3 Function Spaces

3.1 Norms and inner products

Definition 3.1. A norm is a function from some space, X to [0, 00), sending
x +— ||z||, and satisfying the following properties for all z,y € X:

o i)z =0iff z =0,
e ii) || Az|| = |A|||x] for A € C,
o iii) ||z +yl| < [zl + llyll.

Definition 3.2. For 0 < p < 0o, the space of functions, f, for which [ |f|P <
oo is called the LP-space. It’s norm is

|mm=(/mﬁ;

We often write || f||.» as || f]|, for short. For the space L>, we use the norm
[flloo = limn [If]l, = inf {B > 0: p({ar: |f(x)] > B}) =0},
It just so happens that LP spaces are Banach spaces for 1 < p < oco. In
the case of L%, we have a Hilbert space, and we can have the following.

Definition 3.3. Let X be a space. An inner product or scalar product is a
map from X x X to C, (x,y) — (z,y) satisfying, for all z,y,z € X, o, € C:

o i) (azx + By, z) = alz, z) + By, 2),

o ii) (y,x) = (z,y),
e iii) (x,x) € (0,00) when z # 0.
Unless otherwise stated, we assume that ||z||? = (z, z).

Definition 3.4. A space is said to be compact if every one of its open covers
has a finite subcover. That is, we call X compact, if for every collection of
open subsets of X, {U,},ca such that

Xc|JU.,

a€A

we have that there exists a finite subcollection, {Uy }aep, B C A, such that
Xc|JU.

Definition 3.5. A function is said to be locally integrable, or in L} if it is
integrable on every compact subset.



3.2 Distribution functions
Here, we follow much of the exposition of Loukas Grafakos” wonderful books.

Definition 3.6. If f is a measurable function on X, the distribution function
of fis
d(a) = p({z € X : | f(z)] > a}).

Example 3.7. Let f:[0,1] = [0,1] be f : z + 2% Deduce that
df(Oé) =1- \/E

Definition 3.8. Sometimes, we can’t quite get a result for an LP-space, but
we can, in some sense, almost get it. The weak LP-spaces are defined by the
norm )

1flne = sup{ads(a)? : a > 0}.

Exercise 3.1. Show the following:

e i) |g| < |f| a.e. implies d, < dj.
o ii) dys(a) = dy (ﬁ), for A € C\ {0}.

o iii) dyyg(a+ B) < dy(a) + dy(8).

o iv) dpy(af) < ds(a) + dy(B).
Proposition 3.9. Given f € LP,0 < p < oo, we have

5l =p [ a7 'd(a)da.
0

p/o ap’ldf(a)da :p/o P! </X X{|f>a}(x)d,u(x)) do
|f ()]
:// pa?tda dp(x)
x Jo

_ /X (@) Pdu(z) = [|f]1

Proof.

O

Exercise 3.2. Given f € L”,0 < p < oo, show that for an increasing,
continuously differentiable function, ¢, with ¢(0) = 0, we have

Ajﬂﬂ%=£mdmﬂﬂwmx



3.3 Inequalities
Theorem 3.10 (Cauchy-Schwarz).

[{z 9)| < llzlllyll

Theorem 3.11 (Hoélder). When 1 < p,q < oo, and % +% =1, given two
measurable functions on a measure space:

gl < [1fllpllglle-
Exercise 3.3. Use Holder to deduce Cauchy-Schwarz.

Definition 3.12. A function f mapping into the reals is called convez if for
every A € [0, 1], we have that for z and y in the domain,

J(A =Nz +Ay) < (1= A)f(z) + Af(y)-
Theorem 3.13 (Jensen). Suppose that f is convez, and that g is real and

integrable. Then
1(fo)= [ o

Theorem 3.14 (Arithmetic-Geometric). Given a sequence, {z,}, of non-

negative real numbers,
1
o) <5 (Xa).
n B n n

Exercise 3.4. Use Jensen’s inequality to deduce the Arithmetic-Geometric
inequality.

Theorem 3.15 (Markov, Pigeonhole). If f is real and measurable, then
p(l1f @) = th < 7 [ Iflan

Proof. [|fldp > [txir=ndu = tu({|f(z)| = t}). O
Theorem 3.16 (Chebychev). If f is real and measurable, then
1
n({1f @) = ) < 5 [ 1#Pd

Exercise 3.5. Modify the proof of Markov’s inequality to prove If f is non-
negative and measurable, and ¢ is non-negative, and non-decreasing, then

1
W) = 1) < / go fdp,

and from this deduce Chebychev’s inequality.
Theorem 3.17 (Minkowski). For 1 <p <oo,|f+gll, < |fll, + llgll,-



