3 Function Spaces

3.1 Norms and inner products

Definition 3.1. A *norm* is a function from some space, X to $[0, \infty)$, sending $x \mapsto ||x||$, and satisfying the following properties for all $x, y \in X$:

- i) ||x|| = 0 iff x = 0,
- ii) $\|\lambda x\| = |\lambda| \|x\|$ for $\lambda \in \mathbb{C}$,
- iii) $||x + y|| \le ||x|| + ||y||.$

Definition 3.2. For 0 , the space of functions, <math>f, for which $\int |f|^p < \infty$ is called the L^p -space. It's norm is

$$\|f\|_{L^p} = \left(\int |f|^p\right)^{\frac{1}{p}}.$$

We often write $||f||_{L^p}$ as $||f||_p$ for short. For the space L^{∞} , we use the norm

 $||f||_{\infty} = \lim_{n \to \infty} ||f||_p = \inf \{B > 0 : \mu(\{x : |f(x)| > B\}) = 0\}.$

It just so happens that L^p spaces are Banach spaces for $1 \le p \le \infty$. In the case of L^2 , we have a Hilbert space, and we can have the following.

Definition 3.3. Let X be a space. An *inner product* or *scalar product* is a map from $X \times X$ to \mathbb{C} , $(x, y) \mapsto \langle x, y \rangle$ satisfying, for all $x, y, z \in X, \alpha, \beta \in \mathbb{C}$:

- i) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle,$
- ii) $\langle y, x \rangle = \overline{\langle x, y \rangle}$,
- iii) $\langle x, x \rangle \in (0, \infty)$ when $x \neq 0$.

Unless otherwise stated, we assume that $||x||^2 = \langle x, x \rangle$.

Definition 3.4. A space is said to be *compact* if every one of its open covers has a finite subcover. That is, we call X compact, if for every collection of open subsets of X, $\{U_{\alpha}\}_{\alpha \in A}$ such that

$$X \subset \bigcup_{\alpha \in A} U_{\alpha},$$

we have that there exists a finite subcollection, $\{U_{\alpha}\}_{\alpha\in B}, B\subset A$, such that

$$X \subset \bigcup_{\alpha \in B} U_{\alpha}.$$

Definition 3.5. A function is said to be *locally integrable*, or in L_{loc}^1 if it is integrable on every compact subset.

3.2 Distribution functions

Here, we follow much of the exposition of Loukas Grafakos' wonderful books.

Definition 3.6. If f is a measurable function on X, the distribution function of f is

$$d_f(\alpha) = \mu(\{x \in X : |f(x)| > \alpha\}).$$

Example 3.7. Let $f : [0,1] \to [0,1]$ be $f : x \mapsto x^2$. Deduce that

$$d_f(\alpha) = 1 - \sqrt{\alpha}.$$

Definition 3.8. Sometimes, we can't quite get a result for an L^p -space, but we can, in some sense, almost get it. The *weak* L^p -spaces are defined by the norm

$$||f||_{L^{p,\infty}} = \sup\{\alpha d_f(\alpha)^{\frac{1}{p}} : \alpha > 0\}.$$

Exercise 3.1. Show the following:

- i) $|g| \leq |f|$ a.e. implies $d_g \leq d_f$.
- ii) $d_{\lambda f}(\alpha) = d_f\left(\frac{\alpha}{|\lambda|}\right)$, for $\lambda \in \mathbb{C} \setminus \{0\}$.
- iii) $d_{f+g}(\alpha + \beta) \le d_f(\alpha) + d_g(\beta).$
- iv) $d_{fg}(\alpha\beta) \leq d_f(\alpha) + d_g(\beta)$.

Proposition 3.9. Given $f \in L^p, 0 , we have$

$$||f||_p^p = p \int_0^\infty \alpha^{p-1} d_f(\alpha) d\alpha.$$

Proof.

$$p\int_0^\infty \alpha^{p-1} d_f(\alpha) d\alpha = p\int_0^\infty \alpha^{p-1} \left(\int_X \chi_{\{|f| > \alpha\}}(x) d\mu(x) \right) d\alpha$$
$$= \int_X \int_0^{|f(x)|} p \alpha^{p-1} d\alpha \ d\mu(x)$$
$$= \int_X |f(x)|^p d\mu(x) = \|f\|_p^p.$$

Exercise 3.2. Given $f \in L^p, 0 , show that for an increasing, continuously differentiable function, <math>\phi$, with $\phi(0) = 0$, we have

$$\int_X \phi(|f|) = \int_0^\infty \phi'(\alpha) d_f(\alpha) d\alpha.$$

3.3 Inequalities

Theorem 3.10 (Cauchy-Schwarz).

$$|\langle x, y \rangle| \le ||x|| ||y||.$$

Theorem 3.11 (Hölder). When $1 \le p, q \le \infty$, and $\frac{1}{p} + \frac{1}{q} = 1$, given two measurable functions on a measure space:

$$||fg||_1 \le ||f||_p ||g||_q.$$

Exercise 3.3. Use Hölder to deduce Cauchy-Schwarz.

Definition 3.12. A function f mapping into the reals is called *convex* if for every $\lambda \in [0, 1]$, we have that for x and y in the domain,

$$f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y).$$

Theorem 3.13 (Jensen). Suppose that f is convex, and that g is real and integrable. Then

$$f\left(\int g\right) \leq \int f(g).$$

Theorem 3.14 (Arithmetic-Geometric). Given a sequence, $\{x_n\}$, of nonnegative real numbers,

$$\left(\prod_{n} x_{n}\right)^{\frac{1}{n}} \leq \frac{1}{n} \left(\sum_{n} x_{n}\right).$$

Exercise 3.4. Use Jensen's inequality to deduce the Arithmetic-Geometric inequality.

Theorem 3.15 (Markov, Pigeonhole). If f is real and measurable, then

$$\mu(\{|f(x)| \ge t\}) \le \frac{1}{t} \int |f| d\mu$$

Proof. $\int |f| d\mu \ge \int t\chi_{\{f\ge t\}} d\mu = t\mu(\{|f(x)|\ge t\}).$ **Theorem 3.16** (Chebychev). If f is real and measurable, then

Theorem 3.16 (Chebychev). If
$$f$$
 is real and measurable, then

$$\mu(\{|f(x)| \ge t\}) \le \frac{1}{t^2} \int |f|^2 d\mu.$$

Exercise 3.5. Modify the proof of Markov's inequality to prove If f is nonnegative and measurable, and q is non-negative, and non-decreasing, then

$$\mu(\{|f(x)| \ge t\}) \le \frac{1}{g(t)} \int g \circ f d\mu,$$

and from this deduce Chebychev's inequality.

Theorem 3.17 (Minkowski). For $1 \le p \le \infty$, $||f + g||_p \le ||f||_p + ||g||_p$.