6 Fourier Transform

6.1 Fourier transform

Definition 6.1. If $f \in L^{1}\left(\mathbb{R}^{d}\right)$, then its Fourier transform is $\hat{f}: \mathbb{R}^{d} \rightarrow \mathbb{C}$, defined

$$
\hat{f}(\xi)=\int e^{-2 \pi i x \cdot \xi} f(x) d x
$$

We can compute $\hat{\mu}$ as well. We get

$$
\hat{\mu}(\xi)=\int e^{-2 \pi i x \cdot \xi} d \mu(x)
$$

Exercise 6.1. Let $\delta_{a}(E)$ be the Dirac measure at a, where $\delta_{a}(E)=1$ if $a \in E$, and zero otherwise. Show $\hat{\delta}_{a}(\xi)=e^{-2 \pi i a \cdot \xi}$.

Exercise 6.2. Show that for $x \in \mathbb{R}$, we have $\int_{\mathbb{R}} e^{-\pi x^{2}} d x=1$.
Proposition 6.2. Let $\Gamma(x)=e^{-\pi|x|^{2}}$ be the Gaussian. Then $\hat{\Gamma}(\xi)=e^{-\pi|\xi|^{2}}$.
Proof. Suppose that we are in \mathbb{R}. If we were in higher dimensions, the integral would factor down to one-dimensional terms anyway.

$$
\begin{align*}
\hat{\Gamma}(\xi) & =\int_{-\infty}^{\infty} e^{-2 \pi i x \xi} e^{-\pi x^{2}} d x \\
& =\int_{-\infty}^{\infty} e^{-\pi(x+i \xi)^{2}} d x e^{-\pi \xi^{2}} \\
& =\int_{-\infty+i \xi}^{\infty+i \xi} e^{-\pi x^{2}} d x e^{-\pi \xi^{2}}=I \cdot e^{-\pi \xi^{2}} . \tag{6.1}
\end{align*}
$$

Now we do some contour integration in the complex plane to evaluate I. Fix an $R>0$. Let P_{R} denote the contour in the complex plane described by connecting the four points $(-R, 0),(R, 0),(R, \xi)$, and $(-R, \xi)$ clockwise. Since the Gaussian is entire, we know that the integral over P_{R} is zero. Calculating explicitly, we see that

$$
\begin{aligned}
0=\oint_{P_{R}} e^{-\pi z^{2}} d z & =\int_{-R}^{R} e^{-\pi x^{2}} d x+\int_{-R+i \xi}^{R+i \xi} e^{-\pi x^{2}} d x \\
& +\int_{\xi}^{0} e^{-\pi(R-i y)^{2}} d y+\int_{0}^{\xi} e^{-\pi(R+i y)^{2}} d y
\end{aligned}
$$

Now, the last two terms cancel. Taking the limit as $R \rightarrow \infty$ will give us that $I=1$.

6.2 Schwarz class

Definition 6.3. Given a point $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$, and $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right) \in$ \mathbb{N}^{d}, we use the notation

$$
x^{\alpha}=\prod_{j} x_{j}^{\alpha_{j}}
$$

and call α a multiindex. The length of α is

$$
|\alpha|=\sum_{j} \alpha_{j} .
$$

Similarly, for a multiindex β, a partial differential operator will be written

$$
D^{\beta}=\prod_{j} \frac{\partial}{\partial x_{j}^{\beta_{j}}}
$$

Definition 6.4. The Schwarz space, denoted \mathcal{S}, is the space of functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ such that f is C^{∞} and $x^{\alpha} D^{\beta} f$ is bounded for all multiindices α, β. We call the following Schwarz seminorms:

$$
\|f\|_{\alpha \beta}=\left\|x^{\alpha} D^{\beta} f\right\|_{\infty} .
$$

Proposition 6.5. C_{0}^{∞} is dense in \mathcal{S}.
Proposition 6.6. The following are equivalent:

- i) $f \in \mathcal{S}$
- ii) $(1+|x|)^{N} D^{\beta} f$ is bounded for any multiindex β and $N \in \mathbb{N}$
- iii) $\lim _{x \rightarrow \infty} x^{\alpha} D^{\beta} f=0$ for any multiindices α and β.

6.3 Convolution

Given two suitable functions, f and g, we define the convolution of f and g to be

$$
(f * g)(x)=\int f(y) g(x-y) d y
$$

Exercise 6.3. Prove that convolution is commutative.
Lemma 6.7. If $\phi \in C_{0}^{\infty}$ and $f \in L_{l o c}^{1}$, then $\phi * f \in C^{\infty}$ and

$$
D^{\alpha}(\phi * f)=\left(D^{\alpha} \phi\right) * f .
$$

Proof. At the moment, we need only prove this for multiindices α with $|\alpha|=$ 1 , because we can use induction to prove the result for general α. Since we are restricting ourselves to one derivative at a time, to simplify exposition, suppose that f and ϕ both map $\mathbb{R} \rightarrow \mathbb{R}$. In general, we can just analyze one coordinate at a time.

Now consider difference quotients of the form

$$
d(h)=\frac{1}{h}((\phi * f)(x+h)-(\phi * f)(x))
$$

By the exercise above, we get

$$
\begin{aligned}
d(h) & =\frac{1}{h}((f * \phi)(x+h)-(f * \phi)(x)) \\
& \left.=\frac{1}{h}\left(\int \phi(x+h-y) f(y) d y-\int \phi(x-y)\right) f(y) d y\right) \\
& =\int \frac{1}{h}(\phi(x+h-y)-\phi(x-y)) f(y) d y .
\end{aligned}
$$

Now, collect everything in the integrand except $f(y)$, and call it

$$
A_{h}(y)=\frac{1}{h}(\phi(x+h-y)-\phi(x-y))
$$

We can see that each $A_{h}(y)$ is bounded by $\left\|\phi^{\prime}\right\|_{\infty}$ by the mean value theorem (why?). If we fix x and pick a small $h>0$, then the support of A_{h} is contained in a set E, which is a small neighborhood of the support of ϕ (again, why?).

Define the function $B(y)=\left\|\phi^{\prime}\right\|_{\infty}|f| \chi_{E}(y)$. It is easy to see that $B \in L^{1}$ (why?). Now, we have that $\left|A_{h}(y) f(y)\right| \leq|B(y)|$ for every small positive h, so we can apply the dominated convergence theorem to get

$$
\lim _{h \rightarrow 0} d(h)=\int f(y) \lim _{h \rightarrow 0} A_{h}(y) d y=\int f(y) \phi^{\prime}(x-y) d y
$$

Now notice that the left-hand side is $(\phi * f)^{\prime}$ and the right-hand side is $\phi^{\prime} * f$, so we are done.

Exercise 6.4. Use Lemma 6.7 to show that $f, g \in \mathcal{S}$ implies $f * g \in \mathcal{S}$. Hint: Use the fact that $(1+|x|) \leq(1+|y|)(1+|x-y|)$.

Lemma 6.8. For two functions, $f, g \in L^{1}, \widehat{f * g}=\hat{f} \hat{g}$.

Proof. Suppose that $f, g \in L^{1}$, then we write

$$
\begin{align*}
\widehat{f * g}(\xi) & =\int e^{-2 \pi i x \cdot \xi}(f * g)(x) d x \\
& =\int e^{-2 \pi i x \cdot \xi} \int f(x-y) g(y) d y d x \\
& =\iint e^{-2 \pi i x \cdot \xi} f(x-y) g(y) d y d x \\
& =\iint e^{-2 \pi i x \cdot \xi} f(x-y) g(y) d x d y \tag{6.2}\\
& =\iint e^{-2 \pi i(x+(y-y)) \cdot \xi} f(x-y) g(y) d x d y \\
& =\iint e^{-2 \pi i(x-y) \cdot \xi} f(x-y) e^{-2 \pi i y \cdot \xi} g(y) d x d y \\
& =\int e^{-2 \pi i y \cdot \xi} g(y) \int e^{-2 \pi i(x-y) \cdot \xi} f(x-y) d x d y \\
& =\int e^{-2 \pi i y \cdot \xi} g(y) \int e^{-2 \pi i(z) \cdot \xi} f(z) d z d y \tag{6.3}\\
& =\int e^{-2 \pi i y \cdot \xi} g(y) \hat{f}(\xi) d y \\
& =\hat{f}(\xi) \int e^{-2 \pi i y \cdot \xi} g(y) d y \\
& =\hat{f}(\xi) \hat{g}(\xi)
\end{align*}
$$

We used Fubini in (6.2) and a change of variables, $z=x-y$, in (6.3).
Theorem 6.9 (Young). If $f \in L^{p}, g \in L^{q}$, and

$$
\frac{1}{p}+\frac{1}{q}=\frac{1}{r}+1
$$

with $1 \leq p, q, r \leq \infty$, then

$$
\|f * g\|_{r} \leq\|f\|_{p}\|g\|_{q} .
$$

6.4 Approximate identities

So, it should be apparent from the prequel that convolution with nice things makes things nice. For example, if I have a relatively nasty function f, which is merely $L_{l o c}^{1}$, I can convolve it with some function $\phi \in C_{0}^{\infty}$, to get a different function which has characteristics of both, but is now C^{∞}. So,
it stands to reason that if we could find a relatively nice ϕ, we could "clean up" a less-than-perfect function f and do some more detailed analysis on itor rather something almost indistinguishable from it. Recall that definition of a dilation of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is $f^{\epsilon}=\epsilon^{-d} f\left(\epsilon^{-1} x\right)$.

Definition 6.10. A family of functions $\left\{\phi^{\epsilon}\right\}$ (or sometimes just ϕ itself) is called an approximate identity if $\phi \in \mathcal{S}$ and $\int \phi=1$.

This is because we can take an arbitrary $f \in L_{l o c}^{1}$, convolve it with ϕ^{ϵ}, and get something that is almost exactly like f, but is now C^{∞}. The following shows that we can also recover f exactly if we let $\epsilon \rightarrow 0$.

Lemma 6.11. Let ϕ be an approximate identity. If f is continuous, and f goes to zero at infinity, then $f * \phi^{\epsilon} \rightarrow f$ uniformly as $\epsilon \rightarrow 0$. Similarly, if $f \in L^{p}, 1 \leq p<\infty$ then we get the same convergence in L^{p}.

Viewing the integration of a function against a measure as a linear transformation shows us that the Fourier transform has the following duality property.

Exercise 6.5 (Duality). Show that for $f, g \in L^{1}$, that $\int f \hat{g}=\int \hat{f} g$. Hint: Prove that $\int \hat{\nu} d \mu=\int \hat{\mu} d \nu$.

Now we turn to Fourier inversion. This is the inverse of the Fourier transform. Sometimes, we write f^{\vee}

Theorem 6.12. Suppose that $f, \hat{f} \in L^{1}$, then for a.e. x,

$$
f(x)=\int e^{2 \pi i x \cdot \xi} \hat{f}(\xi) d \xi
$$

Proof. Consider the following:

$$
I_{\epsilon}(x)=\int \hat{f} e^{-\pi \epsilon^{2}|\xi|^{2}} e^{2 \pi i \xi \cdot x} d \xi
$$

Now, if we take the limit as $\epsilon \rightarrow 0$, we can see that, by the dominated convergence theorem and the fact that $\hat{f} \in L^{1}$,

$$
I_{\epsilon}(x) \rightarrow \int \hat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

On the other hand, if we let g denote the integrand of the Fourier transform of a type of Gaussian,

$$
g(\xi)=e^{-\pi \epsilon^{2}|\xi|^{2}} e^{2 \pi i \xi \cdot x}
$$

then, by appealing to the previous exercise, we get that

$$
I_{\epsilon}(x)=\int f(y) \hat{g}(y) d y
$$

Now, notice that $\hat{g}(y)=\Gamma^{\epsilon}(x-y)$. We can see that $I_{\epsilon}=f * \Gamma^{\epsilon}$. Notice that Γ^{ϵ} is an approximate identity, so by Lemma 6.11, we get that $I_{\epsilon} \rightarrow f$ as $\epsilon \rightarrow 0$.

Exercise: Show that for a.e. $x, \widehat{\hat{f}}(x)=f(-x)$ for suitable f.
Theorem 6.13 (Parseval). If $f, g \in \mathcal{S}$, then

$$
\int \hat{f} \overline{\hat{g}}=\int f \bar{g}
$$

Proof. By the definition of the Fourier transform, Fubini, and Theorem 6.12,

$$
\begin{aligned}
\int \hat{f}(\xi) \overline{\hat{g}(\xi)} d \xi & =\int\left(\int e^{-2 \pi i x \cdot \xi} f(x) d x\right) \overline{\hat{g}(\xi)} d \xi \\
& =\int f(x)\left(\int e^{-2 \pi i x \cdot \xi} \overline{\hat{g}(\xi)} d \xi\right) d x \\
& =\int f(x) \overline{\left(\int e^{2 \pi i x \cdot \xi} \hat{g}(\xi) d \xi\right)} d x \\
& =\int f(x) \overline{g(x)} d x
\end{aligned}
$$

Corollary 6.14 (Plancherel). If $f \in \mathcal{S}$, then $\|f\|_{2}=\|\hat{f}\|_{2}$.

