
5 Maximal functions

5.1 Covering lemmas

Lemma 5.1 (Vitali). Let {Bj : j ∈ J} be a finite collection of finite open
balls in Rd. There exists a subcollection K ⊂ J such that the Bjk are disjoint
and ⋃

j

Bj ⊂
⋃
k

3Bjk . (5.1)

Proof. Suppose that Bj1 be the largest ball with the smallest index. Let F1

denote the set of balls that are NOT disjoint from Bj1 . Now, select Bj2 as
the largest ball with the smallest index that has not already been put in F1,
and has j1 6= j2. Define F2 to be the set of unselected balls which are not
disjoint from Bj2 . Proceed inductively by selecting Bjk as the largest ball
with the smallest index that has not already been put in any Fl, and has
jk 6= jl for all l < k, and defining Fk to be the set of unselected balls which
are not disjoint from Bjk . When there all of the balls are either selected or in
at least one Fk, we stop. Now, it is clear that all of the Bjk are in

⋃
k 3Bjk .

So, any ball, B0, that was not selected must be in some Fl. Suppose that l′

is the minimum of the set of l for which B0 ∈ Fl. Therefore, it touches Bjl′

AND has a diameter less than or equal to it. So, by the triangle inequality,
it must be contained in 3Bjl′

.

Lemma 5.2 (Whitney). For every open E ⊂ Rd, there exists a partition of
E into countably many dyadic cubes such that the diameter of each non-unit
cube is bounded above and below by its distance to the boundary of E.

Proof. Divide E into d-dimensional unit cubes whose boundaries line up with
the coordinate axes. Let K0 denote the (possibly empty) set of these cubes
whose distances from ∂E (the boundary of E) are at least 6

√
d. Now, suppose

that Ks−1 has been constructed. To construct Ks, take every cube which is
not yet in some Kj and divide it evenly into 2d subcubes of side-length 2−s.
Now, let Ks be the subset of these new subcubes whose distances from ∂E
are at least 2−s · 6

√
d.

We can see that for any s ≥ 1 and C ∈ Ks, the distance from C to ∂E
is ≤ 2−s · 18

√
d, because it is a subcube of a larger cube which was not in

Ks−1, whose distance from ∂E was ≤ 2−s · 6
√
d, and 18 = 6 · 2 + 6 · 2 · 1

2
.

As the sets Ks are subsets of E, it is clear that
⋃
sKs ⊂ E. To get

the reverse inclusion, we recall that E is open, and therefore has no point
of ∂E. Therefore, every point in E is some positive distance from from the
boundary, and by construction, in a cube of diameter proportional to that
distance, which is in some Ks.
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5.2 Maximal functions

Often times we want to estimate something large, and directly employing
L1 estimates does not work. In many cases, if we average in a more careful
fashion, we can get sharper estimates. Consider the following estimate.

Exercise 5.1 (pigeonholing, again). Prove that for non-negative f ∈ L1(R),
there must be an x in the support of f such that

f(x) ≤ ‖f‖1
|f−1((0,∞))|

.

Definition 5.3. Let B(x, δ) denote the open ball of radius δ centered at x.
Given a function, f , we define the δ-average of f at x to be

Aδ(f)(x) =
1

|B(x, δ)|

∫
B(x,δ)

f(y)dµ(y).

Similarly, when it is clear from context, we define the average over a set E

AE(f)(x) =
1

|E|

∫
E

f(y)dµ(y).

Definition 5.4. For a function, f , the Hardy-Littlewood maximal function
(or operator) of f at x is

Mc(f)(x) = sup
δ>0
{Aδ(|f |)(x)} .

The uncentered maximal function is the same, but with the δ-balls in the
average not necessarily centered at x.

M(f)(x) = sup
δ>0
|x−y|<δ

{Aδ(|f |)(y)} .

Exercise 5.2. Show that Mc(f) ≤M(f).

Exercise 5.3. Show that for f ∈ L1(R), which is not constantly zero,
M(f) /∈ L1(R). Hint: Prove that if f is supported in a compact set E,
then for any x /∈ E,

Mc(f)(x) &
‖f‖1

(|x|+ diam(E))d
.
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Theorem 5.5. M is weak type (1,1) (i.e. it maps L1(Rd) to L1,∞(Rd)).

Proof. For any α > 0, define Eα = {x ∈ Rd : |M(f)(x)| > α}. This set is
open (prove it!). Let K be a compact subset of Eα. Now, notice that for
each x ∈ K, there must be an open ball, Bx 3 x, with ABx(|f |) > α. As K
is compact, there must be a finite subcover of K, which we call {Bj}. Using
Vitali’s covering lemma, we find a subcollection, {Bjk}, satisfying (5.1). Now,
we get

|K| ≤
∑
j

|Bj| ≤ 3d
∑
k

|Bjk | ≤
3d

α

∑
jk

∫
Bjk

|f(y)|dy ≤ 3d

α

∫
Rd

|f(y)|dy,

which tells us that
α|K| . ‖f‖1.

As the Lebesgue measure is sufficiently well-behaved (it is a so-called regular
measure), we can approximate, up to an arbitrary level of accuracy, the
measure of any open set by the measure of some compact set contained in it.
Now take the supremum over all compact sets K ⊂ Eα to get α|Eα| . ‖f‖1.
So, for all α > 0, we have

‖f‖1 & α|Eα| = α|{x ∈ Rd : |M(f)(x)| > α}| = αdM(f)(α).

Since this holds for any α > 0, it holds for the supremum over all α and we
get the weak L1 estimate.

Exercise 5.4. Prove that M maps L∞(Rd) to L∞(Rd).

Corollary 5.6. For 1 < p ≤ ∞,M maps Lp(Rd) to Lp(Rd).

Proof. By Exercise 5.4, we have that M maps L∞(Rd) to L∞(Rd). By The-
orem 5.5, we have a weak type (1,1) estimate. Notice that M is defined on
L1
loc(Rd) ⊃ L1(Rd) + L∞(Rd). By Marcinkiewicz interpolation, we get that

M maps Lp(Rd) to Lp(Rd) for any 1 < p <∞.
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