
3 Function Spaces

3.1 Norms and inner products

Definition 3.1. A norm is a function from some space, X to [0,∞), sending
x 7→ ‖x‖, and satisfying the following properties for all x, y ∈ X:

• i) ‖x‖ = 0 iff x = 0,

• ii) ‖λx‖ = |λ|‖x‖ for λ ∈ C,

• iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
Definition 3.2. For 0 < p <∞, the space of functions, f , for which

∫
|f |p <

∞ is called the Lp-space. It’s norm is

‖f‖Lp =

(∫
|f |p
) 1

p

.

We often write ‖f‖Lp as ‖f‖p for short. For the space L∞, we use the norm

‖f‖∞ = lim
n→∞

‖f‖p = inf {B > 0 : µ({x : |f(x)| > B}) = 0}.

It just so happens that Lp spaces are Banach spaces for 1 ≤ p ≤ ∞. In
the case of L2, we have a Hilbert space, and we can have the following.

Definition 3.3. Let X be a space. An inner product or scalar product is a
map from X×X to C, (x, y) 7→ 〈x, y〉 satisfying, for all x, y, z ∈ X,α, β ∈ C:

• i) 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉,

• ii) 〈y, x〉 = 〈x, y〉,

• iii) 〈x, x〉 ∈ (0,∞) when x 6= 0.

Unless otherwise stated, we assume that ‖x‖2 = 〈x, x〉.
Definition 3.4. A space is said to be compact if every one of its open covers
has a finite subcover. That is, we call X compact, if for every collection of
open subsets of X, {Uα}α∈A such that

X ⊂
⋃
α∈A

Uα,

we have that there exists a finite subcollection, {Uα}α∈B, B ⊂ A, such that

X ⊂
⋃
α∈B

Uα.

Definition 3.5. A function is said to be locally integrable, or in L1
loc if it is

integrable on every compact subset.
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3.2 Distribution functions

Here, we follow much of the exposition of Loukas Grafakos’ wonderful books.

Definition 3.6. If f is a measurable function on X, the distribution function
of f is

df (α) = µ({x ∈ X : |f(x)| > α}).

Example 3.7. Let f : [0, 1]→ [0, 1] be f : x 7→ x2. Deduce that

df (α) = 1−
√
α.

Definition 3.8. Sometimes, we can’t quite get a result for an Lp-space, but
we can, in some sense, almost get it. The weak Lp-spaces are defined by the
norm

‖f‖Lp,∞ = sup{αdf (α)
1
p : α > 0}.

Exercise 3.1. Show the following:

• i) |g| ≤ |f | a.e. implies dg ≤ df .

• ii) dλf (α) = df

(
α
|λ|

)
, for λ ∈ C \ {0}.

• iii) df+g(α + β) ≤ df (α) + dg(β).

• iv) dfg(αβ) ≤ df (α) + dg(β).

Proposition 3.9. Given f ∈ Lp, 0 < p <∞, we have

‖f‖pp = p

∫ ∞
0

αp−1df (α)dα.

Proof.

p

∫ ∞
0

αp−1df (α)dα = p

∫ ∞
0

αp−1
(∫

X

χ{|f |>α}(x)dµ(x)

)
dα

=

∫
X

∫ |f(x)|
0

pαp−1dα dµ(x)

=

∫
X

|f(x)|pdµ(x) = ‖f‖pp.

Exercise 3.2. Given f ∈ Lp, 0 < p < ∞, show that for an increasing,
continuously differentiable function, φ, with φ(0) = 0, we have∫

X

φ(|f |) =

∫ ∞
0

φ′(α)df (α)dα.
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3.3 Inequalities

Theorem 3.10 (Cauchy-Schwarz).

|〈x, y〉| ≤ ‖x‖‖y‖.
Theorem 3.11 (Hölder). When 1 ≤ p, q ≤ ∞, and 1

p
+ 1

q
= 1, given two

measurable functions on a measure space:

‖fg‖1 ≤ ‖f‖p‖g‖q.
Exercise 3.3. Use Hölder to deduce Cauchy-Schwarz.

Definition 3.12. A function f mapping into the reals is called convex if for
every λ ∈ [0, 1], we have that for x and y in the domain,

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

Theorem 3.13 (Jensen). Suppose that f is convex, and that g is real and
integrable. Then

f

(∫
g

)
≤
∫
f(g).

Theorem 3.14 (Arithmetic-Geometric). Given a sequence, {xn}, of non-
negative real numbers, (∏

n

xn

) 1
n

≤ 1

n

(∑
n

xn

)
.

Exercise 3.4. Use Jensen’s inequality to deduce the Arithmetic-Geometric
inequality.

Theorem 3.15 (Markov, Pigeonhole). If f is real and measurable, then

µ({|f(x)| ≥ t}) ≤ 1

t

∫
|f |dµ.

Proof.
∫
|f |dµ ≥

∫
tχ{f≥t}dµ = tµ({|f(x)| ≥ t}).

Theorem 3.16 (Chebychev). If f is real and measurable, then

µ({|f(x)| ≥ t}) ≤ 1

t2

∫
|f |2dµ.

Exercise 3.5. Modify the proof of Markov’s inequality to prove If f is non-
negative and measurable, and g is non-negative, and non-decreasing, then

µ({|f(x)| ≥ t}) ≤ 1

g(t)

∫
g ◦ fdµ,

and from this deduce Chebychev’s inequality.

Theorem 3.17 (Minkowski). For 1 ≤ p ≤ ∞, ‖f + g‖p ≤ ‖f‖p + ‖g‖p.
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