4 Interpolation

Many of these arguments follow Loukas Grafakos” wonderful exposition in
his Fourier Analysis books.

4.1 Marcinkiewicz

Definition 4.1. Given measure spaces (X, u) and (Y,v), an operator, T :
X — Y, is said to be linear if for all f,g € X, € C,

T(f+9) =T(f) +T(g) and T(Af) = AT ().

The operator is called quasi-linear if for some K > 0, we have that for all

frge X, e C,
T(f +9)| < K(IT(f)] +|T(g)]) and [T(Af)| = [AT(f)].
The operator is called sublinear if it is quasi-linear with K = 1.
ENT(F)llg S NS, we say that T maps LP to L9.

Exercise 4.1. Show that for z,y > 0, xy < n implies that min{z, y} < ne.

Theorem 4.2 (Marcinkiewicz). Let (X, p) and (Y, v) be two measure spaces,
and let 0 < py < p; < o0. Let a sublinear operator T take functions from
LPo(X) + LPY(X) to measurable functions on'Y. Suppose that there exist con-
stants Ag, A1 > 0 such that

IT(lpo.co < Aol fllpos for every f e L, and

[T ()llproc < Al fllpy, for every f e LP.
Then for all p € (po, p1), we have an explicit constant A for which

TNl < Allfllp-

Proof. Suppose that p; < oco. Fix f € LP(X) and a > 0. Now, we will
decompose f into two parts, f = fg' + f{', where fi* € LP7. This is done
by letting f§ coincide with f wherever |f| > da, (for some § > 0, to be
chosen later) and setting it zero everywhere else. The same is done for f{,
but taking the rest of the support of f. Now, we notice that the big part
of f, which lives in f§, will be in LP°, and the little part, f{* will be in L.
Don’t believe me?

Lo = /{ o PPt < oy,
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Exercise 4.2. Do this for f{.

Now, since T is sublinear, we have that |T'(f)| < |T(f&)] + |T(f{)]. So
we have that

{o: IT(N@) > a} < {a: [T @) > S U {aTU @] > 5}

which implies the estimate of the distribution functions

dr(p) (@) < dr(s) (%) +drgsp) (%) : (4.1)

Now, take a moment to see that

drsg) (%) = (Z—g)m dr(sg) (%)

< (a/2)7P0sup { af2)Pdr fa(a/2>}

a/2>0
= (a/2) [T (f5)po,oc < (/2) 7P [T(f)lpo,o0-

Now we combine this (and a similar calculation for f{*) with the assumption
that [[7(f)llpo.co < Aoll fllne and (4.1) to get

Ago Po €T A;:ll)l T p1 T
(@) < g | @)+ T [ sran)

Now, using Proposition 3.9 from before, we get

IT(HIE < p(24o) / Tl /{ F@)Pdu(x)dat

|f]|>da}

—i—p(2A1)p1/ aplapl/ |f(z)[Prdp(z)do
0 {If1<da}
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Now, pick ¢ such that

p(2Ap)P° _ p(2A,)"
(p — p(])(SP—PO (pl — p)él’—Pl ’
The case p; = oo is left to the interested reader. O

4.2 Riesz-Thorin

Lemma 4.3 (Hadamard’s three lines lemma). Let F' be analytic in the open
strip, S = {z € C: 0 < Re z < 1}, continuous and bounded on its closure,
S, such that |F(z)| < By < 0o when Re z = 0, and |F(2)| < B; < oo when
Re z = 1. Then for any 0 € [0, 1], for any z with Re z = 6,

|F(2)| < By ’By.
Proof. Define analytic functions
G(Z) = F(szé_ZBf)_l and Gn(Z) _ G(Z)e(ZQ_l)/n-

Since F' is bounded on the closed unit strip, and By *B? is bounded from
below, we know that G is bounded by some constant M < oo on the closed
strip. Also, G <1 the boundary. Now,

G(x 4 iy)| < Me Ve "1 < Me v/,

so we know that G, converges to zero uniformly in the closed strip as y
approaches +o0o0. Now, pick some y, such that for all |y| > |yo|, we can
bound |G| < 1, uniformly in z in the closed strip. By the maximum modulus
principle, we get that |G| < 1 in the rectangle [0, 1] x [—|yol, |vo|]. So, we
get that |G,| < 1 everywhere in the closed strip. Now, if we let n — oo, we
get |G| <1 also in the closed strip. O

Theorem 4.4 (Riesz-Thorin). Let (X, ) and (Y,v) be two measure spaces,
and let 0 < po,p1,q0,q1 < oo. Let T be a linear operator mapping sim-
ple functions on X to measurable functions on Y. Suppose that there exist
constants Ay, Ay > 0 such that

IT()lao < Mollflpo, and

NT(f)llpy < Ml fllp,, for every simple f € X.

Then for all 8 € (0,1), we have

IT(f)llg < My~ MY|| fl,
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for all simple functions F' on X, where

1 1-60 4 1 1-60 0
= +—, and — = + —.
b1 q do q1

p Do

By density, T has a unique extension as a bounded operator from LP(X, 1)

to L(Y,v) for all suitable p and q.

Proof. Define f to be a simple function on X,
f = ZakeiakXAka
k=1

where a > 0, ap € R, and A, are disjoint subsets of X of finite measure.

Now, we'd like to get a handle on [|T'(f)||La(v)-

IT(F) 2oy = sup /C'r<f><x>g<x>du<x> ,

where the supremum is taken over simple functions g on Y such that

lgllz, o) = 1.

To continue, we can write g as
n
’L' .
g= E bjeﬁﬂxgj,
Jj=1

where b; > 0, 5; € R, and Bj, are disjoint subsets of ¥ of finite measure

Now, we define two functions on S = {zeC:0<2< 1},

/

_ Py P _ 9
P(z)—po(l z)+plz and Q(z) Q6(1 z)+q,1

Now, we define a two functions like f and ¢ above,

J.= Z af(Z)ekaAk and g, = Z b?(Z)eiﬁjXBj-
k=1 j=1

Finally, we can define a function F on S,
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Now, by linearity, we get that

m

F(z) =YY a@pdPeitonts) /Y T(xa,) (@) x5, (z)dv(z).

k=1 j=1
From this, we get that I is analytic in z because the coefficients, ax, b; > 0.
Now, consider some z whose real part is zero. Recall that

‘akP(z)

3
— PO
=a, .

Now, as the A, are disjoint, we get that
1= = /13-
Similarly, we get that
% _ q
9=l = llgllg-

Now, we apply Holder to get
[F(2)] = ILT(fz)(m)gz(x)dV(m)l < T llao ll 9=l g5

which, by assumption is bounded above by

/
P q_

q
< Mol|f=llpollg=llgy = Moll £ l12° Nl gzl -

If we now consider a z whose real part is 1, we will get

/ /
L5 = [1A15,  and lg:lig = llglly.

by the definition of f, and the fact that the magnitude of a purely imaginary
exponential is 1. This will yield

PR
[F(2)] < Ml fllp" gl

Now, F'is analytic in the open strip, S, and continuous on its closure. We
also know that F' is bounded on the closure of the strip. So, by Hadamard’s
three lines lemma, we get that, when the real part of z is 0,

i\ 1-0 N
[F(2)] < (Mollfz|lz’50|!9z||§9> <M1||fz||£”\|gz||§}) = My~ M| fllplglly-
We can see that P(0) = Q(0) = 1, so we get that
F(6) = [ T(Podv
Y

We finish by taking the supremum over all simple functions on Y with L¢

norm < 1, and using density to extend T
O



