4 Interpolation

Many of these arguments follow Loukas Grafakos' wonderful exposition in his Fourier Analysis books.

4.1 Marcinkiewicz

Definition 4.1. Given measure spaces (X, μ) and (Y, ν) , an operator, $T : X \to Y$, is said to be *linear* if for all $f, g \in X, \lambda \in \mathbb{C}$,

T(f+g) = T(f) + T(g) and $T(\lambda f) = \lambda T(f)$.

The operator is called *quasi-linear* if for some K > 0, we have that for all $f, g \in X, \lambda \in \mathbb{C}$,

$$|T(f+g)| \le K(|T(f)| + |T(g)|)$$
 and $|T(\lambda f)| = |\lambda||T(f)|$.

The operator is called *sublinear* if it is quasi-linear with K = 1.

If $||T(f)||_q \lesssim ||f||_p$, we say that T maps L^p to L^q .

Exercise 4.1. Show that for $x, y > 0, xy \le n$ implies that $\min\{x, y\} \le n^{\frac{1}{2}}$.

Theorem 4.2 (Marcinkiewicz). Let (X, μ) and (Y, ν) be two measure spaces, and let $0 < p_0 < p_1 \le \infty$. Let a sublinear operator T take functions from $L^{p_0}(X) + L^{p_1}(X)$ to measurable functions on Y. Suppose that there exist constants $A_0, A_1 > 0$ such that

> $||T(f)||_{p_0,\infty} \le A_0 ||f||_{p_0}$, for every $f \in L^{p_0}$, and $||T(f)||_{p_1,\infty} \le A_1 ||f||_{p_1}$, for every $f \in L^{p_1}$.

Then for all $p \in (p_0, p_1)$, we have an explicit constant A for which

$$||T(f)||_p \le A ||f||_p.$$

Proof. Suppose that $p_1 < \infty$. Fix $f \in L^p(X)$ and $\alpha > 0$. Now, we will decompose f into two parts, $f = f_0^{\alpha} + f_1^{\alpha}$, where $f_j^{\alpha} \in L^{p_j}$. This is done by letting f_0^{α} coincide with f wherever $|f| > \delta \alpha$, (for some $\delta > 0$, to be chosen later) and setting it zero everywhere else. The same is done for f_1^{α} , but taking the rest of the support of f. Now, we notice that the big part of f, which lives in f_0^{α} , will be in L^{p_0} , and the little part, f_1^{α} will be in L^{p_1} . Don't believe me?

$$||f_0^{\alpha}||_{p_0}^{p_0} = \int_{\{|f| > \delta\alpha\}} |f|^p |f|^{p_0 - p} d\mu(x) \le (\delta\alpha)^{p_0 - p} ||f||_p^p.$$

Exercise 4.2. Do this for f_1^{α} .

Now, since T is sublinear, we have that $|T(f)| \leq |T(f_0^{\alpha})| + |T(f_1^{\alpha})|$. So we have that

$$\{x: |T(f)(x)| > \alpha\} \subset \left\{x: |T(f_0^{\alpha})(x)| > \frac{\alpha}{2}\right\} \cup \left\{x: |T(f_0^{\alpha})(x)| > \frac{\alpha}{2}\right\},\$$

which implies the estimate of the distribution functions

$$d_{T(f)}(\alpha) \le d_{T(f_0^{\alpha})}\left(\frac{\alpha}{2}\right) + d_{T(f_1^{\alpha})}\left(\frac{\alpha}{2}\right).$$

$$(4.1)$$

Now, take a moment to see that

$$d_{T(f_0^{\alpha})}\left(\frac{\alpha}{2}\right) = \left(\frac{\alpha/2}{\alpha/2}\right)^{p_0} d_{T(f_0^{\alpha})}\left(\frac{\alpha}{2}\right)$$

$$\leq (\alpha/2)^{-p_0} \sup_{\alpha/2>0} \left\{ (\alpha/2)^{p_0} d_{T(f_0^{\alpha})}(\alpha/2) \right\}$$

$$= (\alpha/2)^{-p_0} \|T(f_0^{\alpha})\|_{p_0,\infty} \leq (\alpha/2)^{-p_0} \|T(f)\|_{p_0,\infty}.$$

Now we combine this (and a similar calculation for f_1^{α}) with the assumption that $||T(f)||_{p_0,\infty} \leq A_0 ||f||_{p_0}$ and (4.1) to get

$$d_{T(f)}(\alpha) \leq \frac{A_0^{p_0}}{(\alpha/2)^{p_0}} \int_{\{|f| > \delta\alpha\}} |f(x)|^{p_0} d\mu(x) + \frac{A_1^{p_1}}{(\alpha/2)^{p_1}} \int_{\{|f| \leq \delta\alpha\}} |f(x)|^{p_1} d\mu(x).$$

Now, using Proposition 3.9 from before, we get

$$\begin{split} \|T(f)\|_{p}^{p} &\leq p(2A_{0})^{p_{0}} \int_{0}^{\infty} \alpha^{p-1} \alpha^{-p_{0}} \int_{\{|f| > \delta\alpha\}} |f(x)|^{p_{0}} d\mu(x) d\alpha + \\ &+ p(2A_{1})^{p_{1}} \int_{0}^{\infty} \alpha^{p-1} \alpha^{-p_{1}} \int_{\{|f| \leq \delta\alpha\}} |f(x)|^{p_{1}} d\mu(x) d\alpha \\ &\leq p(2A_{0})^{p_{0}} \int_{X} |f(x)|^{p_{0}} \int_{0}^{\delta^{-1}|f(x)|} \alpha^{p-1-p_{0}} d\alpha d\mu(x) + \\ &+ p(2A_{1})^{p_{1}} \int_{X} |f(x)|^{p_{1}} \int_{\delta^{-1}|f(x)|}^{\infty} \alpha^{p-1-p_{1}} d\alpha d\mu(x) \\ &= \frac{p(2A_{0})^{p_{0}}}{(p-p_{0})\delta^{p-p_{0}}} \int_{X} |f(x)|^{p_{0}} |f(x)|^{p-p_{0}} d\mu(x) + \\ &+ \frac{p(2A_{1})^{p_{1}}}{(p_{1}-p)\delta^{p-p_{1}}} \int_{X} |f(x)|^{p_{1}} |f(x)|^{p-p_{1}} d\mu(x) \\ &= p\left(\frac{p(2A_{0})^{p_{0}}}{(p-p_{0})\delta^{p-p_{0}}} + \frac{p(2A_{1})^{p_{1}}}{(p_{1}-p)\delta^{p-p_{1}}}\right) \|f\|_{p}^{p}. \end{split}$$

Now, pick δ such that

$$\frac{p(2A_0)^{p_0}}{(p-p_0)\delta^{p-p_0}} = \frac{p(2A_1)^{p_1}}{(p_1-p)\delta^{p-p_1}}.$$

The case $p_1 = \infty$ is left to the interested reader.

4.2 Riesz-Thorin

Lemma 4.3 (Hadamard's three lines lemma). Let F be analytic in the open strip, $S = \{z \in \mathbb{C} : 0 < Re \ z < 1\}$, continuous and bounded on its closure, \overline{S} , such that $|F(z)| \leq B_0 < \infty$ when $Re \ z = 0$, and $|F(z)| \leq B_1 < \infty$ when $Re \ z = 1$. Then for any $\theta \in [0, 1]$, for any z with $Re \ z = \theta$,

$$|F(z)| \le B_0^{1-\theta} B_1^{\theta}.$$

Proof. Define analytic functions

$$G(z) = F(z)(B_0^{1-z}B_1^z)^{-1}$$
 and $G_n(z) = G(z)e^{(z^2-1)/n}$.

Since F is bounded on the closed unit strip, and $B_0^{1-z}B_1^z$ is bounded from below, we know that G is bounded by some constant $M < \infty$ on the closed strip. Also, $G \leq 1$ the boundary. Now,

$$|G_n(x+iy)| \le M e^{-y^2/n} e^{x^2 - 1/n} \le M e^{-y^2/n},$$

so we know that G_n converges to zero uniformly in the closed strip as y approaches $\pm \infty$. Now, pick some y_0 such that for all $|y| \ge |y_0|$, we can bound $|G_n| \le 1$, uniformly in x in the closed strip. By the maximum modulus principle, we get that $|G_n| \le 1$ in the rectangle $[0,1] \times [-|y_0|, |y_0|]$. So, we get that $|G_n| \le 1$ everywhere in the closed strip. Now, if we let $n \to \infty$, we get $|G| \le 1$ also in the closed strip. \Box

Theorem 4.4 (Riesz-Thorin). Let (X, μ) and (Y, ν) be two measure spaces, and let $0 < p_0, p_1, q_0, q_1 \leq \infty$. Let T be a linear operator mapping simple functions on X to measurable functions on Y. Suppose that there exist constants $A_0, A_1 > 0$ such that

$$||T(f)||_{q_0} \leq M_0 ||f||_{p_0}$$
, and

 $||T(f)||_{p_1} \leq M_1 ||f||_{p_1}$, for every simple $f \in X$.

Then for all $\theta \in (0, 1)$, we have

$$||T(f)||_q \le M_0^{1-\theta} M_1^{\theta} ||f||_p$$

for all simple functions F on X, where

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}, and \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}.$$

By density, T has a unique extension as a bounded operator from $L^p(X,\mu)$ to $L^q(Y,\nu)$ for all suitable p and q.

Proof. Define f to be a simple function on X,

$$f = \sum_{k=1}^{m} a_k e^{i\alpha_k} \chi_{A_k},$$

where $a_k > 0$, $\alpha_k \in \mathbb{R}$, and A_k are disjoint subsets of X of finite measure. Now, we'd like to get a handle on $||T(f)||_{L^q(Y)}$.

$$||T(f)||_{L^q(Y)} = \sup \left| \int_Y T(f)(x)g(x)d\nu(x) \right|,$$

where the supremum is taken over simple functions g on Y such that

$$||g||_{L_{q'}(Y)} \le 1$$

To continue, we can write g as

$$g = \sum_{j=1}^{n} b_j e^{i\beta_j} \chi_{B_j},$$

where $b_j > 0$, $\beta_j \in \mathbb{R}$, and B_k are disjoint subsets of Y of finite measure. Now, we define two functions on $\overline{S} = \{z \in \mathbb{C} : 0 \le z \le 1\},\$

$$P(z) = \frac{p}{p_0}(1-z) + \frac{p}{p_1}z$$
 and $Q(z) = \frac{q'}{q'_0}(1-z) + \frac{q'}{q'_1}z.$

Now, we define a two functions like f and g above,

$$f_z = \sum_{k=1}^m a_k^{P(z)} e^{i\alpha_k} \chi_{A_k}$$
 and $g_z = \sum_{j=1}^n b_j^{Q(z)} e^{i\beta_j} \chi_{B_j}.$

Finally, we can define a function F on \overline{S} ,

$$F(z) = \int_Y T(f_z)(x)g_z(x)d\nu(x).$$

Now, by linearity, we get that

$$F(z) = \sum_{k=1}^{m} \sum_{j=1}^{n} a_k^{P(z)} b_j^{Q(z)} e^{i(\alpha_k + \beta_j)} \int_Y T(\chi_{A_k})(x) \chi_{B_j}(x) d\nu(x).$$

From this, we get that F is analytic in z because the coefficients, $a_k, b_j > 0$. Now, consider some z whose real part is zero. Recall that

$$\left|a_{k}^{P(z)}\right| = a_{k}^{\frac{p}{p_{0}}}.$$

Now, as the A_k are disjoint, we get that

$$||f_z||_{p_0}^{p_0} = ||f||_p^p.$$

Similarly, we get that

$$||g_z||_{q'_0}^{q'_0} = ||g||_{q'}^{q'}.$$

Now, we apply Hölder to get

$$|F(z)| = |\int_{Y} T(f_z)(x)g_z(x)d\nu(x)| \le ||T(f_z)||_{q_0}||g_z||_{q'_0},$$

which, by assumption is bounded above by

$$\leq M_0 \|f_z\|_{p_0} \|g_z\|_{q'_0} = M_0 \|f_z\|_p^{\frac{p}{p_0}} \|g_z\|_{q'_0}^{\frac{q'}{q'_0}}.$$

If we now consider a z whose real part is 1, we will get

$$||f_z||_{p_1}^{p_1} = ||f||_p^p$$
, and $||g_z||_{q'_1}^{q'_1} = ||g||_{q'}^{q'}$,

by the definition of f_z and the fact that the magnitude of a purely imaginary exponential is 1. This will yield

,

$$|F(z)| \le M_1 ||f_z||_p^{\frac{p}{p_1}} ||g_z||_{q'}^{\frac{q'}{q_1'}}.$$

Now, F is analytic in the open strip, S, and continuous on its closure. We also know that F is bounded on the closure of the strip. So, by Hadamard's three lines lemma, we get that, when the real part of z is θ ,

$$|F(z)| \le \left(M_0 \|f_z\|_p^{\frac{p}{p_0}} \|g_z\|_{q'}^{\frac{q'}{q_0'}} \right)^{1-\theta} \left(M_1 \|f_z\|_p^{\frac{p}{p_1}} \|g_z\|_{q'}^{\frac{q'}{q_1'}} \right)^{\theta} = M_0^{1-\theta} M_1^{\theta} \|f\|_p \|g\|_{q'}.$$

We can see that $P(\theta) = Q(\theta) = 1$, so we get that

$$F(\theta) = \int_Y T(f)gd\nu.$$

We finish by taking the supremum over all simple functions on Y with $L^{q'}$ norm ≤ 1 , and using density to extend T.