and random variables. The older
definition just given serves quite adequately, however, in virtually all instances of
stochastic modeling. Indeed, this older definition was the only approach available for
well over a century of meaningful progress in probability theory and stochastic pro-
cesses.

Most of the time we adhere to the convention of using capital letters such as X, Y, Z
to denote random variables, and lowercase letters such as x, y, z for real numbers. The
expression {X < x} is the event that the random variable X assumes a value that is less
than or equal to the real number x. This event may or may not occur, depending on the
outcome of the experiment or phenomenon that determines the value for the random
variable X. The probability that the event occurs is written Pr{X < x}. Allowing x to
vary, this probability defines a function

F(x) =Pr{X <xj, —00 < X < 400,

called the distribution function of the random variable X. Where several random vari-
ables appear in the same context, we may choose to distinguish their distribution
functions with subscripts, writing, e.g., Fx(§) =Pr{X <&} and Fy(§) =Pr{Y <&},
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defining the distribution functions of the random variables X and Y, respectively, as
functions of the real variable &.

The distribution function contains all the information available about a ran-
dom variable before its value is determined by experiment. We have, for instance,
Pr{X >a}=1-F(a),Pr{fa < X <b} =F(b) — F(a), and Pr{X =x} = F(x) —lim¢ o
Fx—e)=Fx)—F(x—).

A random variable X is called discrete if there is a finite or denumerable set of
distinct values xq,xp,... such that ¢; =Pr{X =x;} >0fori=1,2,... and X;a; = 1.
The function

pxi) =px(x))=a; fori=1,2,... (1.1)

is called the probability mass function for the random variable X and is related to the
distribution function via

p(i) =F(x) —F(xi—) and F(x) =) p().

Xi<x

The distribution function for a discrete random variable is a step function, which
increases only in jumps, the size of the jump at x; being p(x;).

If Pr{X = x} =0 for every value of x, then the random variable X is called con-
tinuous and its distribution function F(x) is a continuous function of x. If there is a
nonnegative function f(x) = fx(x) defined for —oo < x < oo such that

b
Pr{a<X§b}=/f(x)dx for—oco<a<b< oo, (1.2)
a

then f(x) is called the probability density function for the random variable X. If X has
a probability density function f(x), then X is continuous and

F(x):[f(é)dé, —00 < X < 0.

If F(x) is differentiable in x, then X has a probability density function given by
f(x):%F(x):F’(x), —00 < X < 00. (1.3)
In differential form, (1.3) leads to the informal statement
Prix < X <x+dx} = F(x+dx) — F(x) = dF(x) = f(x)dx. (1.4)
We consider (1.4) to be a shorthand version of the more precise statement

Prix < X <x+ Ax} =f(x)Ax+o0(Ax), Ax] 0, (1.5)

where o(Ax) is a generic remainder term of order less than Ax as Ax | 0. That is,
o(Ax) represents any term for which limay o00(Ax)/Ax =0. By the fundamental
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theorem of calculus, equation (1.5) is valid whenever the probability density function
is continuous at x.

While examples are known of continuous random variables that do not possess
probability density functions, they do not arise in stochastic models of common natural
phenomena.

1.2.3 Moments and Expected Values

If X is a discrete random variable, then its mth moment is given by

E[X"] = Zx;" Pr{X = x;} (1.6)

[where the x; are specified in (1.1)], provided that the infinite sum converges abso-
lutely. Where the infinite sum diverges, the moment is said not to exist. If X is a con-
tinuous random variable with probability density function f(x), then its mth moment is
given by

+00
E[X™ = /xmf(x)dx, (1.7)

provided that this integral converges absolutely.

The first moment, corresponding to m = 1, is commonly called the mean or expected
value of X and written my or px. The mth central moment of X is defined as the mth
moment of the random variable X — py, provided that uy exists. The first central
moment is zero. The second central moment is called the variance of X and written axz
or Var[X]. We have the equivalent formulas Var[X] = F [(X — /1,)2] =F [Xz] — /,Lz.

The median of a random variable X is any value v with the property that

1 1
Pr{X >v} > > and Pr{X <v}> 5

If X is a random variable and g is a function, then Y = g(X) is also a random variable.

If X is a discrete random variable with possible values x1, x7, ..., then the expectation
of g(X) is given by

E[g(X)] =) g(x) Pr{X =x}, (1.8)

i=1

provided that the sum converges absolutely. If X is continuous and has the probability
density function fx, then the expected value of g(X) is evaluated from

E[g(X)] = fg(x)fx(x)dx. (1.9)

The general formula, covering both the discrete and continuous cases, is

Efg(X)] = /g(X)de(X), (1.10)
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where Fy is the distribution function of the random variable X. Technically speak-
ing, the integral in (1.10) is a Lebesgue—Stieltjes integral. We do not require knowl-
edge of such integrals in this text, but interpret (1.10) to signify (1.8) when X is
a discrete random variable, and to represent (1.9) when X possesses a probability
density fy.

Let Fy(y) = Pr{Y <y} denote the distribution function for ¥ = g(X). When X is a
discrete random variable, then

E[Y]=) yPr{Y =y}
J

=) () Pr{X =x)
i
if y; = g(x;) and provided that the second sum converges absolutely. In general,

E[Y]= /dey(y)
(1.11)

= /8(X)dFX(X).

If X is a discrete random variable, then so is ¥ = g(X). It may be, however, that X
is a continuous random variable, while Y is discrete (the reader should provide an
example). Even so, one may compute E[Y] from either form in (1.11) with the same
result.

1.2.4 Joint Distribution Functions

Given a pair (X, Y) of random variables, their joint distribution function is the function
Fxy of two real variables given by

Fxy(x,y)=F(x,y)=Pr{iX<x and Y <y}.

Usually, the subscripts X, Y will be omitted, unless ambiguity is possible. A joint dis-
tribution function Fyy is said to possess a (joint) probability density if there exists a
function fyy of two real variables for which

X

)7
Fyy () = / f fer (6. n)dnde  forall x, .

—00 —00

The function Fy (x) = limy_, o, F(x, y) is a distribution function, called the marginal
distribution function of X. Similarly, Fy(y) = limy_, oc F'(x, y) is the marginal distribu-
tion function of Y. If the distribution function F possesses the joint density function f,
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then the marginal density functions for X and Y are given, respectively, by

+00 +oo
@) = / Fopdy and fr(y) = / Fory)dr.

If X and Y are jointly distributed, then E[X 4 Y] = E[X] + E[Y], provided only that
all these moments exist.

Independence

If it happens that F(x,y) = Fx(x) x Fy(y) for every choice of x,y, then the random
variables X and Y are said to be independent. If X and Y are independent and possess
a joint density function f(x, y), then necessarily f(x, y) = fx (x)fy (y) for all x, y.

Given jointly distributed random variables X and Y having means px and py and
finite variances, the covariance of X and Y, written oxy or Cov[X, Y], is the prod-
uct moment oxy = E[(X — ux)(Y — uy)] = E[XY] — uxuy, and X and Y are said to
be uncorrelated if their covariance is zero, i.e., oxy = 0. Independent random vari-
ables having finite variances are uncorrelated, but the converse is not true; there are
uncorrelated random variables that are not independent.

Dividing the covariance oxy by the standard deviations ox and oy defines the cor-
relation coefficient p = oxy/oxoy for which —1 < p < +1.

The joint distribution function of any finite collection X1, ..., X, of random vari-
ables is defined as the function

F(-xlv"'a-xn) =FX1,,..,X,1(-x1’"'7'xn)
=Pr{X| <x1,.... X, <x,}.

If F(x1,...,x,) = Fx, (x1) - - - Fx, (x,,) for all values of x1, ..., x,, then the random vari-
ables X1, ..., X, are said to be independent.
A joint distribution function F(x1, ..., Xx;) is said to have a probability density func-

tion f(&1,...,&,) if

X1

F(X1,~~-,xn)=/---/f(fl,---fn)dén---dél,

—0Q
for all values of xq, ..., x,.
Expectation
For jointly distributed random variables X, ..., X,, and arbitrary functions Ay, ..., ki,

of n variables each,
m m
E|Y hi(X,.... X)) | =Y El(X1,.... X,
j=1 j=1

provided only that all these moments exist.
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1.2.5 Sums and Convolutions

If X and Y are independent random variables having distribution functions Fx and Fy,
respectively, then the distribution function of their sum Z = X + Y is the convolution
of Fx and Fy:

+00 +00
Fr(2) = / Fx(z— £)dFy(€) = / Fy(z— n)dFx(n). (1.12)

If we specialize to the situation where X and Y have the probability densities fy and
[y, respectively, then the density function fz of the sum Z = X 4 Y is the convolution
of the densities fy and fy:

00 +00
Jfz(2) = /fx(z—r/)fy(n)dUZ /fy(z—é)fx(é)dé- (1.13)

Where X and Y are nonnegative random variables, the range of integration is corre-
spondingly reduced to

fz) = /fx(Z —n)fy(mdn = /fY(Z —&)fx()dé  forz>0. (1.14)
0 0

If X and Y are independent and have respective variances a)% and U}%, then the
variance of the sum Z=2X + Y is the sum of the variances: 07 = o7 + 0. More gen-
erally, if X1,...,X, are independent random variables having variances 012,...,0,%,

respectively, then the variance of the sum Z =X; +--- 4+ X, is a% = 012 4+ 4 onz.

1.2.6 Change of Variable

Suppose that X is a random variable with probability density function fy and that
g is a strictly increasing differentiable function. Then, Y = g(X) defines a ran-
dom variable, and the event {Y <y} is the same as the event {X < g~ '(y)}, where
g~ ! is the inverse function to g; i.e., y=g(x) if and only if x =g !(y). Thus,
we obtain the correspondence Fy(y) =Pr{¥ <y} =Pr{X <g '(y)} =Fx(g~ ')
between the distribution function of Y and that of X. Recall the differential calculus

formula

dg”! 11
dy g dg/dx’

where y = g(x),

and use this in the chain rule of differentiation to obtain

dFy() P oD _ o]
dy dy LN

Sfr(y) = where y = g(x).
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The formula
1
Sr(y) = ——fx(x), wherey=g(x), (1.15)
g

expresses the density function for Y in terms of the density for X when g is strictly
increasing and differentiable.

1.2.7 Conditional Probability

For any events A and B, the conditional probability of A given B is written Pr{A|B}
and defined by

Pr{A|B} = % if Pr{B} > 0, (1.16)

and is left undefined if Pr{B} = 0. [When Pr{B} = 0, the right side of (1.16) is the
indeterminate quantity g.]

In stochastic modeling, conditional probabilities are rarely procured via (1.16) but
instead are dictated as primary data by the circumstances of the application, and then
(1.16) is applied in its equivalent multiplicative form

Pr{A N B} = Pr{A|B) Pr{B} (1.17)

to compute other probabilities. (An example follows shortly.) Central in this role is the
law of total probability, which results from substituting Pr{A N B;} = Pr{A|B;} Pr{B;}
into Pr{A} = X°, Pr{ANB;}, where Q =B UBU--- and B;NB; =@ if i # (see
Section 1.2.1), to yield

Pr{A} = > Pr{A|B;}Pr{B;}. (1.18)
i=1

Example Gold and silver coins are allocated among three urns labeled I, II, IIT accord-
ing to the following table:

Number of  Number of
Urn Gold Coins Silver Coins

I 4 8
II 3 9
1II 6 6

An urn is selected at random, all urns being equally likely, and then a coin is selected
at random from that urn. Using the notation I, II, III for the events of selecting urns
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I, II, and III, respectively, and G for the event of selecting a gold coin, then the
problem description provides the following probabilities and conditional probabilities
as data:

Pr{l} ! Pr{G|I} u
r{l} = —, T = —,
3 12

1 3

Pr{ll} = —, Pr{G|II} = —,
{1} 3 r{G|11} o

Pr{I11} : Pr{G|III} 0
r =-, r =—,
3 12

and we calculate the probability of selecting a gold coin according to (1.18), via

Pr{G} = Pr{G|1} Pr{l} + Pr{GI1} Pr{II} + Pr{G|III} Pr{III}

_41+3 1+61_13
T 12\3 12\3 12\3/) 36

As seen here, more often than not conditional probabilities are given as data and
are not the end result of calculation.

Discussion of conditional distributions and conditional expectation merits an entire
chapter (Chapter 2).

1.2.8 Review of Axiomatic Probability Theory*

For the most part, this book studies random variables only through their distributions.

In this spirit, we defined a random variable as a variable that takes on its values by

chance. For some purposes, however, a little more precision and structure are needed.
Recall that the basic elements of probability theory are

1. the sample space, a set 2 whose elements w correspond to the possible outcomes of an
experiment;

2. the family of events, a collection % of subsets A of Q: we say that the event A occurs if the
outcome w of the experiment is an element of A; and

3. the probability measure, a function P defined on & and satisfying

(a)

0=P[B] <P[A]<P[Q]=1 forAe&
(9 = the empty set)

and

(b)

P|:UA,1:| =ZP[A,,], (1.19)
n=1 n=1

* The material included in this review of axiomatic probability theory is not used in the remainder of the
book. It is included in this review chapter only for the sake of completeness.
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if the events A1, Az, ... are disjoint, i.e., if A; NA; = @ when i # j. The triple (Q, F, P)
is called a probability space.

Example When there are only a denumerable number of possible outcomes, say 2 =
{w1, w2, ...}, we may take % to be the collection of all subsets of Q. If py, ps, ... are
nonnegative numbers with X,p, = 1, the assignment

PlA]= )" pi

i €A

determines a probability measure defined on .

It is not always desirable, consistent, or feasible to take the family of events as the
collection of all subsets of €2. Indeed, when €2 is nondenumerably infinite, it may not
be possible to define a probability measure on the collection of all subsets maintaining
the properties of (1.19). In whatever way we prescribe & such that (1.19) holds, the
family of events & should satisfy

(a) @isin % and Qisin F;

(b) A€ isin & whenever A is in &, where A° = {0 € Q; 0 ¢ A} (1.20)
is the complement of A; and

(© U2 A, isin & whenever A, isin F forn=1,2,....

A collection & of subsets of a set 2 satisfying (1.20) is called a o-algebra. If & is
a o -algebra, then

00 o0 ¢
(An= ( A;>
n=1 1

n=

is in & whenever A, is in & for n =1, 2, .... Manifestly, as a consequence, we find
that finite unions and finite intersections of members of % are maintained in %.

In this framework, a real random variable X is a real-valued function defined on
fulfilling certain “measurability” conditions given here. The distribution function of
the random variable X is formally given by

Pr{a < X < b} =P[{w; a < X(w) < b}]. (1.21)

In words, the probability that the random variable X takes a value in (a, b] is calculated
as the probability of the set of outcomes w for which a < X(w) < b. If relation (1.21) is
to have meaning, X cannot be an arbitrary function on €2, but must satisfy the condition
that

{w;a < X(w) < b} isin %F forall real a < b,
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since & embodies the only sets A for which P[A] is defined. In fact, by exploiting the
properties (1.20) of the o -algebra &, we find that it is enough to require

{w; X(w) < x}isin F for all real x.

Let <7 be any o -algebra of subsets of Q. We say that X is measurable with respect to
&, or more briefly o/ -measurable, if

{w; X(w) < x} is in & for all real x.

Thus, every real random variable is by definition #-measurable. There may, in general,
be smaller o -algebras with respect to which X is also measurable.

The o-algebra generated by a random variable X is defined to be the smallest o-
algebra with respect to which X is measurable. It is denoted by F(X) and consists
exactly of those sets .o that are in every o-algebra .« for which X is &/-measurable.
For example, if X has only denumerably many possible values xp, x7, ..., the sets

Ai={o; X(w) =x;}, i=12,...,

form a countable partition of Q, i.e.,

and
A,‘ﬁAj:@ lfl#],
and then (X) includes precisely @, €2, and every set that is the union of some of

the A;’s.

Example For the reader completely unfamiliar with this framework, the following
simple example will help illustrate the concepts. The experiment consists in tossing a
nickel and a dime and observing “heads” or “tails.” We take €2 to be

Q={(HH),HT),(T,H),(T,T),

where, e.g., (H, T') stands for the outcome “nickel = heads, and dime = tails.” We will
take the collection of all subsets of €2 as the family of events. Assuming each outcome
in Q2 to be equally likely, we arrive at the probability measure:
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Ae%F P[A] Ae¥% P[A]
@ 0 1
{(H,H)} 1 HD(T.H.(T.T)} 3
{(H,T)) 1 {HH.(T.H.(T.T) 3
(T, H)} 1 {HH.HTD.(T.T)} 3
(1. 7))} 1 {HH),HTD.(T.H} 3
{(H.H),(H. D)} 5  {(T.H).(T.T)} 3
{(H.H),(T.H)} 3  {HT).(T.T)} 3
{(H.H),(T.T)} 3  {(HT),(T.H)} 3

The event “nickel is heads” is {(H, H), (H, T)} and has, according to the table, proba-

bility %, as it should.

Let X, be 1 if the nickel is heads, and 0 otherwise; let X; be the corresponding
random variable for the dime; and let Z = X,, + X; be the total number of heads. As

functions on €2, we have

weR X,(w) Xi(w) Z(w)
(H,H) 1 1 2
(H,T) 1 0 1
(T,H) 0 1 1
(T,7) 0 0 0

Finally, the o-algebras generated by X,, and Z are

FXn) =0, {(H,H),(H, D)}, {(T,H),(T,T)},

and

F2) =0, {(H D} {(H,T),(T, )}, {(T,T)},
{(H,T),(T,H), (T, D}, {(H,H),(T,T)},
{(H.H),H,T),(T,H)}.

F(X,) contains four sets and %(Z) contains eight. Is X,, measurable with respect to

%(Z), or vice versa?

Every pair X, Y of random variables determines a o-algebra called the o -algebra
generated by X, Y. It is the smallest o-algebra with respect to which both X and
Y are measurable. This o-algebra comprises exactly those sets A that are in every
o -algebra o for which X and Y are both <7 -measurable. If both X and Y assume only
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denumerably many possible values, say xi,x2,... and yi,y2, ..., respectively, then
the sets

A,-jz{a);X(w)zxj,Y(w)zyj}, Lj=1,2,...,

present a countable partition of 2, and F(X, Y) consists precisely of @, 2, and every
set that is the union of some of the A;;’s. Observe that X is measurable with respect to
F(X,Y), and thus F(X) C F(X,Y).

More generally, let {X(¢);t € T} be any family of random variables. Then, the
o-algebra generated by {X(¢); t € T} is the smallest o-algebra with respect to which
every random variable X (), € T, is measurable. It is denoted by F{X(¢);t € T}.

A special role is played by a distinguished o-algebra of sets of real numbers. The
o-algebra of Borel sets is the o-algebra generated by the identity function f(x) = x,
for x € (—o0, 00). Alternatively, the o-algebra of Borel sets is the smallest o -algebra
containing every interval of the form (a, b], —0o <a < b < +o0. A real-valued func-
tion of a real variable is said to be Borel measurable if it is measurable with respect to
the o -algebra of Borel sets.

Exercises

1.2.1 Let A and B be arbitrary, not necessarily disjoint, events. Use the law of total
probability to verify the formula

Pr{A} = Pr{AB} + Pr{AB},

where B¢ is the complementary event to B (i.e., B occurs if and only if B does
not occur).

1.2.2 Let A and B be arbitrary, not necessarily disjoint, events. Establish the general
addition law

Pr{A U B} = Pr{A} + Pr{B} — Pr{AB}.

Hint: Apply the result of Exercise 1.2.1 to evaluate Pr{AB‘} = Pr{A} —
Pr{AB}. Then, apply the addition law to the disjoint events AB and AB¢, noting
that A = (AB) U (AB°).

1.2.3 (a) Plot the distribution function

0 forx<O,
Fx)=4{x3 for0<x<1,
1 forx>1.

(b) Determine the corresponding density function f(x) in the three regions (1)
x<0,2)0<x<1l,and (3) 1 < x.
(¢) What is the mean of the distribution?
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(d) If X is a random variable following the distribution specified in (a), evalu-
ate Pr ?1L <X< % .
1.2.4 Let Z be a discrete random variable having possible values 0, 1,2, and 3 and
probability mass function

pO)=-. p@2)=

)

—_ N =
| — oo| —

1) =-, 3)=-.
p(l) > p@3) g
(a) Plot the corresponding distribution function.
(b) Determine the mean E[Z].
(¢) Evaluate the variance Var[Z].
1.2.5 Let A, B, and C be arbitrary events. Establish the addition law

Pr{A UBU C} =Pr{A} + Pr{B} 4 Pr{C} — Pr{AB}
— Pr{AC} — Pr{BC} + Pr{ABC}.

1.2.6 Let X and Y be independent random variables having distribution functions Fy
and Fy, respectively.
(a) Define Z = max{X, Y} to be the larger of the two. Show that Fz(z) =
Fx(z)Fy(z) for all z.
(b) Define W = min{X, Y} to be the smaller of the two. Show that Fy (w) =
1 —[1—=FxW)][1— Fy(w)] for all w.
1.2.7 Suppose X is a random variable having the probability density function

£ = Rl for0<x<l,
10 elsewhere,

where R > 0 is a fixed parameter.
(a) Determine the distribution function Fyx(x).
(b) Determine the mean E[X].
(¢) Determine the variance Var[X].
1.2.8 A random variable V has the distribution function

0 forv <0,
FW=J1—-(1-v for0O<v<l,
1 forv>1,

where A > 0 is a parameter. Determine the density function, mean, and
variance.

1.2.9 Determine the distribution function, mean, and variance corresponding to the
triangular density.

X forO<x<1,
f)={2—x forl <x<2,
0 elsewhere.
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1.2.10

Let 14 be the indicator random variable associated with an event A, defined to
be one if A occurs, and zero otherwise. Define A, the complement of event A,
to be the event that occurs when A does not occur. Show

(a) lAzf =1- lA.

(b) 140 = 1415 = min{1y4, 15}.

(¢) 1pup = max{l1y, 1p}.

Problems

1.2.1

1.2.2

1.2.3

1.24

1.2.5

1.2.6

1.2.7

Thirteen cards numbered 1, ..., 13 are shuffled and dealt one at a time. Say a
match occurs on deal k if the kth card revealed is card number k. Let N be the
total number of matches that occur in the thirteen cards. Determine E[N].

Hint: Write N =1{A;}+---+ 1{A3} where Ay is the event that a match
occurs on deal k.

Let N cards carry the distinct numbers xi, ..., x,. If two cards are drawn at
random without replacement, show that the correlation coefficient p between
the numbers appearing on the two cards is —1/(N — 1).

A population having N distinct elements is sampled with replacement. Because
of repetitions, a random sample of size r may contain fewer than r distinct
elements. Let S, be the sample size necessary to get r distinct elements. Show
that

1 1 1
E[S1=N|—-+——+-+——).
[5+] (N+N—1+ +N—FH>

A fair coin is tossed until the first time that the same side appears twice in

succession. Let N be the number of tosses required.

(a) Determine the probability mass function for N.

(b) Let A be the event that N is even and B be the event that N < 6. Evaluate
Pr{A}, Pr{B}, and Pr{AB}.

Two players, A and B, take turns on a gambling machine until one of them

scores a success, the first to do so being the winner. Their probabilities for

success on a single play are p for A and ¢ for B, and successive plays are

independent.

(a) Determine the probability that A wins the contest given that A plays first.

(b) Determine the mean number of plays required, given that A wins.

A pair of dice is tossed. If the two outcomes are equal, the dice are tossed

again, and the process repeated. If the dice are unequal, their sum is recorded.

Determine the probability mass function for the sum.

Let U and W be jointly distributed random variables. Show that U and W are

independent if

Pr{U > uand W > w} =Pr{U > u}Pr{W > w} forall u,w.
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1.2.8 Suppose X is a random variable with finite mean . and variance o2, and ¥ =
a—+ bX for certain constants a, b % 0. Determine the mean and variance for Y.
1.2.9 Determine the mean and variance for the probability mass function

_ 2(n—k)
" nn—

1.2.10 Random variables X and Y are independent and have the probability mass func-

pk) fork=1,2,...,n.

tions
@ =2 pr() =1,
2 6
1 1
pX(3)=§’ PY(2)=§,
1
py(3) = 5

Determine the probability mass function of the sum Z=X+Y.
1.2.11 Random variables U and V are independent and have the probability mass

functions
1 1
pu(0) = 3 pv(l) = 3
1 1
pu(l) = 3 pv(2) = 5
5 1

Determine the probability mass function of the sum W=U+V.
1.2.12 Let U, V, and W be independent random variables with equal variances o2.
Define X = U+ W and Y = V — W. Find the covariance between X and Y.
1.2.13 Let X and Y be independent random variables each with the uniform probabil-
ity density function

1 forO<x <1,

-]

0 elsewhere.
Find the joint probability density function of U and V, where U = max{X, Y}
and V = min{X, Y}.

1.3 The Major Discrete Distributions

The most important discrete probability distributions and their relevant properties are
summarized in this section. The exposition is brief, since most readers will be familiar
with this material from an earlier course in probability.
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1.3.1 Bernoulli Distribution

A random variable X following the Bernoulli distribution with parameter p has only
two possible values, 0 and 1, and the probability mass function is p(1) = p and p(0) =
1 — p, where 0 < p < 1, and the mean and variance are E[X] = p and Var[X] = p(1 —
p), respectively.

Bernoulli random variables occur frequently as indicators of events. The indicator
of an event A is the random variable

1 if A occurs,
1A) =14 = {0 if A does not occur. (1.22)
Then, 14 is a Bernoulli random variable with parameter p = E[14] = Pr{A}.
The simple expedient of using indicators often reduces formidable calculations

into trivial ones. For example, let o1, a2,...,0, be arbitrary real numbers and
A1,As, ..., A, be events, and consider the problem of showing that

n n

ZZaJ-aJ-Pr{Ai N4} > 0. (1.23)

i=1 i=1

Attacked directly, the problem is difficult. But bringing in the indicators 1(4;) and
observing that

n 2 n n
0< {Zail(Ai)} = :Zail(Ai)} Zajl(Aj)

i=1

= ZZO{ @ 1(A)1(A)) = Zza ajl(A;NA))

i=1 j=1 i=1 j=1
gives, after taking expectations,

n 2 n n
0<E {Zail(A,-)} = ZZaiajE[l(A,- NAj]

i=1 j=1

—ZZO[ a;Pr{A; NA;},

i=1 j=1

and the demonstration of (1.23) is complete.

1.3.2 Binomial Distribution

Consider independent events A1, Aa, ..., Ay, all having the same probability p = Pr{A;}
of occurrence. Let Y count the total number of events among Ay, ..., A, that occur.
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Then, Y has a binomial distribution with parameters n» and p. The probability mass
function is

pr(k) = Pr{Y = k) (128)

. n! k ek B

Writing Y as a sum of indicators in the form ¥ = 1(A4;) + - - - + 1(A,,) makes it easy to
determine the moments

E[Y]=E[1(A})] +---+ E[1(Ay)] = np,
and using independence, we can also determine that
Var[Y] = Var[1(A1)] + - -- + Var[1(A,)] = np(1 — p).

Briefly, we think of a binomial random variable as counting the number of “suc-
cesses” in n independent trials where there is a constant probability p of success on
any single trial.

1.3.3 Geometric and Negative Binominal Distributions

Let A1,A», ... be independent events having a common probability p = Pr{A;} of
occurrence. Say that trial k is a success (S) or failure (F), depending on whether Ay
occurs or not, and let Z count the number of failures prior to the first success. To be
precise, Z =k if and only if 1(A1) =0, ..., 1(Ax) =0, and 1(Ax+1) = 1. Then, Z has
a geometric distribution with parameter p. The probability mass function is

pz(k) =p(l1 —p)k fork=0,1,..., (1.25)
and the first two moments are

1 1
Ez1=—2; varzi= =L
P p

Sometimes the term “geometric distribution” is used in referring to the probability
mass function

pr)=pd—p* ! fork=1,2,.... (1.26)

This is merely the distribution of the random variable Z' = 1+ Z, the number of
trials until the first success. Hence E[Z'] = 1 + E[Z] = 1/p, and Var[Z'] = Var[Z] =

(1—p)/p*.
Now fix an integer > 1 and let W, count the number of failures observed before
the rth success in Aq,As,.... Then, W, has a negative binominal distribution with

parameters r and p. The event W, = k calls for (A) exactly r — 1 successes in the first
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k+r—1 trials, followed by (B) a success on trial k + r. The probability for (A) is
obtained from a binomial distribution, and the probability for (B) is simply p, which
leads to the following probability mass function for W,:
k+r—1)!
P(k)ZPf{Wer}Zupr(l—p)k, k=0,1,.... (1.27)
(r—1"k!
Another way of writing W, is as the sum W, =Z; + --- 4+ Z,, where Z1,...,Z, are
independent random variables each having the geometric distribution of (1.25). This
formulation readily yields the moments

E[W,] = r(lp_p); Variw,] = "= (1.28)

P2

1.3.4 The Poisson Distribution

If distributions were graded on a scale of one to ten, the Poisson clearly merits a 10. It
plays a role in the class of discrete distributions that parallels in some sense that of the
normal distribution in the continuous class. The Poisson distribution occurs often in
natural phenomena, for powerful and convincing reasons (the law of rare events, see
later in this section). At the same time, the Poisson distribution has many elegant and
surprising mathematical properties that make analysis a pleasure.

The Poisson distribution with parameter A > 0 has the probability mass function

ka—A

k!

A
pk) = fork=0,1,.... (1.29)

Using this series expansion

2 )\‘3

)L— — — o ..
F=ltat o+ (1.30)

we see that X>op(k) = 1. The same series helps calculate the mean via

0 o )\ke—l
Dkt =) k=——=neTFY =)
k=0 Pl o (k= D!

The same trick works on the variance, beginning with

)\’ke—k S )\’k—z
=2 =2
! kZ: < (k- 2)!

k
Written in terms of a random variable X having the Poisson distribution with param-
eter A, we have just calculated E[X]= A and E[X(X — 1)] = A%, whence E[X?] =
E[X(X — )]+ E[X] = ? 4+ A and Var[X] = E[X?] — {E[X]}* = A. That is, the mean
and variance are both the same and equal to the parameter A of the Poisson
distribution.

Zk(k — Dpk) = Zk(k -1
k=0 k=2
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The simplest form of the law of rare events asserts that the binomial distribution
with parameters n and p converges to the Poisson with parameter A if n — co and
p — 0 in such a way that A = np remains constant. In words, given an indefinitely
large number of independent trials, where success on each trial occurs with the same
arbitrarily small probability, then the total number of successes will follow, approxi-
mately, a Poisson distribution.

The proof is a relatively simple manipulation of limits. We begin by writing the
binomial distribution in the form

n!
PriX =k} = - —p A =p)" ™

l(n—k)!
P —=p)"

=nn=1)- (1—k+ D

and then substitute p = A /n to get

PriX=kl=nn—-1)---(n—k+1)
k

1 k—1
n n
Now let n — 00 and observe that

1 k—1
I{1——=)---{1- — 1 asn— oo
n n

)\‘ n
(1——) —e as n — o0;
n

and

A\
(1——) — 1 asn— oo;

n

to obtain the Poisson distribution

)\,k —A
Pr{X =k} = o

fork=0,1,...

in the limit. Extended forms of the law of rare events are presented in Chapter 5.

Example You Be the Judge In a purse-snatching incident, a woman described her
assailant as being seven feet tall and wearing an orange hat, red shirt, green trousers,
and yellow shoes. A short while later and a few blocks away a person fitting that
description was seen and charged with the crime.

In court, the prosecution argued that the characteristics of the assailant were so rare
as to make the evidence overwhelming that the defendant was the criminal.
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The defense argued that the description of the assailant was rare, and that, therefore,
the number of people fitting the description should follow a Poisson distribution. Since
one person fitting the description was found, the best estimate for the parameter is
A = 1. Finally, they argued that the relevant computation is the conditional probability
that there is at least one other person at large fitting the description given that one was
observed. The defense calculated

1—-Pr{X=0}-Pr{X=1}
1 —Pr{X =0}
l—el—e!

= 1—_16 = 0.4180,
—¢

Pr{X > 2|X > 1}

and since this figure is rather large, they argued that the circumstantial evidence arising
out of the unusual description was too weak to satisfy the “beyond a reasonable doubt”
criterion for guilt in criminal cases.

1.3.5 The Multinomial Distribution

This is a joint distribution of r variables in which only nonnegative integer values

0, ...,n are possible. The joint probability mass function is
Pr{X| =ki,....X, =k}
n! ki k .
P ik 4+ ke =n,
ey L G (131)
0 otherwise,

where p; >0fori=1,...,randp; +---+p,=1.
Some moments are E[X;] = np;, Var[X;] = np;(1 — p;), and Cov[X;X;] = —np;p;.
The multinomial distribution generalizes the binomial. Consider an experiment
having a total of r possible outcomes, and let the corresponding probabilities be
p1,--.,Pr, respectively. Now perform n independent replications of the experiment
and let X; record the total number of times that the ith type outcome is observed in the
n trials. Then, X1, ..., X, has the multinomial distribution given in (1.31).

Exercises

1.3.1 Consider tossing a fair coin five times and counting the total number of heads
that appear. What is the probability that this total is three?

1.3.2 A fraction p = 0.05 of the items coming off a production process are defective.
If a random sample of 10 items is taken from the output of the process, what is
the probability that the sample contains exactly one defective item? What is the
probability that the sample contains one or fewer defective items?

1.3.3 A fraction p = 0.05 of the items coming off of a production process are defec-
tive. The output of the process is sampled, one by one, in a random manner.
What is the probability that the first defective item found is the tenth item
sampled?
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1.3.4 A Poisson distributed random variable X has a mean of A = 2. What is the prob-
ability that X equals 2?7 What is the probability that X is less than or equal to 2?

1.3.5 The number of bacteria in a prescribed area of a slide containing a sample of
well water has a Poisson distribution with parameter 5. What is the probability
that the slide shows 8 or more bacteria?

1.3.6 The discrete uniform distribution on {1, ..., n} corresponds to the probability
mass function

1

- fork=1,...,n,
plky=4{n

0 elsewhere.

(a) Determine the mean and variance.

(b) Suppose X and Y are independent random variables, each having the dis-
crete uniform distribution on {0, ...,n}. Determine the probability mass
function for the sumZ=X+7Y.

(¢) Under the assumptions of (b), determine the probability mass function for
the minimum U = min{X, Y}.

Problems

1.3.1 Suppose that X has a discrete uniform distribution on the integers 0, 1, ..., 9,
and Y is independent and has the probability distribution Pr{Y =k} = ax
for k=0,1,.... What is the distribution of Z=X+Y (mod 10), their sum
modulo 10?

1.3.2 The mode of a probability mass function p(k) is any value k* for which p(k*) >
p(k) for all k. Determine the mode(s) for
(a) The Poisson distribution with parameter A > 0.

(b) The binomial distribution with parameters n and p.

1.3.3 Let X be a Poisson random variable with parameter A. Determine the probabil-
ity that X is odd.

1.3.4 Let U be a Poisson random variable with mean . Determine the expected
value of the random variable V = 1/(1 4 U).

1.3.5 Let Y = N — X where X has a binomial distribution with parameters N and p.
Evaluate the product moment E[XY] and the covariance Cov[X, Y].

1.3.6 Suppose (X1,X2,X3) has a multinomial distribution with parameters M and
m; >0fori=1,2,3, withm) +m +m3 =1.

(a) Determine the marginal distribution for Xj.
(b) Find the distribution for N = X| + X».
(c) What is the conditional probability Pr{X| = k|N = n} for 0 <k < n?

1.3.7 Let X and Y be independent Poisson distributed random variables having
means u and v, respectively. Evaluate the convolution of their mass functions
to determine the probability distribution of their sum Z =X+ Y.

1.3.8 Let X and Y be independent binomial random variables having parameters
(N, p) and (M, p), respectively. Let Z=X+7Y.
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(a) Argue that Z has a binomial distribution with parameters (N + M, p) by
writing X and Y as appropriate sums of Bernoulli random variables.
(b) Validate the result in (a) by evaluating the necessary convolution.
1.3.9 Suppose that X and Y are independent random variables with the geometric
distribution

pky=(1—-m)7* fork=0,1,....

Perform the appropriate convolution to identify the distribution of Z=X+Y
as a negative binomial.

1.3.10 Determine numerical values to three decimal places for Pr{X =k}, k=0, 1,2,
when
(a) X has a binomial distribution with parameters n = 10 and p = 0.1.
(b) X has a binomial distribution with parameters n = 100 and p = 0.01.
(¢) X has a Poisson distribution with parameter A = 1.

1.3.11 Let X and Y be independent random variables sharing the geometric distribu-
tion whose mass function is

pk) =1 —m)7k fork=0,1,...,

where 0 < < 1. Let U = min{X, Y}, V =max{X, Y},and W = V — U. Deter-
mine the joint probability mass function for U and W and show that U and W
are independent.

1.3.12 Suppose that the telephone calls coming into a certain switchboard during a
one-minute time interval follow a Poisson distribution with mean A = 4. If the
switchboard can handle at most 6 calls per minute, what is the probability that
the switchboard will receive more calls than it can handle during a specified
one-minute interval?

1.3.13 Suppose that a sample of 10 is taken from a day’s output of a machine that pro-
duces parts of which 5% are normally defective. If 100% of a day’s production
is inspected whenever the sample of 10 gives 2 or more defective parts, then
what is the probability that 100% of a day’s production will be inspected? What
assumptions did you make?

1.3.14 Suppose that a random variable Z has the geometric distribution

pz(k) =p(1—p)* fork=0,1,...,

where p = 0.10.
(a) Evaluate the mean and variance of Z.
(b) What is the probability that Z strictly exceeds 10?
1.3.15 Suppose that X is a Poisson distributed random variable with mean A = 2.
Determine Pr{X < A}.
1.3.16 Consider the generalized geometric distribution defined by

pe=b(1—p)* fork=1,2,...,
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and

o0
po=1- Zpk,
k=1

where 0 <p<landp <b<p/(1—p).

(a) Evaluate pg in terms of b and p.

(b) What does the generalized geometric distribution reduce to when b = p?
When b =p/(1—p)?

(¢) Show that N = X + Z has the generalized geometric distribution when X
is a Bernoulli random variable for whichPr{iX =1} =«o,0<a < 1,and Z
independently has the usual geometric distribution given in (1.25).

1.4 Important Continuous Distributions

For future reference, this section catalogs several continuous distributions and some
of their properties.

1.4.1 The Normal Distribution

The normal distribution with parameters x and o> > 0 is given by the familiar bell-
shaped probability density function

1
¢ (x; u,02> = e_(x_“)z/z"z, —00 < X < 00. (1.32)

B V2o

The density function is symmetric about the point 1, and the parameter o is the
variance of the distribution. The case i =0 and o2 =1 is referred to as the stan-
dard normal distribution. If X is normally distributed with mean p and variance o2,
then Z= (X — u)/o has a standard normal distribution. By this means, probability
statements about arbitrary normal random variables can be reduced to equivalent
statements about standard normal random variables. The standard normal density and

distribution functions are given respectively by

6E) = ——e P _oo<t<oo (1.33)
Neza
and
D(x) = /¢(g)dg, 00 < x < 00. (1.34)

The central limit theorem explains in part the wide prevalence of the normal distri-
bution in nature. A simple form of this aptly named result concerns the partial sums
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Sp =& +---+&, of independent and identically distributed summands &i,&>,...
having finite means © = E[&x] and finite variances o= Var[&]. In this case, the cen-
tral limit theorem asserts that

. Sp—nu
lim Pr
{ vn

< x} =®(x) forallx. (1.35)
n— o0 o
The precise statement of the theorem’s conclusion is given by equation (1.35).
Intuition is sometimes enhanced by the looser statement that, for large n, the sum
S, is approximately normally distributed with mean nu and variance no>.
In practical terms we expect the normal distribution to arise whenever the numerical
outcome of an experiment results from numerous small additive effects, all operating

independently, and where no single or small group of effects is dominant.

The Lognormal Distribution

If the natural logarithm of a nonnegative random variable V is normally distributed,
then V is said to have a lognormal distribution. Conversely, if X is normally distributed
with mean p and variance o2, then V = ¥ defines a lognormally distributed random
variable. The change-of-variable formula (1.15) applies to give the density function
for V to be

) = —ex —l<lnv_“>2 V>0 (1.36)
v - mov P172 o ’ - '

The mean and variance are, respectively,

1
E[V] =exp{u+§oz},

Var[V] = exp {2 <u n %a2> } [exp {02} . 1] .

1.4.2 The Exponential Distribution

(1.37)

A nonnegative random variable 7 is said to have an exponential distribution with
parameter A > 0 if the probability density function is

e fort>0,
fro) = {0 fort < 0. (1.38)
The corresponding distribution function is
1—e M forz >0,
Fr = {O fort <0, (1.39)

and the mean and variance are given, respectively, by

1 1
E[T]=- and Var[T]=—.
(T] , an ar[T] 3



Introduction 29

Note that the parameter is the reciprocal of the mean and not the mean itself.

The exponential distribution is fundamental in the theory of continuous-time
Markov chains (see Chapter 5), due in major part to its memoryless property, as now
explained. Think of T as a lifetime and, given that the unit has survived up to time ¢,
ask for the conditional distribution of the remaining life 7 — ¢. Equivalently, for x > 0
determine the conditional probability Pr{T —t > x|T > t}. Directly applying the defi-
nition of conditional probability (see Section 1.2.7), we obtain

Pr{T >t+x,T >t}
Pr{T >t}
Pr{T > t+ x}
TP > 1)
e—M+)

Pr{T —t>x|T >t} =

(because x > 0) (1.40)

— e—)ux.

There is no memory in the sense that Pr{T — ¢ > x|T > t} = e = Pr{T > x}, and an
item that has survived for ¢ units of time has a remaining lifetime that is statistically
the same as that for a new item.

To view the memoryless property somewhat differently, we introduce the hazard
rate or failure rate r(s) associated with a nonnegative random variable S having con-
tinuous density g(s) and distribution function G(s) < 1. The failure rate is defined by

g(s)

") =166

for s > 0. (141

We obtain the interpretation by calculating (see Section 1.2.2)

Pr{s < § < s+ As}
Pr{s < S}

g(s)As

T 1-G(s)

=r(s)As + o(As).

Pr{is <S<s+4+ As|s < S}

+o0(As) [from (1.5)]

An item that has survived to time s will then fail in the interval (s, s + As] with condi-
tional probability r(s) As + o(As), thus motivating the name “failure rate.”
We can invert (4.10) by integrating

—g(s)  d[1-G(9)]/ds  d{ln[1—G(s)]}
1-GGs) 1—-G(s) ds

—r(s) =

to obtain
t
_ / r(s)ds =1In[1 — G(1)],

0
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or
t
G =1—exp —/r(s)ds , t>0,
0

which gives the distribution function explicitly in terms of the hazard rate.

The exponential distribution is uniquely the continuous distribution with the con-
stant failure rate r(¢) = A. (See Exercise 1.4.8 for the discrete analog.) The failure rate
does not vary in time, another reflection of the memoryless property.

Section 1.5 contains several exercises concerning the exponential distribution.
In addition to providing practice in relevant algebraic and calculus manipulations,
these exercises are designed to enhance the reader’s intuition concerning the expo-
nential law.

1.4.3 The Uniform Distribution

A random variable U is uniformly distributed over the interval [a, b], where a < b, if
it has the probability density function

|
— fora<u<b,
fowy=1b—q TI="= (1.42)

0 elsewhere.

The uniform distribution extends the notion of “equally likely” to the continuous case.
The distribution function is

0 foru <a,
Fy(x) = b:a fora <x <b, (1.43)
1 forx > b,

and the mean and variance are, respectively,
(b—a)®
2

The uniform distribution on the unit interval [0, 1], for which a =0 and b =1, is
most prevalent.

E[U]= %(a—i—b) and Var[U]=

1.4.4 The Gamma Distribution
The gamma distribution with parameters o > 0 and A > 0 has probability density func-

tion

A a—1_ —ix
fx) = m(kx) e for x > 0. (1.44)

Given an integer number « of independent exponentially distributed random variables
Y1,...,Yy having common parameter A, then their sum X, = Y1+ --- + Y, has the
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gamma density of (1.44), from which we obtain the moments
o o
E[Xy] = 3 and Var[X,]= FeR

with these moment formulas holding for noninteger « as well.

1.4.5 The Beta Distribution

The beta density with parameters o > 0 and 8 > 0 is given by

Cl@+8) , Bl
Flo) = —F(a)l"(ﬁ)x (1—x) forO<x <1, (1.45)
0 elsewhere.

The mean and variance are, respectively,

and  Var[X] = op

E[X] = > .
a+ B (@+pB)(a+B+1)

(The gamma and beta functions are defined and briefly discussed in Section 1.6.)

1.4.6 The Joint Normal Distribution

Letoy, oy, ix, Ly, and p be real constants subjectto ox > 0,0y > 0,and —1 < p < 1.
For real variables x and y, define

2 2
o252 () (52 (2]
—p ox ox oy oy

(1.46)

The joint normal (or bivariate normal) distribution for random variables X, Y is defined
by the density function

1

dxy(x,y) = ——7H+—¥——
2moxoyy/ 1 — p?

(1.47)
X exp{—%Q(x,y)}, —00 < X,y < 00.

The moments are
E[X] = ux, E[Y] =y,
Var[X] =0, Var[Y]=o07,
and

Cov[X, Y] = E[(X — ux)(Y — uy)] = poxoy.
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The dimensionless parameter p is called the correlation coefficient. When p is posi-
tive, then positive values of X are (stochastically) associated with positive values of
Y. When p is negative, then positive values of X are associated with negative values
of Y. If p =0, then X and Y are independent random variables.

Linear Combinations of Normally Distributed Random Variables

Suppose X and Y have the bivariate normal density (1.47), and let Z = aX + bY for
arbitrary constants a, b. Then Z is normally distributed with mean

E[Z] = aux +buy
and variance
Var[X] = aza)% + 2abpoxoy + bza)%.

A random vector X1, ..., X,, is said to have a multivariate normal distribution, or a
Jjoint normal distribution, if every linear combination a1 X1 + - - - + @, X;;, «; real has a
univariate normal distribution. Obviously, if X1, ..., X}, has a joint normal distribution,
then so does the random vector Y7, ..., Y,,, defined by the linear transformation in
which

Yi=ojpXi+-+opX,, forj=1,....m,

for arbitrary constants ;.

Exercises

1.4.1 The lifetime, in years, of a certain class of light bulbs has an exponential dis-
tribution with parameter A = 2. What is the probability that a bulb selected at
random from this class will last more than 1.5 years? What is the probability
that a bulb selected at random will last exactly 1.5 years?

1.4.2 The median of a random variable X is any value a for which Pr{X < a} > % and

Pr{X > a} > % Determine the median of an exponentially distributed random
variable with parameter A. Compare the median to the mean.

1.4.3 The lengths, in inches, of cotton fibers used in a certain mill are exponentially
distributed random variables with parameter A. It is decided to convert all mea-
surements in this mill to the metric system. Describe the probability distribution
of the length, in centimeters, of cotton fibers in this mill.

1.4.4 Twelve independent random variables, each uniformly distributed over the inter-
val (0, 1], are added, and 6 is subtracted from the total. Determine the mean and
variance of the resulting random variable.

1.4.5 Let X and Y have the joint normal distribution described in equation (1.47).
What value of & minimizes the variance of Z = o X 4 (1 — «)Y? Simplify your
result when X and Y are independent.
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1.4.6 Suppose that U has a uniform distribution on the interval [0, 1]. Derive the den-
sity function for the random variables
(@ Y=—In(1-U).
(b) W,=U"forn>1.
Hint: Refer to Section 1.2.6.

1.4.7 Given independent exponentially distributed random variables S and T with
common parameter A, determine the probability density function of the sum
R = S+ T and identify its type by name.

1.4.8 Let Z be a random variable with the geometric probability mass function

pky=1-m)7*, k=0,1,...,

where 0 < < 1.

(a) Show that Z has a constant failure rate in the sense that Pr{Z = k|Z > k} =
l—mfork=0,1,....

(b) Suppose Z' is a discrete random variable whose possible values are 0, 1, ...,
and for which Pr{Z' =k|Z' >k} =1—m for k=0,1,.... Show that the
probability mass function for Z’ is p(k).

Problems

1.4.1 Evaluate the moment E [¢*4], where A is an arbitrary real number and Z is a
random variable following a standard normal distribution, by integrating

+00 .
2
E[e*] / er——e T /2y,
2
—o0

Hint: Complete the square —%zz +Az= —% [(z —1)2 - AZ] and use the fact

that
+oo |
—@=1%/24, _
—e dz=1.
/«/27{
—0o0

1.4.2 Let W be an exponentially distributed random variable with parameter 6 and
mean u = 1/6.
(a) Determine Pr{W > u}.
(b) What is the mode of the distribution?

1.4.3 Let X and Y be independent random variables uniformly distributed over the

interval [9 — %, 0+ %] for some fixed 6. Show that W = X — Y has a distribu-
tion that is independent of 8 with density function

1+w for —1<w<0,
fvw)y={1—w forO<w<1,
0 for |w| > 1.
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1.4.4 Suppose that the diameters of bearings are independent normally distributed
random variables with mean pup = 1.005 inch and variance 01% = (0.003)2
inch®. The diameters of shafts are independent normally distributed random
variables having mean pg = 0.995 inch and variance 052 = (0.004)2 inch?.

S
—>| tn }<—
| =

NN

Shaft Bearing

Let S be the diameter of a shaft taken at random and let B be the diameter of a

bearing.

(a) What is the probability Pr{S > B} of interference?

(b) What is the probability of one or fewer interferences in 20 random shaft-
bearing pairs?

Hint: The clearance, defined by C = B — S, is normally distributed (why?),
and interference occurs only if C < 0.

1.4.5 If X follows an exponential distribution with parameter « = 2, and indepen-
dently, Y follows an exponential distribution with parameter 8 = 3, what is the
probability that X < Y?

1.5 Some Elementary Exercises

We have collected in this section a number of exercises that go beyond what is usually
covered in a first course in probability.

1.5.1 Tail Probabilities

In mathematics, what is a “trick” upon first encounter becomes a basic tool when
familiarity through use is established. In dealing with nonnegative random variables,
we can often simplify the analysis by the trick of approaching the problem through the
upper tail probabilities of the form Pr{X > x}. Consider the following example.

A jar has n chips numbered 1,2,...,n. A person draws a chip, returns it, draws
another, returns it, and so on, until a chip is drawn that has been drawn before. Let X
be the number of drawings. Find the probability distribution for X.

It is easier to compute Pr{X > k} first. Then, Pr{X > 1} = 1, since at least two draws
are always required. The event {X > 2} occurs when distinct numbers appear on the
first two draws, whence Pr{X > 2} = (n/n)[(n — 1) /n]. Continuing in this manner, we
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obtain
1 2 k—1
Pr{X>k}=1(1——)(1——)---(1— )
n n n
fork=1,...,n—1. (1.48)
Finally,

RN
D)

fork=2,....,n+1.

Now try deriving Pr{X = k} directly, for comparison with the “trick” approach.
The usefulness of the upper tail probabilities is enhanced by the formula

EX]=) PriX>k}=) Pr(X>kl (1.49)
k=0 k=1

valid for nonnegative integer-valued random variables X. To establish (1.49), abbre-
viate the notation by using p(k) = Pr{X =k}, and rearrange the terms in E[X]=
Yk—>0kp(k) as follows:

E[X]=0p0)+ 1p(1) +2p(2) +3p(3) +---
=p()+pQ2) +pB) +p@ +---
+r(2) +pG)+p@H +--
+p3) +p@) + -
+p@) + -

=Pr{X>1}+Pr{X>2}+Pr{X>3}+---

= Pr{X >k},

k=1

thus establishing (1.49).
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For the chip drawing problem, the mean number of draws required is
EX]=Pr{X>0}+Pr{X > 1} +---+Pr{X > n},

since Pr{X > k} = 0 for k > n. Substituting (1.48) into (1.49) leads directly to

E[X]=2+(l—%)+(1—%)(1—%>+...
) 2,

Now let X be a nonnegative continuous random variable with density f(x) and distri-
bution function F(x). The analog to (1.49) is

EIX] = / [l - Fo)ldz, (150)
0

obtained by interchanging an order of integration as follows:

E[X] = f X () dx = / f dz | FOodx
0 0 0
_ / / FOodx | dz = / [1— F()]dz.
0 4 0

Interchanging the order of integration where the limits are variables often proves
difficult for many students. The trick of using indicator functions to make the limits of
integration constant may simplify matters. In the preceding interchange, let

1,(x) :==11if 0 < z < x and 1,(x) := 0 otherwise.

and then
f /dZ f(x)dx=f /lz(x)f(X)dz dx
0o Lo o Lo _
=/ /1Z(X)f(x)dx dz=/ fx)dx |dz.
0o Lo _ 0 Lz

As an application of (1.50), let X, = min{c, X} for some positive constant c. For
example, suppose X is the failure time of a certain piece of equipment. A planned
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replacement policy is put in use that calls for replacement of the equipment upon its
failure or upon its reaching age ¢, whichever occurs first. Then,

X ifX<c,

Xe = mine, X} = {c ifX>c

is the time for replacement.
Now

1-F(z) if0<z<c,

Pr{XC>Z}:{O ifc<z

whence we obtain

Cc

ElX.]= /[1 — F(2)]dz,

0

which is decidedly shorter than

c

E[X.]= /Xf(X)dx+ c[1-F()].
0

Observe that X, is a random variable whose distribution is partly continuous and
partly discrete, thus establishing by example that such distributions do occur in prac-
tical applications.

1.5.2 The Exponential Distribution

This exercise is designed to foster intuition about the exponential distribution, as well
as to provide practice in algebraic and calculus manipulations relevant to stochastic
modeling.

Let Xo and X; be independent exponentially distributed random variables with
respective parameters Ao and A, so that

PriX;>t}=e %" forr>0,i=0,1.

Let
N = 0 ifXy<Xi,
11 if X < Xo;
U = min{Xyp, X1} = Xy;
M=1-N;

V = max{Xo, X1} = Xu;



38 An Introduction to Stochastic Modeling

and
W=V-U=|Xo—X1].
In this context, we derive the following:

A
(@) Pr{N=0and U > 1} = e—@oHl)f(io).
Ao+ Aq
The event {N =0 and U > t} is exactly the event {f < Xo < X1}, whence
Pr{N =0,U > 1t} =Pr{r < Xo < X1}

= // )Loei)”oxo)nleiklxldmdxo

r<Xxo<x
0 / oo

:/ /Ale_)”xldxl )»()e_)hoxodxo
t X0

o0
=/ef)”1xo)uoe*)\°x°dxo
t
T hot+A

o0
f (o +ap)e” M %dy
t

20 ~Gotinr,

- Ao+ A1
Ao Al
(b) Pr{N =0} = and Pr{iN =1} = .
Ao+ A Ao+ A
We use the result in (a) as follows:

PE{N =0} = PN =0,U > 0} = —2  from (a)
T = = Pr =0, > = rom (a).

Ao+ A

Obviously, Pr{iN =1} =1 —-Pr{N =0} = 11 /(o + 11).
(¢) Pr{U >t} =e~Gotrt 1>,
Upon adding the result in (a),
A0

PriN=0and U >t} = e~ Gothr 2
Ao+ Aq
to the corresponding quantity associated with N = 1,

A
PriN=1and U >t} = e_()\°+)”1)’71,
Ao+ A

we obtain the desired result via
Pr{U>t}=Pr{N=0,U>t}+Pr{N=1,U >t}

:e—aoﬂl)z( b M )
rAt+Ar Aot A

— e~ (Gotr)r
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(d)

At this point observe that U and N are independent random variables. This follows
because (a), (b), and (c) together give

Pr{N =0and U > t} = Pr{N =0} x Pr{U > t}.

Think about this remarkable result for a moment. Suppose X and X represent lifetimes,
and Ao = 0.001, while A; = 1. The mean lifetimes are E[Xy] = 1000 and E[X;] = 1. Sup-
pose we observe that the time of the first death is rather small, say, U = min{Xy, X} = %
In spite of vast disparity between the mean lifetimes, the observation that U = % provides
no information about which of the two units, O or 1, was first to die! This apparent para-
dox is yet another, more subtle, manifestation of the memoryless property unique to the
exponential density.

We continue with the exercise.

Pr{W>N=0}=e"' 1>0.

The event {W > t and N = 0} for ¢t > 0 corresponds exactly to the event {r < X; — Xp}.

Thus,

Pr{W > tand N = 0} = Pr{X; — Xo >t}

= // Age_)“’x")»le_)“x‘dxodxl

X1—Xo>t
00 00
— —A1X] —hoXo
= re dxy | Age dxo
0 X0+t

o0
— / e~ Mo+ Aoe 0% dxg
0

o0
Ao, z/ — (o)
= e M Ao+ Ap)e” oAy
ot (Ao +21) 0
0
_ A0 —Ait
ro+Aq

=Pr{N =0}e™" [from (b)].
Then, using the basic definition of conditional probability (Section 1.2.7), we obtain

Pr{W > t,N =0} ot

, >0,
Pr{N = 0}

Pr{W > {|[N = 0} =

as desired.
Of course a parallel formula holds conditional on N = 1:

Pr{W>tIN=1} =" >0,
and using the law of total probability we obtain the distribution of W in the form

Pr{W >t} =Pr{W > ¢t,N =0} +Pr{W >N =1}

— )\'O -\t )\'1 e*)»()t t>0
Ao+ A Ao+ Aq ’ -
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(e) U and W =V — U are independent random variables.
To establish this final consequence of the memoryless property, it suffices to show that

Pr{U >uand W > w} =Pr{U > u}Pr{W > w} forallu>0,w>0.
Determining first
PriN=0,U > u, W > w} =Pr{u < Xo < X1 —w}

= // )\oe_xoxu)»le_)”xldxodxl
U<xo<x;—Ww
o0

)»16_)""‘1 dx Aoe_)“”“’dxo

Xo+w

67)\1 (onrw)koef)noxo dxo

A0
Ao+ Ag

o0
) e M /()»0 + Ap)e oA gy
u

/N N

2o )e*MWe*(KoJrM)M’
Agt+Ag

and then, by symmetry,

A
PriN=1,U>u,W>w}= <71> e rowe—(otAnu,
Ao+ A

and finally adding the two expressions, we obtain

Pr{U > u,W > w} = Ao e v 4 M e how | g~ (Gothu
Ao+ Aq A0+ A

=Pr{W > w}Pr{U > u}, u,w=>0.

The calculation is complete.

Exercises

1.5.1 Let X have a binomial distribution with parameters n =4 and p = }‘. Compute
the probabilities Pr{X > k} for k =1,2,3,4, and sum these to verify that the
mean of the distribution is 1.

1.5.2 A jar has four chips colored red, green, blue, and yellow. A person draws a
chip, observes its color, and returns it. Chips are now drawn repeatedly, with-
out replacement, until the first chip drawn is selected again. What is the mean
number of draws required?

1.5.3 Let X be an exponentially distributed random variable with parameter A. Deter-
mine the mean of X
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(a) by integrating by parts in the definition in equation (1.7) with m = 1;

(b) by integrating the upper tail probabilities in accordance with equation
(1.50).

Which method do you find easier?

1.5.4 A system has two components: A and B. The operating times until failure of the
two components are independent and exponentially distributed random vari-
ables with parameter 2 for component A, and 3 for B. The system fails at the
first component failure.

(a) What is the mean time to failure for component A? For component B?

(b) What is the mean time to system failure?

(c) What is the probability that it is component A that causes system failure?

(d) Suppose that it is component A that fails first. What is the mean remaining
operating life of component B?

1.5.5 Consider a post office with two clerks. John, Paul, and Naomi enter simulta-
neously. John and Paul go directly to the clerks, while Naomi must wait until
either John or Paul is finished before she begins service.

(a) If all of the service times are independent exponentially distributed random
variables with the same mean 1/A, what is the probability that Naomi is still
in the post office after the other two have left?

(b) How does your answer change if the two clerks have different service rates,
say A1 =3 and Ap =477

(¢) The mean time that Naomi spends in the post office is less than that for John
or Paul provided that max{A1, A2} > cmin{A{, X,} for a certain constant c.
What is the value of this constant?

Problems

1.5.1 Let X1, X, ... be independent and identically distributed random variables hav-
ing the cumulative distribution function F(x) = Pr{X < x}. For a fixed number
&, let N be the first index k for which X > &. Thatis, N=1if X; > & N =2 if
X1 <& and X, > &; etc. Determine the probability mass function for N.

1.5.2 Let X1,X>,..., X, be independent random variables, all exponentially dis-
tributed with the same parameter A. Determine the distribution function for the
minimum Z = min{X1, ..., X,}.

1.5.3 Suppose that X is a discrete random variable having the geometric distribution
whose probability mass function is

p(k)y=p(1—p)* fork=0,1,....

(a) Determine the upper tail probabilities Pr{X > k} fork =0, 1,....
(b) Evaluate the mean via E[X] = Xy>0Pr{X > k}.
1.5.4 Let V be a continuous random variable taking both positive and negative values
and whose mean exists. Derive the formula
0

E[V] =/[1 —Fy(v)]dv— / Fy(v)dv.
0

—00
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1.5.5 Show that

[e.e]

E[W?] = f 2y[1 — Fw(y)]dy
0

for a nonnegative random variable W.
1.5.6 Determine the upper tail probabilities Pr{V > ¢} and mean E[V] for a random
variable V having the exponential density

0 forv <0,
frv) = {)»e” forv >0,

where A is a fixed positive parameter.

1.5.7 Let X1, X, ..., X, be independent random variables that are exponentially dis-
tributed with respective parameters A1, A2, ..., A,. Identify the distribution of
the minimum V = min{X{, X», ..., X, }.

Hint: For any real number v, the event {V > v} is equivalent to {X| > v, X, >
vy, Xy > vl
1.5.8 Let Uy, Us, ..., U, be independent uniformly distributed random variables on
the unit interval [0, 1]. Define the minimum V,, = min{U}, Uy, ..., U,}.
(a) Show that Pr{V,, >v}=(1—v)"forO<v<1.
(b) Let W, =nV,. Show that Pr{W,, > w} =[1 — (w/n)]" for 0 <w <n, and
thus

lim Pr{W, >w}=¢"" forw>0.
n— oo

1.5.9 A flashlight requires two good batteries in order to shine. Suppose, for the sake
of this academic exercise, that the lifetimes of batteries in use are indepen-
dent random variables that are exponentially distributed with parameter A = 1.
Reserve batteries do not deteriorate. You begin with five fresh batteries. On
average, how long can you shine your light?

1.6 Useful Functions, Integrals, and Sums
Collected here for later reference are some calculations and formulas that are espe-

cially pertinent in probability modeling.
We begin with several exponential integrals, the first and simplest being

/‘e*xdxz —e™ . (1.51)

When we use integration by parts, the second integral that we introduce reduces to the
first in the manner

/xe_xdx =—xe ¥ +/e_"dx =—e“(14x). (1.52)



Introduction 43

Then, (1.51) and (1.52) are the special cases of @ =1 and o = 2, respectively, in
the general formula, valid for any real number « for which the integrals are defined,
given by

f ¥ e dx=—x*"le  + (@ —1) / X 2e ¥ dx. (1.53)

Fixing the limits of integration leads to the gamma function, defined by

o0
(o) = /x“*le*xclx, fora > 0. (1.54)
0

From (1.53), it follows that

MNa)=(—1'(a—1), (1.55)
and therefore, for any integers &,

Fk)y=k—-1)(k—2)---2-T'(1). (1.56)
An easy consequence of (1.51) is the evaluation I'(1) = 1, which with (1.55) shows
that the gamma function at integral arguments is a generalization of the factorial func-
tion, and

Th)=k—1) fork=1,2,.... (1.57)

A more difficult integration shows that

r (%) = J7, (1.58)

which with (1.56) provides

1\ 1x3x5x-xQ2n—1
F(n+§>= XX inx(” ) /7, forn=0,1,.... (1.59)

Stirling’s formula is the following important asymptotic evaluation of the factorial
function:

nl=n"e " (2wn)'/2e" M/ 120 (1.60)

in which

1

l]— — 1. 1.61
ot <rn) < (1.61)
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We sometimes write this in the looser form

1/2

n!l~n"e "2mn) asn — oo, (1.62)

the symbol “~” signifying that the ratio of the two sides in (1.62) approaches 1 as
n — o00. For the binomial coefficient (Z) =n!/[k!(n —k)!], we then obtain

AV
(Z) ~ % as n — oo, (1.63)

as a consequence of (1.62) and the exponential limit

k n
e = lim (1 ——) .
n—o0 n

The integral

1
B(m,n) = / (1 =0 Ny, (1.64)
0
which converges when m and n are positive, defines the beta function, related to the
gamma function by

_ T(mI(®)

Bm.m) =100

form > 0,n> 0. (1.65)

For nonnegative integral values m and n,

1

15!
B(m—}-l,n—f—l):/xm(l—x)”dx:#. (1.66)
0
Forn=1,2,..., the binomial theorem provides the evaluation
. k(M) k
(1—x)”=§(—1) <k)x, for — oo < x < 00. (1.67)

The formula may be generalized for nonintegral n by appropriately generalizing the
binomial coefficient, defining for any real number «,

a(fa—=1)---(x—k+1)
(Z) :: 0 fork=1,2,..., (1.68)
1 fork=0.
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As a special case, for any positive integer n,

(—n) _ (_1)kn(n+1)-~(n+k— 1)

k k!
(1.69)
= (i ("
= k )
The general binomial theorem, valid for all real «, is
i o
o __ _1\k k _
(1—0%=) (-1 <k)x for—1<x<1. (1.70)
k=0
When o = —n for a positive integer n, we obtain a group of formulas useful in dealing

with geometric series. For a positive integer n, in view of (1.69) and (1.70), we have

(1—x)—"=2(”+2_1)x’< for |x| < 1. (1.71)

k=0
The familiar formula

1
1—x

o
YA =t4xt o= for |x| < 1 (1.72)

k=0

for the sum of a geometric series results from (1.71) with n = 1. The cases n =2 and
n = 3 yield the formulas

oo
Z(k+1)xk=1+2x+3x2+~~
k=0

= m for |.X| <1, (173)

D e+ 2)(k+ ik =
k=0

2
T for |x| < 1. (1.74)

Sums of Numbers

The following sums of powers of integers have simple expressions:

1+2+...+n_n(n+l)
==
1+22+~-~+n2—w
— - ’
n?(n+1)2

14204’ = ——



2 Conditional Probability
and Conditional Expectation

2.1 The Discrete Case
The conditional probability Pr{A|B} of the event A given the event B is defined by

p _ Pr{A and B} .
r{A|B} = W if Pr{B} > 0, 2.1

and is not defined, or is assigned an arbitrary value, when Pr{B} = 0. Let X and Y be
random variables that can attain only countably many different values, say 0, 1,2, ....
The conditional probability mass function px|y(x|y) of X given Y =y is defined by

) Pr{X=xand Y =y} it Pr(y 150
x|y) = if Pr{Y =y} > 0,
Pxjy x|y Pr{Y =y} y

and is not defined, or is assigned an arbitrary value, whenever Pr{Y =y} =0. In
terms of the joint and marginal probability mass functions pxy(x,y) and py(y) =
¥ pxy (x,y), respectively, the definition is

pxy (x,y)

—— ifpy(»>0; x,y=0,1,.... 2.2)
py(y)

px|y (xly) =

Observe that py|y(x|y) is a probability mass function in x for each fixed y, i.e.,

px|y(xly) > 0 and Zgpxy(§ly) =1, for all x, y.
The law of total probability takes the form

PriX =x} =) pxiy(xly)pr (). 23)
y=0

Notice in (2.3) that the points y where px|y (x|y) is not defined are exactly those values
for which py(y) =0, and hence, do not affect the computation. The lack of a com-
plete prescription for the conditional probability mass function, a nuisance in some
instances, is always consistent with subsequent calculations.

Example Let X have a binomial distribution with parameters p and N, where N has a
binomial distribution with parameters g and M. What is the marginal distribution of X?

An Introduction to Stochastic Modeling. DOI: 10.1016/B978-0-12-381416-6.00002-2
(© 2011 Elsevier Inc. All rights reserved.
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We are given the conditional probability mass function

pxw (kin) = (Z) Pra—p ™ k=010,

and the marginal distribution

pN(n) = <Aj> FA=—M", n=0,1,...,M.

We apply the law of total probability in the form of (2.3) to obtain

M
Pr{X =k} =Y pxin(klm)pn(n)

- _oNi—k___ " ne _ \M—n
K k), P =p) ,(M_n)!q(l )

M= 1

I
~

n

M mf 4 e 1 ok
=ri-9 <1—q> ;(n—k)!(M—n)!(l P)

q n—k
X —
l—¢q

M! M—k q(1—p)
m(!’tﬁ( —q) [1+ 1—¢ i|

M! .
m(lﬂl) (1—p"*, k=0,1,...,M.

In words, X has a binomial distribution with parameters M and pgq.

Example Suppose X has a binomial distribution with parameters p and N, where N
has a Poisson distribution with mean A. What is the marginal distribution for X?
Proceeding as in the previous example but now using

we obtain

PriX =k} = pxin(kln)pn(n)

e —A
n—k
Pa—p .

1
M 1

n!
k!'(n—k)!

3
Il
~
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_ et S —p)

K= -k

k..—

_ et Ly
k!

_ Opfe™

T fork=0,1,....

In words, X has a Poisson distribution with mean Ap.

Example Suppose X has a negative binomial distribution with parameters p and N,
where N has the geometric distribution

pv)=(1—=B)B"" forn=1,2,....

What is the marginal distribution for X?
We are given the conditional probability mass function

+k—1
pX|N(k|n)=(n X )pn(l—p)k, k=0,1,....

Using the law of total probability, we obtain

Pr{X =k} = Z px|n (k|n)pn (n)

n=0
S (n+k—1)!
=3 = p -

n=1
=(1-pU-p'p)_ <”+§_ 1)(ﬂp>"—1
n=1

=(1-8)1-p)pa —pp) !
k
:(17_—/%))(11) fork=0,1,....
1-8p/\1-8p

We recognize the marginal distribution of X as being of geometric form.
Let g be a function for which the expectation of g(X) is finite. We define the condi-
tional expected value of g(X) given Y =y by the formula

E[gX)|Y =yl=) g@pxiy(xly) if pr(y) >0, (2.4)

X
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and the conditional mean is not defined at values y for which py(y) = 0. The law of
total probability for conditional expectation reads

E[g0)] =) E[gX)IY =ylpr(y). 2.5)
y

The conditional expected value E[g(X)|Y = y] is a function of the real variable y. If
we evaluate this function at the random variable Y, we obtain a random variable that
we denote by E[g(X)|Y]. The law of total probability in (2.5) now may be written in
the form

E[g(X)] = E{E[g(X)|Y]}. (2.6)

Since the conditional expectation of g(X) given Y =y is the expectation with
respect to the conditional probability mass function pxy(x|y), conditional expecta-
tions behave in many ways like ordinary expectations. The following list summarizes
some properties of conditional expectations. In this list, with or without affixes, X and
Y are jointly distributed random variables; c is a real number; g is a function for which
E[|g(X)|] < o0; h is a bounded function; and v is a function of two variables for which
E[Iv(X, Y)|] < co. The properties are

1. E[c181(X1) + c282(X2)|Y =]

=C1E[g1(XDIY =yl + 2E[g2(X2)|Y = y]. 27
2.ifg>0, then E[g(X)|Y =y] > 0. 2.8)
3. ElvX, DY =yl = EvX, »)|Y =] (2.9
4. E[g(X)|Y = y] = E[g(X)] if X and Y are independe