
6 Fourier Transform

6.1 Fourier transform

Definition 6.1. If f ∈ L1(Rd), then its Fourier transform is f̂ : Rd → C,
defined

f̂(ξ) =

∫
e−2πix·ξf(x)dx.

We can compute µ̂ as well. We get

µ̂(ξ) =

∫
e−2πix·ξdµ(x).

Exercise 6.1. Let δa(E) be the Dirac measure at a, where δa(E) = 1 if
a ∈ E, and zero otherwise. Show δ̂a(ξ) = e−2πia·ξ.

Exercise 6.2. Show that for x ∈ R, we have
∫
R e
−πx2dx = 1.

Proposition 6.2. Let Γ(x) = e−π|x|
2

be the Gaussian. Then Γ̂(ξ) = e−π|ξ|
2
.

Proof. Suppose that we are in R. If we were in higher dimensions, the integral
would factor down to one-dimensional terms anyway.

Γ̂(ξ) =

∫ ∞
−∞

e−2πixξe−πx
2

dx

=

∫ ∞
−∞

e−π(x+iξ)
2

dxe−πξ
2

=

∫ ∞+iξ

−∞+iξ

e−πx
2

dxe−πξ
2

= I · e−πξ2 . (6.1)

Now we do some contour integration in the complex plane to evaluate I.
Fix an R > 0. Let PR denote the contour in the complex plane described
by connecting the four points (−R, 0), (R, 0), (R, ξ), and (−R, ξ) clockwise.
Since the Gaussian is entire, we know that the integral over PR is zero.
Calculating explicitly, we see that

0 =

∮
PR

e−πz
2

dz =

∫ R

−R
e−πx

2

dx+

∫ R+iξ

−R+iξ

e−πx
2

dx

+

∫ 0

ξ

e−π(R−iy)
2

dy +

∫ ξ

0

e−π(R+iy)2dy.

Now, the last two terms cancel. Taking the limit as R→∞ will give us that
I = 1.
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6.2 Schwarz class

Definition 6.3. Given a point x = (x1, x2, . . . , xd) ∈ Rd, and α = (α1, α2, . . . , αd) ∈
Nd, we use the notation

xα =
∏
j

x
αj

j ,

and call α a multiindex. The length of α is

|α| =
∑
j

αj.

Similarly, for a multiindex β, a partial differential operator will be written

Dβ =
∏
j

∂

∂x
βj
j

.

Definition 6.4. The Schwarz space, denoted S, is the space of functions
f : Rd → C such that f is C∞ and xαDβf is bounded for all multiindices
α, β. We call the following Schwarz seminorms:

‖f‖αβ = ‖xαDβf‖∞.

Proposition 6.5. C∞0 is dense in S.

Proposition 6.6. The following are equivalent:

• i) f ∈ S

• ii) (1 + |x|)NDβf is bounded for any multiindex β and N ∈ N

• iii) limx→∞ x
αDβf = 0 for any multiindices α and β.

6.3 Convolution

Given two suitable functions, f and g, we define the convolution of f and g
to be

(f ∗ g)(x) =

∫
f(y)g(x− y)dy.

Exercise 6.3. Prove that convolution is commutative.

Lemma 6.7. If φ ∈ C∞0 and f ∈ L1
loc, then φ ∗ f ∈ C∞ and

Dα(φ ∗ f) = (Dαφ) ∗ f.
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Proof. At the moment, we need only prove this for multiindices α with |α| =
1, because we can use induction to prove the result for general α. Since we
are restricting ourselves to one derivative at a time, to simplify exposition,
suppose that f and φ both map R→ R. In general, we can just analyze one
coordinate at a time.

Now consider difference quotients of the form

d(h) =
1

h
((φ ∗ f)(x+ h)− (φ ∗ f)(x))

By the exercise above, we get

d(h) =
1

h
((f ∗ φ)(x+ h)− (f ∗ φ)(x))

=
1

h

(∫
φ(x+ h− y)f(y)dy −

∫
φ(x− y))f(y)dy

)
=

∫
1

h
(φ(x+ h− y)− φ(x− y))f(y)dy.

Now, collect everything in the integrand except f(y), and call it

Ah(y) =
1

h
(φ(x+ h− y)− φ(x− y)).

We can see that each Ah(y) is bounded by ||φ′||∞ by the mean value theorem
(why?). If we fix x and pick a small h > 0, then the support of Ah is contained
in a set E, which is a small neighborhood of the support of φ (again, why?).

Define the function B(y) = ||φ′||∞|f |χE(y). It is easy to see that B ∈ L1

(why?). Now, we have that |Ah(y)f(y)| ≤ |B(y)| for every small positive h,
so we can apply the dominated convergence theorem to get

lim
h→0

d(h) =

∫
f(y) lim

h→0
Ah(y)dy =

∫
f(y)φ′(x− y)dy.

Now notice that the left-hand side is (φ∗f)′ and the right-hand side is φ′ ∗f ,
so we are done.

Exercise 6.4. Use Lemma 6.7 to show that f, g ∈ S implies f ∗g ∈ S. Hint:
Use the fact that (1 + |x|) ≤ (1 + |y|)(1 + |x− y|).

Lemma 6.8. For two functions, f, g ∈ L1, f̂ ∗ g = f̂ ĝ.
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Proof. Suppose that f, g ∈ L1, then we write

f̂ ∗ g(ξ) =

∫
e−2πix·ξ(f ∗ g)(x)dx

=

∫
e−2πix·ξ

∫
f(x− y)g(y)dydx

=

∫ ∫
e−2πix·ξf(x− y)g(y)dydx

=

∫ ∫
e−2πix·ξf(x− y)g(y)dxdy (6.2)

=

∫ ∫
e−2πi(x+(y−y))·ξf(x− y)g(y)dxdy

=

∫ ∫
e−2πi(x−y)·ξf(x− y)e−2πiy·ξg(y)dxdy

=

∫
e−2πiy·ξg(y)

∫
e−2πi(x−y)·ξf(x− y)dxdy

=

∫
e−2πiy·ξg(y)

∫
e−2πi(z)·ξf(z)dzdy (6.3)

=

∫
e−2πiy·ξg(y)f̂(ξ)dy

= f̂(ξ)

∫
e−2πiy·ξg(y)dy

= f̂(ξ)ĝ(ξ).

We used Fubini in (6.2) and a change of variables, z = x− y, in (6.3).

Theorem 6.9 (Young). If f ∈ Lp, g ∈ Lq, and

1

p
+

1

q
=

1

r
+ 1,

with 1 ≤ p, q, r ≤ ∞, then

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

6.4 Approximate identities

So, it should be apparent from the prequel that convolution with nice things
makes things nice. For example, if I have a relatively nasty function f ,
which is merely L1

loc, I can convolve it with some function φ ∈ C∞0 , to get
a different function which has characteristics of both, but is now C∞. So,
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it stands to reason that if we could find a relatively nice φ, we could “clean
up” a less-than-perfect function f and do some more detailed analysis on it–
or rather something almost indistinguishable from it. Recall that definition
of a dilation of a function f : Rd → R is f ε = ε−df(ε−1x).

Definition 6.10. A family of functions {φε} (or sometimes just φ itself) is
called an approximate identity if φ ∈ S and

∫
φ = 1.

This is because we can take an arbitrary f ∈ L1
loc, convolve it with φε, and

get something that is almost exactly like f , but is now C∞. The following
shows that we can also recover f exactly if we let ε→ 0.

Lemma 6.11. Let φ be an approximate identity. If f is continuous, and f
goes to zero at infinity, then f ∗ φε → f uniformly as ε → 0. Similarly, if
f ∈ Lp, 1 ≤ p <∞ then we get the same convergence in Lp.

Viewing the integration of a function against a measure as a linear trans-
formation shows us that the Fourier transform has the following duality prop-
erty.

Exercise 6.5 (Duality). Show that for f, g ∈ L1, that
∫
fĝ =

∫
f̂ g. Hint:

Prove that
∫
ν̂dµ =

∫
µ̂dν.

Now we turn to Fourier inversion. This is the inverse of the Fourier
transform. Sometimes, we write f∨

Theorem 6.12. Suppose that f, f̂ ∈ L1, then for a.e. x,

f(x) =

∫
e2πix·ξf̂(ξ)dξ.

Proof. Consider the following:

Iε(x) =

∫
f̂ e−πε

2|ξ|2e2πiξ·xdξ.

Now, if we take the limit as ε → 0, we can see that, by the dominated
convergence theorem and the fact that f̂ ∈ L1,

Iε(x)→
∫
f̂(ξ)e2πix·ξdξ.

On the other hand, if we let g denote the integrand of the Fourier trans-
form of a type of Gaussian,

g(ξ) = e−πε
2|ξ|2e2πiξ·x,
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then, by appealing to the previous exercise, we get that

Iε(x) =

∫
f(y)ĝ(y)dy.

Now, notice that ĝ(y) = Γε(x − y). We can see that Iε = f ∗ Γε. Notice
that Γε is an approximate identity, so by Lemma 6.11, we get that Iε → f as
ε→ 0.

Exercise: Show that for a.e. x,
̂̂
f(x) = f(−x) for suitable f .

Theorem 6.13 (Parseval). If f, g ∈ S, then∫
f̂ ĝ =

∫
fg.

Proof. By the definition of the Fourier transform, Fubini, and Theorem 6.12,∫
f̂(ξ)ĝ(ξ)dξ =

∫ (∫
e−2πix·ξf(x)dx

)
ĝ(ξ)dξ

=

∫
f(x)

(∫
e−2πix·ξĝ(ξ)dξ

)
dx

=

∫
f(x)

(∫
e2πix·ξĝ(ξ)dξ

)
dx

=

∫
f(x)g(x)dx.

Corollary 6.14 (Plancherel). If f ∈ S, then ‖f‖2 = ‖f̂‖2.
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