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We have studied some deterministic and some stationary trend
models. However, many time series data cannot be modeled in
either way.

Ex. The data set oil.price displays an increasing variation from
the plot. No stationary model fits the data (neither does a
deterministic trend model.)
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5.1 Stationarity Through Differencing
The stationarity condition of an AR(1) model: Yt = φYt−1 + et is
|φ| < 1. If |φ| ≥ 1, we will get nonstationary models.
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Ex. We could simulate another Explosive “AR(1) Model”
Yt = 3Yt−1 + et . See TS-ch5.R.

Taking difference is one possible way to obtain stationary model.

Def. For a process {Yt}, we define the first difference of Yt as

∇Yt = Yt − Yt−1.

Ex. For the random walk model: Yt = Yt−1 + et , ∇Yt = et is a
stationary process.

In may cases, time series can be thought of being composed of a
nonstationary trend component and a zero-mean stationary
component.
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Ex. Some assumptions may lead to stationary second-difference models.

1 If we assume that Yt = Mt + Xt , where Mt is linear in time over
three consecutive time points, we may predict Mt at middle time
point t by choosing β0,t and β1,t to minimize

1∑
j=−1

(Yt−j − (β0,t + jβ1,t))2.

The solution is M̂t = Yt−1+Yt+Yt+1

3 . So the detrended series is

X̂t = Yt − M̂t = Yt −
Yt−1 + Yt + Yt+1

3

= −1

3
[(Yt+1 − Yt)− (Yt − Yt−1)] = −1

3
∇2Yt

2 In the following model,

Yt = Mt + et , Mt = Mt−1 + Wt , Wt = Wt−1 + εt ,

we see that ∇2Yt is stationary:

∇Yt = ∇Mt +∇et = Wt +∇et ,
∇2Yt = ∇Wt +∇2et = εt + et − 2et−1 + et−2
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5.2 ARIMA Models

Def. [Integrated autoregressive moving average model] A process
{Yt} is said to be ARIMA(p,d,q) if the dth difference Wt = ∇dYt is a
stationary ARMA(p,q) process.

Ex. Suppose {Yt} ∼ ARIMA(p, 1, q). Let Wt = Yt − Yt−1. Then
{Wt} ∼ ARMA(p, q). Suppose

Wt = φ1Wt−1+φ2Wt−2+· · ·+φpWt−p+et−θ1et−1−θ2et−2−· · ·−θqet−q

Then {Yt} satisfies that

Yt − Yt−1 = φ1(Yt−1 − Yt−2) + φ2(Yt−2 − Yt−3) + · · ·+ φp(Yt−p − Yt−p−1)

+et − θ1et−1 − θ2et−2 − · · · − θqet−q

Combining the terms, we get the difference equation form of Yt . It

looks like a ARMA(p+1,q) process. However, the AR characteristic

polynomial of Yt would be (1− φ1x − φ2x2 − · · · − φpxp)(1− x), which

has a root 1. So the “ARMA(p+1,q) process” is not stationary!
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In general, if {Yt} ∼ ARIMA(p, d , q) and Wt = ∇dY has the AR
characteristic polynomial φ(x). Then Y has a AR characteristic
polynomial φ(x)(1− x)d . We can use this to determine the types
of ARIMA models.

The nonstationary Yt may be represented as a sum of stationary
Wt starts at certain t = −m < 1, and assuming Yt = 0 for
t < −m. This expression is good to find covariance properties.

Ex. For a ARIRM(p,1,q) model, Wt = Yt −Yt−1 is stationary, and
the nonstationary Yt can be expressed as

Yt =
t∑

j=−m
Wj .

Similarly for the general ARIMA(p, d , q) models.
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Def. Two special families of nonstationary processes:

IMA(d,q)=ARIMA(0,d,q): the process have no autoregressive
terms;

ARI(p,d)=ARIMA(p,d,0): the process has no moving average
terms.

Ex. [HW 5.10] Nonstationary ARIMA series can be simulated by
first simulating the corresponding stationary ARMA series and then
“integrating” it (really partially summing it). Use statistical
software to simulate a variety of IMA(1,1) and IMA(2,2) series
with a variety of parameter values. Note any stochastic “trends” in
the simulated series.

# Here is an example of IMA(1,1) model

S1=arima.sim(model=list(order=c(0,1,1),

ma=-0.7),n=30)

Time Series Analysis Ch 5. Models for Nonstationary Time Series



5.2.1 The IMA(1,1) Model: Many economic time series can be
modeled as IMA(1,1). Difference equation form:

Yt = Yt−1 + et − θet−1.

It can be represented as:

Yt =
t∑

j=−m
(Yj − Yj−1) =

t∑
j=−m

(ej − θej−1)

= et + (1− θ)et−1 + (1− θ)et−2 + · · ·+ (1− θ)e−m − θe−m−1.

The coefficients of the past white noise do not die out. Explicit
computation shows that

Var (Yt) = [1 + θ2 + (1− θ)2(t + m)]σ2e ,

Corr (Yt,Yt−k) ≈
√

1− k

m + t
.

Like the random walk process, Corr (Yt,Yt−k) ≈ 1 for large m + t
and moderate k .
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5.2.2 The IMA(2,2) Model: Difference equation form:

∇2Yt = Yt − 2Yt−1 + Yt−2 + et − θ1et−1 − θ2et−2.

We may express Yt as a sum of white noise terms:
Yt =

∑t
j=−m−2 Ψjej , where Ψj is a linear function of j . We will

see that Cov (Yt) increase rapidly with t, and Corr (Yt,Yt−k) ≈ 1
for large t + m and moderate k .
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The data set ima22.s is a simulation of an IMA(2,2) Series with
θ1 = 1 and θ2 = −0.6. We can see the increasing variance and the
strong positive neighboring correlations.
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The first difference of the simulated IMA(2,2) series ima22.s.
∇Yt ∼ IMA(1, 2) seems nonstationary.
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The second difference of the simulated IMA(2,2) series ima22.s.
∇2Yt ∼ MA(2) is stationary. The plot seems consistent with the
theoretical ACF ρ1 = −0.678 and ρ2 = 0.254.
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5.2.3 The ARI(1,1) Model: The difference equation:
Yt − Yt−1 = φ(Yt−1 − Yt−2) + et , or

Yt = (1 + φ)Yt−1 − φYt−2 + et , |φ| < 1.

Theorem 1

In general, for an ARIMA(p,d,q) model {Yt}, the Ψ-weights can
be calculated by equating the following identity:

(1− φ1x − φ2x2 − · · · − φpxp)(1− x)d(1 + Ψ1x + Ψ2x
2 + · · · )

= 1− θ1x − θ2x2 − · · · − θqxq.

For the ARI(1,1) model, we have

Ψ1 = 1 + φ

Ψ2 = (1 + φ)Ψ1 − φ
Ψk = (1 + φ)Ψk−1 − φΨk−2, k ≥ 2.

We can solve that Ψk = 1−φk+1

1−φ for k ≥ 1.
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5.3 Constant Terms in ARIMA Models

If {Yt} ∼ ARIMA(p, d , q), then {Wt = ∇dYt} ∼ ARMA(p, q).
When Wt has constant mean µ 6= 0, we can either model it as:

Wt − µ =

p∑
i=1

φi (Wt−i − µ) + et −
q∑

j=1

θjet−j

or introduce a constant θ0 into the model.

Wt = θ0 +

p∑
i=1

φiWt−i + et −
q∑

j=1

θjet−j .

Taking expected value, we get θ0 = µ(1− φ1 − φ2 − · · · − φp).

In general, when {Yt} ∼ ARIMA(p, d , q) with E (∇dYt) 6= 0, we
have Yt = Y ′t + µt where µt is a deterministic polynomial of
degree d , and Y ′t ∼ ARIMA(p, d , q) has zero mean.
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5.5 Other Transformations

There are some other common transformations to achieve
stationarity: logarithm, percentage change, and power
transformations.

(logarithm transformation) Suppose Yt > 0 for all t, and

E (Yt) = µt ,
√
Var (Yt) = µtσ.

By Taylor expansion,

logYt = logµt + log

(
1 +

Yt − µt
µt

)
≈ logµt +

Yt − µt
µt

.

So E (logYt) ≈ logµt . Similarly, we get Var (logYt) ≈ σ2.
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Assume that Yt = (1 + Xt)Yt−1. Then 100Xt is the
percentage change. Suppose {Yt} tends to have relative
stable percentage change. When |Xt | < 0.2, we may use
logarithm transformation for {Yt} as well:

∇[log(Yt)] = log(Yt/Yt−1) = log(1 + Xt) ≈ Xt ,

which may be well-modeled by a stationary series.
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The data set electricity shows U.S. Electricity Generated by
Month. The higher value shows more variation. However, the
percentage change might be related stable.
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Above is the time series plot of the logarithms of the electricity
values. The variation looks more uniform.
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he differences of the logarithms of the electricity values looks like a
stationary series. We may compare this plot with the plot of
fractional relative change

elec.frac=na.omit((electricity-zlag(electricity))/zlag(electricity))

plot(elec.frac,type=’o’)

plot(y=diff(log(electricity)),x=elec.frac,type=’o’)
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Given a parameter λ, the power transform (introduced by
Box and Cox) is defined by

g(x) =

{
xλ−1
λ for λ 6= 0,

log x for λ = 0.

The power transformation applies only to positive data values.
If there are negative data, a positive constant may be added
to all of the values to make them all positive.
Appropriate λ may be chosen to transform the data to
stabilize the variance and achieve stationarity.
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The R code BoxCox.ar(electricity) plots the log-likelihood value for

λ. The 95% confidence interval for λ contains the value of λ = 0 quite

near its center and strongly suggests a logarithmic transformation

(λ = 0) for these data. (See discussion of boxcox and BoxCox.ar

commands on Pages 440-441.)
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