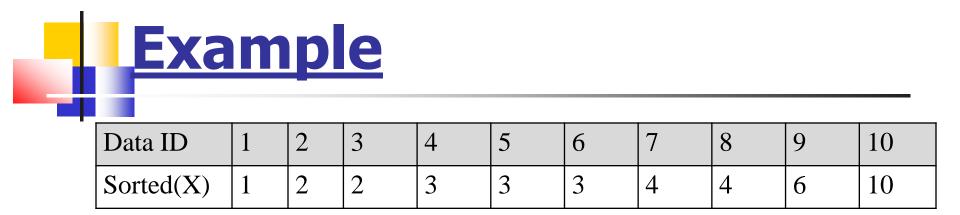

Boxplot (or Box-and-Whisker Plot)

- Summarizes data into a "5-number" summary: median, the first and the third quartiles (Q1 and Q3), minimum, and maximum.
- Detects extreme observations (outliers).
- The <u>centerline</u> of the box marks the **median**.

Boxplot

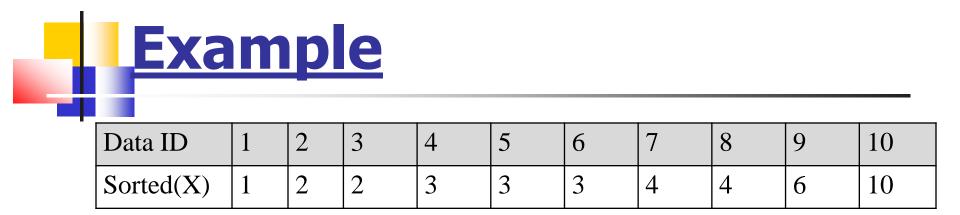
- **Step 1:** Sort the data.
- Step 2: Compute median.
- **Step 3:** Compute quartiles Q1 and Q3
- **Step 4:** Compute IQR and identify whiskers.
- **Step 5:** Draw the boxplot.



Data ID	1	2	3	4	5	6	7	8	9	10
Data(X)	10	3	1	6	2	3	4	2	3	4
Sorted(X)	1	2	2	3	3	3	4	4	6	10

Step 1: Sort the data.
Step 2: Compute median: n=10 is even

$$\tilde{X} = \frac{X_{(n/2)} + X_{(n/2)+1}}{2} = \frac{3+3}{2} = 3$$

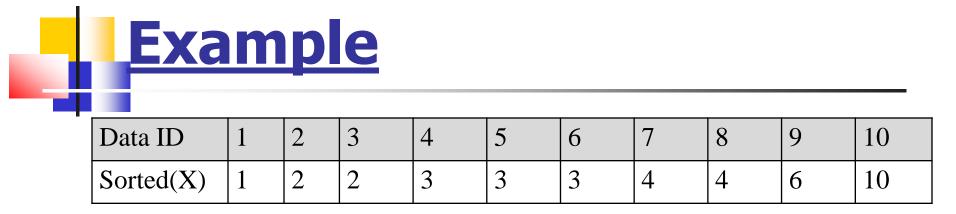


Step 3: Compute quartiles Q1 and Q3.

Recall that the *positions of the quartiles* are determined by the following formula (D'Agostino, p.37):

 $pos = \begin{cases} \left[\frac{n+3}{4}\right], when n \text{ is odd} \\ \left[\frac{n+2}{4}\right], when n \text{ is even} \end{cases}$

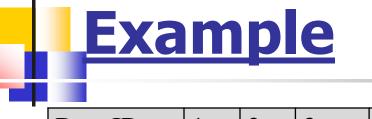
The quartiles are in the **position** = *pos* from the top (Q3) and bottom (Q1) of the ordered data set, hence Q1=2 and Q2 = 4.



Step 4: Compute IQR and identify whiskers.

IQR = Q3 - Q1 = 4 - 2 = 2

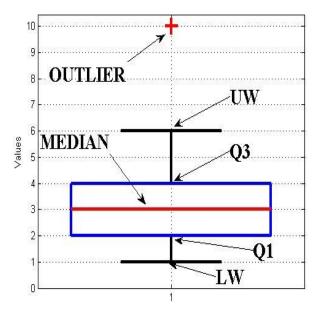
Lower Bound = Q1 - 1.5*IQR = 2-1.5*2 = -1


Lower Whisker (LW) equals to <u>minimum</u> data observation value that is <u>greater</u> than or equal to **Lower Bound**. LW = 1

Step 4: Compute IQR and identify whiskers. IQR = Q3 - Q1 = 4 - 2 = 2

Upper Bound = Q3 + 1.5*IQR = 4+1.5*2 = 7**Upper Whisker (UW)** equals to <u>maximum</u> data observation value that is <u>less</u> than or equal to **Upper Bound.** UW = 6

Values greater than Upper Bound or less than Lower Bound are considered to be **outliers.**



Data ID	1	2	3	4	5	6	7	8	9	10
Sorted(X)	1	2	2	3	3	3	4	4	6	10

Step 5: Draw the boxplot.

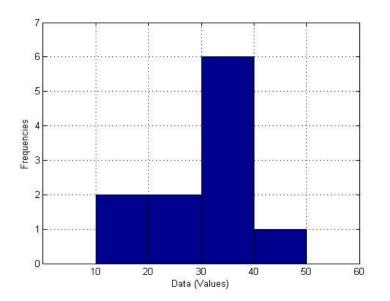
Median = 3

Q1 = 2 Q3 = 4Lower Whisker = 1 Upper Whisker = 6 Outlier = 10

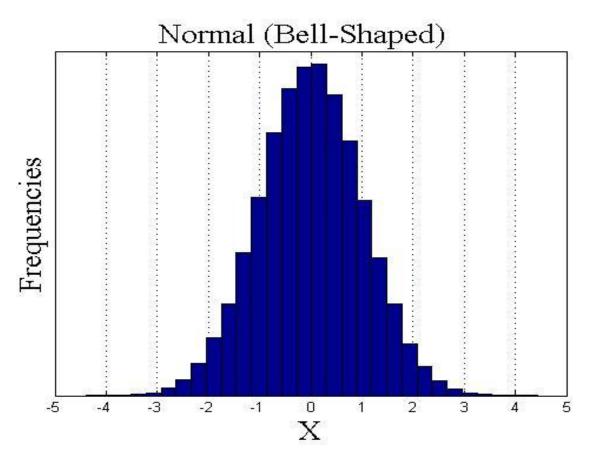
Histogram

- Displays the distribution of a quantitative variable by showing the frequencies (counts) the values that fall in various *classes*.
 - For **continuous** variables, the classes are typically <u>intervals of numbers</u> that cover the full range of the variable.
- Determines the shape of distribution and helps to assess the symmetry, modality, center, and spread.

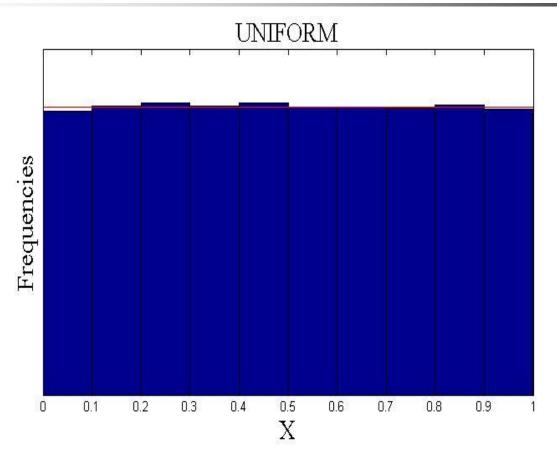
Data ID	1	2	3	4	5	6	7	8	9	10	11
Data(X)	12	40	27	15	31	21	34	40	35	37	45
Sorted(X)	12	15	21	27	31	34	35	37	40	40	45

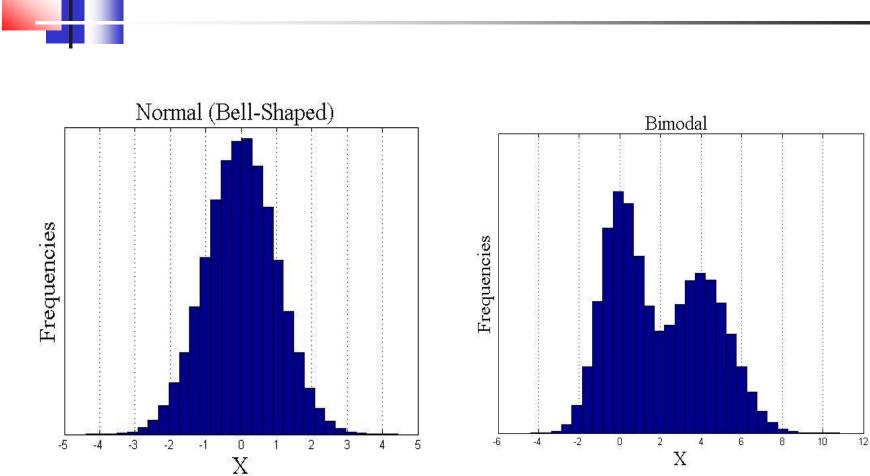

Frequency Class	Frequency
10 - 19	2
20 - 29	2
30 - 39	4
40 - 49	3

- **Step 1:** Sort the data.
- Step 2: Convert your data into Frequency Table.
- **Step 3:** Draw the histogram.

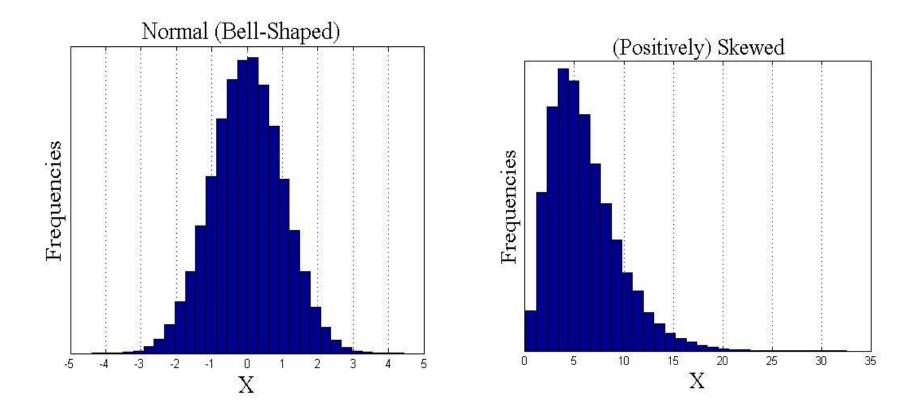


Data ID	1	2	3	4	5	6	7	8	9	10	11
Data(X)	12	40	27	15	31	21	34	40	35	37	45
Sorted(X)	12	15	21	27	31	34	35	37	40	40	45


Frequency Class	Frequency
10 - 19	2
20 - 29	2
30 - 39	4
40 - 49	3



The Shapes of the Distribution

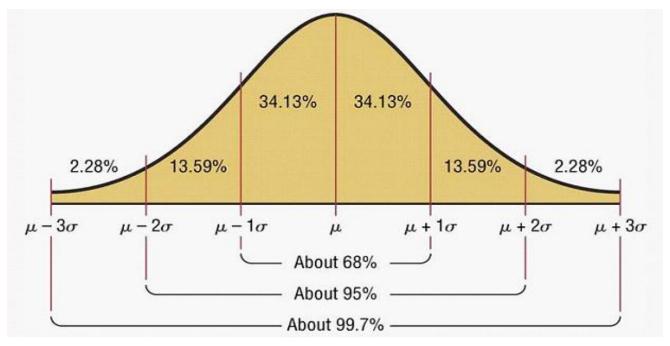

The Shapes of the Distribution

Unimodal vs. Bimodal

Symmetrical vs. Skewed

Symmetrical vs. Skewed

The relationship between mean, median and the shape of the distribution:


<u>http://omlimestatbook.com/stat_sim/descriptive/i</u> <u>mdex.html</u>

Symmetrical vs. Skewed

- In a **<u>symmetric</u>** distribution, **the mean = the median**.
- In a **positively (right) skewed** distributions (with longer tails to the right), **the mean ≥ the median**.
- In a negatively (left) skewed distributions (with longer tails to the left), the mean ≤ the median.

Empirical Rule for Normal Distribution

Empirical Rule states that for a **normal (bell-shaped) distribution**, nearly all values lie *within* **3 standard deviations of the mean**.

Experiment: Random vs. Deterministic

- An experiment is defined as a process, by which observations are made, or as a procedure that generates specific type of outcome (data).
 - In deterministic experiment, <u>the same</u> outcome is observed each time the experiment is performed.
 - In random experiment, <u>one of several</u> (random) outcomes is observed each time the experiment is observed.

Deterministic Experiment

- In **deterministic experiment**, the result is <u>predictable</u> with certainty and is <u>known</u> prior to its conduct.
- Examples:
 - An Experiment conducted to verify the Newton's Laws of Motion.
 - An Experiment conducted to verify the Economic Law of Demand.

Random Experiment

- In random experiments, the result is <u>unpredictable</u>, <u>unknown</u> prior to its conduct, and can be one of several choices.
- Examples:
 - The Experiment of tossing a coin (head, tail)
 - The Experiment of rolling a die (1,2,3,4,5,6)
 - (More Examples) _

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S.
 E.g.: S={head, tail}

Sample Space

- Collection of some outcomes is called an event and usually denoted with capital letters (e.g., A, B, C).
- Individual events are called simple events.
 E.g.:{head}, {tail}