6 Fourier Transform

6.1 Fourier transform

Definition 6.1. If f € LY(RY), then its Fourier transform is f:R* = C,
defined

f(6) = / 2 f (1) da

We can compute ji as well. We get

(6) = [ e dta).

Exercise 6.1. Let d,(E) be the Dirac measure at a, where §,(E) = 1 if
a € E, and zero otherwise. Show 0, (&) = e~ 7€,

Exercise 6.2. Show that for z € R, we have fR e ™ dy = 1.
Proposition 6.2. Let T'(z) = e ™" be the Gaussian. Then T'(&) = e ¢,

Proof. Suppose that we are in R. If we were in higher dimensions, the integral
would factor down to one-dimensional terms anyway.
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Now we do some contour integration in the complex plane to evaluate I.
Fix an R > 0. Let Pg denote the contour in the complex plane described
by connecting the four points (—R,0), (R,0), (R, ), and (—R,§) clockwise.
Since the Gaussian is entire, we know that the integral over Pg is zero.
Calculating explicitly, we see that
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Now, the last two terms cancel. Taking the limit as R — oo will give us that
I=1. [



6.2 Schwarz class

Definition 6.3. Given a point x = (21,9, ...,24) € R4 and a = (a1, o, ..., aq) €
N¢, we use the notation
.Ta - H.T?j,
J

and call a a multiindex. The length of « is
la] = Z a;.
J
Similarly, for a multiindex 3, a partial differential operator will be written

B
DP = Hax‘?‘j'
J

J

Definition 6.4. The Schwarz space, denoted S, is the space of functions
f : R? — C such that f is C* and z*D?f is bounded for all multiindices
a, 3. We call the following Schwarz seminorms:

1fllas = 2D floo.
Proposition 6.5. C§° is dense in S.
Proposition 6.6. The following are equivalent:
oi) feS
e ii) (1+ |2|)NDPf is bounded for any multiindex 8 and N € N

e iii) lim, o 2*D? f = 0 for any multiindices o and f.

6.3 Convolution

Given two suitable functions, f and g, we define the convolution of f and ¢
to be

(4 9)) = [ F)ata )y
Exercise 6.3. Prove that convolution is commutative.

Lemma 6.7. If € C3° and f € L, then ¢ * f € C* and

loc)

D¢ f) = (D) * [.



Proof. At the moment, we need only prove this for multiindices a with |a| =
1, because we can use induction to prove the result for general o. Since we
are restricting ourselves to one derivative at a time, to simplify exposition,
suppose that f and ¢ both map R — R. In general, we can just analyze one
coordinate at a time.

Now consider difference quotients of the form

A(h) = 3 (6% )+ 1)~ (6 + F)(x)

By the exercise above, we get

Now, collect everything in the integrand except f(y), and call it

Auly) = 3 (0lx +h —y) — 6(z — )
We can see that each A (y) is bounded by ||¢/||« by the mean value theorem
(why?). If we fix x and pick a small ~ > 0, then the support of A, is contained
in a set £, which is a small neighborhood of the support of ¢ (again, why?).
Define the function B(y) = ||¢/||e| fIxE(y). It is easy to see that B € L!
(why?). Now, we have that |A,(y)f(y)| < |B(y)| for every small positive h,
so we can apply the dominated convergence theorem to get

i d(h) = [ )t Au(w)dy = [ 506~ )y

h—0

Now notice that the left-hand side is (¢ * f)’ and the right-hand side is ¢ * f,
so we are done. [

Exercise 6.4. Use Lemma 6.7 to show that f,g € S implies f*xg € S. Hint:
Use the fact that (1+ |z|) < (1+ |y[)(1+ |z —y|).

Lemma 6.8. For two functions, f,g € L*, m = fq.



Proof. Suppose that f,g € L', then we write
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We used Fubini in (6.2) and a change of variables, z =z — y, in (6.3). O

Theorem 6.9 (Young). If f € LP, g € L4, and
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with 1 < p,q,r < oo, then

1 gllr < [1£1Ipllglg-

6.4 Approximate identities

So, it should be apparent from the prequel that convolution with nice things
makes things nice. For example, if I have a relatively nasty function f,
which is merely L} ., T can convolve it with some function ¢ € C§°, to get
a different function which has characteristics of both, but is now C*°. So,



it stands to reason that if we could find a relatively nice ¢, we could “clean
up” a less-than-perfect function f and do some more detailed analysis on it—
or rather something almost indistinguishable from it. Recall that definition
of a dilation of a function f: R? — R is f¢ = e 4f(e 1a).

Definition 6.10. A family of functions {¢°} (or sometimes just ¢ itself) is
called an approzimate identity if ¢ € S and [ ¢ = 1.

This is because we can take an arbitrary f € L], ., convolve it with ¢¢, and

get something that is almost exactly like f, but is now C'*°. The following
shows that we can also recover f exactly if we let ¢ — 0.

Lemma 6.11. Let ¢ be an approximate identity. If f is continuous, and f
goes to zero at infinity, then f x ¢¢ — f uniformly as ¢ — 0. Similarly, if
fe Ll 1<p<oothen we get the same convergence in LP.

Viewing the integration of a function against a measure as a linear trans-
formation shows us that the Fourier transform has the following duality prop-
erty.

Exercise 6.5 (Duality). Show that for f,¢g € L', that [ f§ = ffg Hint:
Prove that [odu = [ jdv.

Now we turn to Fourier inversion. This is the inverse of the Fourier
transform. Sometimes, we write f

Theorem 6.12. Suppose that f,f € LY, then for a.e. x,
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Proof. Consider the following:

Ie(a:):/fe“25262”5'9”615.

Now, if we take the limit as € — 0, we can see that, by the dominated
convergence theorem and the fact that f € L*,

L@%»/ﬂ@ﬁ”%a

On the other hand, if we let g denote the integrand of the Fourier trans-
form of a type of Gaussian,

—1e2|£]2 g
g(g) — e €] 627r7,§:c’



then, by appealing to the previous exercise, we get that

_ / F)i)dy

Now, notice that g(y) = I'“(z — y). We can see that I, = f xI'*. Notice
that I'“ is an approximate identity, so by Lemma 6.11, we get that I. — f as
e — 0. ]

Exercise: Show that for a.e. x, f(z) = f(—x) for suitable f.

Theorem 6.13 (Parseval). If f,q € S, then
[fi=[1s
Proof. By the definition of the Fourier transform, Fubini, and Theorem 6.12,
[ feaeie - /(/ eI (2)d )%d&
= [ [ ermesit@iie) ao
- [ 1@ ( / emwf@(g)dg) &z

Corollary 6.14 (Plancherel). If f € S, then ||f]lz = || f]|2-



