3 Function Spaces

3.1 Norms and inner products

Definition 3.1. A norm is a function from some space, X to $[0, \infty)$, sending $x \mapsto\|x\|$, and satisfying the following properties for all $x, y \in X$:

- i) $\|x\|=0$ iff $x=0$,
- ii) $\|\lambda x\|=|\lambda|\|x\|$ for $\lambda \in \mathbb{C}$,
- iii) $\|x+y\| \leq\|x\|+\|y\|$.

Definition 3.2. For $0<p<\infty$, the space of functions, f, for which $\int|f|^{p}<$ ∞ is called the L^{p}-space. It's norm is

$$
\|f\|_{L^{p}}=\left(\int|f|^{p}\right)^{\frac{1}{p}}
$$

We often write $\|f\|_{L^{p}}$ as $\|f\|_{p}$ for short. For the space L^{∞}, we use the norm

$$
\|f\|_{\infty}=\lim _{n \rightarrow \infty}\|f\|_{p}=\inf \{B>0: \mu(\{x:|f(x)|>B\})=0\} .
$$

It just so happens that L^{p} spaces are Banach spaces for $1 \leq p \leq \infty$. In the case of L^{2}, we have a Hilbert space, and we can have the following.
Definition 3.3. Let X be a space. An inner product or scalar product is a map from $X \times X$ to $\mathbb{C},(x, y) \mapsto\langle x, y\rangle$ satisfying, for all $x, y, z \in X, \alpha, \beta \in \mathbb{C}$:

- i) $\langle\alpha x+\beta y, z\rangle=\alpha\langle x, z\rangle+\beta\langle y, z\rangle$,
- ii) $\langle y, x\rangle=\overline{\langle x, y\rangle}$,
- iii) $\langle x, x\rangle \in(0, \infty)$ when $x \neq 0$.

Unless otherwise stated, we assume that $\|x\|^{2}=\langle x, x\rangle$.
Definition 3.4. A space is said to be compact if every one of its open covers has a finite subcover. That is, we call X compact, if for every collection of open subsets of $X,\left\{U_{\alpha}\right\}_{\alpha \in A}$ such that

$$
X \subset \bigcup_{\alpha \in A} U_{\alpha}
$$

we have that there exists a finite subcollection, $\left\{U_{\alpha}\right\}_{\alpha \in B}, B \subset A$, such that

$$
X \subset \bigcup_{\alpha \in B} U_{\alpha}
$$

Definition 3.5. A function is said to be locally integrable, or in $L_{l o c}^{1}$ if it is integrable on every compact subset.

3.2 Distribution functions

Here, we follow much of the exposition of Loukas Grafakos' wonderful books.
Definition 3.6. If f is a measurable function on X, the distribution function of f is

$$
d_{f}(\alpha)=\mu(\{x \in X:|f(x)|>\alpha\}) .
$$

Example 3.7. Let $f:[0,1] \rightarrow[0,1]$ be $f: x \mapsto x^{2}$. Deduce that

$$
d_{f}(\alpha)=1-\sqrt{\alpha}
$$

Definition 3.8. Sometimes, we can't quite get a result for an L^{p}-space, but we can, in some sense, almost get it. The weak L^{p}-spaces are defined by the norm

$$
\|f\|_{L^{p, \infty}}=\sup \left\{\alpha d_{f}(\alpha)^{\frac{1}{p}}: \alpha>0\right\} .
$$

Exercise 3.1. Show the following:

- i) $|g| \leq|f|$ a.e. implies $d_{g} \leq d_{f}$.
- ii) $d_{\lambda f}(\alpha)=d_{f}\left(\frac{\alpha}{|\lambda|}\right)$, for $\lambda \in \mathbb{C} \backslash\{0\}$.
- iii) $d_{f+g}(\alpha+\beta) \leq d_{f}(\alpha)+d_{g}(\beta)$.
- iv) $d_{f g}(\alpha \beta) \leq d_{f}(\alpha)+d_{g}(\beta)$.

Proposition 3.9. Given $f \in L^{p}, 0<p<\infty$, we have

$$
\|f\|_{p}^{p}=p \int_{0}^{\infty} \alpha^{p-1} d_{f}(\alpha) d \alpha
$$

Proof.

$$
\begin{aligned}
p \int_{0}^{\infty} \alpha^{p-1} d_{f}(\alpha) d \alpha & =p \int_{0}^{\infty} \alpha^{p-1}\left(\int_{X} \chi_{\{|f|>\alpha\}}(x) d \mu(x)\right) d \alpha \\
& =\int_{X} \int_{0}^{|f(x)|} p \alpha^{p-1} d \alpha d \mu(x) \\
& =\int_{X}|f(x)|^{p} d \mu(x)=\|f\|_{p}^{p} .
\end{aligned}
$$

Exercise 3.2. Given $f \in L^{p}, 0<p<\infty$, show that for an increasing, continuously differentiable function, ϕ, with $\phi(0)=0$, we have

$$
\int_{X} \phi(|f|)=\int_{0}^{\infty} \phi^{\prime}(\alpha) d_{f}(\alpha) d \alpha
$$

3.3 Inequalities

Theorem 3.10 (Cauchy-Schwarz).

$$
|\langle x, y\rangle| \leq\|x\|\|y\| .
$$

Theorem 3.11 (Hölder). When $1 \leq p, q \leq \infty$, and $\frac{1}{p}+\frac{1}{q}=1$, given two measurable functions on a measure space:

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}
$$

Exercise 3.3. Use Hölder to deduce Cauchy-Schwarz.
Definition 3.12. A function f mapping into the reals is called convex if for every $\lambda \in[0,1]$, we have that for x and y in the domain,

$$
f((1-\lambda) x+\lambda y) \leq(1-\lambda) f(x)+\lambda f(y)
$$

Theorem 3.13 (Jensen). Suppose that f is convex, and that g is real and integrable. Then

$$
f\left(\int g\right) \leq \int f(g)
$$

Theorem 3.14 (Arithmetic-Geometric). Given a sequence, $\left\{x_{n}\right\}$, of nonnegative real numbers,

$$
\left(\prod_{n} x_{n}\right)^{\frac{1}{n}} \leq \frac{1}{n}\left(\sum_{n} x_{n}\right)
$$

Exercise 3.4. Use Jensen's inequality to deduce the Arithmetic-Geometric inequality.
Theorem 3.15 (Markov, Pigeonhole). If f is real and measurable, then

$$
\mu(\{|f(x)| \geq t\}) \leq \frac{1}{t} \int|f| d \mu
$$

Proof. $\int|f| d \mu \geq \int t \chi_{\{f \geq t\}} d \mu=t \mu(\{|f(x)| \geq t\})$.
Theorem 3.16 (Chebychev). If f is real and measurable, then

$$
\mu(\{|f(x)| \geq t\}) \leq \frac{1}{t^{2}} \int|f|^{2} d \mu
$$

Exercise 3.5. Modify the proof of Markov's inequality to prove If f is nonnegative and measurable, and g is non-negative, and non-decreasing, then

$$
\mu(\{|f(x)| \geq t\}) \leq \frac{1}{g(t)} \int g \circ f d \mu
$$

and from this deduce Chebychev's inequality.
Theorem 3.17 (Minkowski). For $1 \leq p \leq \infty,\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$.

