4 Interpolation

Many of these arguments follow Loukas Grafakos' wonderful exposition in his Fourier Analysis books.

4.1 Marcinkiewicz

Definition 4.1. Given measure spaces (X, μ) and (Y, ν), an operator, T : $X \rightarrow Y$, is said to be linear if for all $f, g \in X, \lambda \in \mathbb{C}$,

$$
T(f+g)=T(f)+T(g) \text { and } T(\lambda f)=\lambda T(f) .
$$

The operator is called quasi-linear if for some $K>0$, we have that for all $f, g \in X, \lambda \in \mathbb{C}$,

$$
|T(f+g)| \leq K(|T(f)|+|T(g)|) \text { and }|T(\lambda f)|=|\lambda||T(f)| .
$$

The operator is called sublinear if it is quasi-linear with $K=1$.
If $\|T(f)\|_{q} \lesssim\|f\|_{p}$, we say that T maps L^{p} to L^{q}.
Exercise 4.1. Show that for $x, y>0, x y \leq n$ implies that $\min \{x, y\} \leq n^{\frac{1}{2}}$.
Theorem 4.2 (Marcinkiewicz). Let (X, μ) and (Y, ν) be two measure spaces, and let $0<p_{0}<p_{1} \leq \infty$. Let a sublinear operator T take functions from $L^{p_{0}}(X)+L^{p_{1}}(X)$ to measurable functions on Y. Suppose that there exist constants $A_{0}, A_{1}>0$ such that

$$
\begin{gathered}
\|T(f)\|_{p_{0}, \infty} \leq A_{0}\|f\|_{p_{0}}, \text { for every } f \in L^{p_{0}}, \text { and } \\
\|T(f)\|_{p_{1}, \infty} \leq A_{1}\|f\|_{p_{1}}, \text { for every } f \in L^{p_{1}} .
\end{gathered}
$$

Then for all $p \in\left(p_{0}, p_{1}\right)$, we have an explicit constant A for which

$$
\|T(f)\|_{p} \leq A\|f\|_{p}
$$

Proof. Suppose that $p_{1}<\infty$. Fix $f \in L^{p}(X)$ and $\alpha>0$. Now, we will decompose f into two parts, $f=f_{0}^{\alpha}+f_{1}^{\alpha}$, where $f_{j}^{\alpha} \in L^{p_{j}}$. This is done by letting f_{0}^{α} coincide with f wherever $|f|>\delta \alpha$, (for some $\delta>0$, to be chosen later) and setting it zero everywhere else. The same is done for f_{1}^{α}, but taking the rest of the support of f. Now, we notice that the big part of f, which lives in f_{0}^{α}, will be in $L^{p_{0}}$, and the little part, f_{1}^{α} will be in $L^{p_{1}}$. Don't believe me?

$$
\left\|f_{0}^{\alpha}\right\|_{p_{0}}^{p_{0}}=\int_{\{|f|>\delta \alpha\}}|f|^{p}|f|^{p_{0}-p} d \mu(x) \leq(\delta \alpha)^{p_{0}-p}\|f\|_{p}^{p}
$$

Exercise 4.2. Do this for f_{1}^{α}.
Now, since T is sublinear, we have that $|T(f)| \leq\left|T\left(f_{0}^{\alpha}\right)\right|+\left|T\left(f_{1}^{\alpha}\right)\right|$. So we have that

$$
\{x:|T(f)(x)|>\alpha\} \subset\left\{x:\left|T\left(f_{0}^{\alpha}\right)(x)\right|>\frac{\alpha}{2}\right\} \cup\left\{x:\left|T\left(f_{0}^{\alpha}\right)(x)\right|>\frac{\alpha}{2}\right\}
$$

which implies the estimate of the distribution functions

$$
\begin{equation*}
d_{T(f)}(\alpha) \leq d_{T\left(f_{0}^{\alpha}\right)}\left(\frac{\alpha}{2}\right)+d_{T\left(f_{1}^{\alpha}\right)}\left(\frac{\alpha}{2}\right) \tag{4.1}
\end{equation*}
$$

Now, take a moment to see that

$$
\begin{aligned}
d_{T\left(f_{0}^{\alpha}\right)}\left(\frac{\alpha}{2}\right) & =\left(\frac{\alpha / 2}{\alpha / 2}\right)^{p_{0}} d_{T\left(f_{0}^{\alpha}\right)}\left(\frac{\alpha}{2}\right) \\
& \leq(\alpha / 2)^{-p_{0}} \sup _{\alpha / 2>0}\left\{(\alpha / 2)^{p_{0}} d_{T\left(f_{0}^{\alpha}\right.}(\alpha / 2)\right\} \\
& =(\alpha / 2)^{-p_{0}}\left\|T\left(f_{0}^{\alpha}\right)\right\|_{p_{0}, \infty} \leq(\alpha / 2)^{-p_{0}}\|T(f)\|_{p_{0}, \infty}
\end{aligned}
$$

Now we combine this (and a similar calculation for f_{1}^{α}) with the assumption that $\|T(f)\|_{p_{0}, \infty} \leq A_{0}\|f\|_{p_{0}}$ and (4.1) to get

$$
d_{T(f)}(\alpha) \leq \frac{A_{0}^{p_{0}}}{(\alpha / 2)^{p_{0}}} \int_{\{|f|>\delta \alpha\}}|f(x)|^{p_{0}} d \mu(x)+\frac{A_{1}^{p_{1}}}{(\alpha / 2)^{p_{1}}} \int_{\{|f| \leq \delta \alpha\}}|f(x)|^{p_{1}} d \mu(x)
$$

Now, using Proposition 3.9 from before, we get

$$
\begin{aligned}
\|T(f)\|_{p}^{p} \leq & p\left(2 A_{0}\right)^{p_{0}} \int_{0}^{\infty} \alpha^{p-1} \alpha^{-p_{0}} \int_{\{|f|>\delta \alpha\}}|f(x)|^{p_{0}} d \mu(x) d \alpha+ \\
& +p\left(2 A_{1}\right)^{p_{1}} \int_{0}^{\infty} \alpha^{p-1} \alpha^{-p_{1}} \int_{\{|f| \leq \delta \alpha\}}|f(x)|^{p_{1}} d \mu(x) d \alpha \\
\leq & p\left(2 A_{0}\right)^{p_{0}} \int_{X}|f(x)|^{p_{0}} \int_{0}^{\delta^{-1}|f(x)|} \alpha^{p-1-p_{0}} d \alpha d \mu(x)+ \\
& +p\left(2 A_{1}\right)^{p_{1}} \int_{X}|f(x)|^{p_{1}} \int_{\delta^{-1}|f(x)|}^{\infty} \alpha^{p-1-p_{1}} d \alpha d \mu(x) \\
= & \frac{p\left(2 A_{0}\right)^{p_{0}}}{\left(p-p_{0}\right) \delta^{p-p_{0}}} \int_{X}|f(x)|^{p_{0}}|f(x)|^{p-p_{0}} d \mu(x)+ \\
& \quad+\frac{p\left(2 A_{1}\right)^{p_{1}}}{\left(p_{1}-p\right) \delta^{p-p_{1}}} \int_{X}|f(x)|^{p_{1}}|f(x)|^{p-p_{1}} d \mu(x) \\
= & p\left(\frac{p\left(2 A_{0}\right)^{p_{0}}}{\left(p-p_{0}\right) \delta^{p-p_{0}}}+\frac{p\left(2 A_{1}\right)^{p_{1}}}{\left(p_{1}-p\right) \delta^{p-p_{1}}}\right)\|f\|_{p}^{p .}
\end{aligned}
$$

Now, pick δ such that

$$
\frac{p\left(2 A_{0}\right)^{p_{0}}}{\left(p-p_{0}\right) \delta^{p-p_{0}}}=\frac{p\left(2 A_{1}\right)^{p_{1}}}{\left(p_{1}-p\right) \delta^{p-p_{1}}}
$$

The case $p_{1}=\infty$ is left to the interested reader.

4.2 Riesz-Thorin

Lemma 4.3 (Hadamard's three lines lemma). Let F be analytic in the open strip, $S=\{z \in \mathbb{C}: 0<R e z<1\}$, continuous and bounded on its closure, \bar{S}, such that $|F(z)| \leq B_{0}<\infty$ when Re $z=0$, and $|F(z)| \leq B_{1}<\infty$ when $\operatorname{Re} z=1$. Then for any $\theta \in[0,1]$, for any z with Re $z=\theta$,

$$
|F(z)| \leq B_{0}^{1-\theta} B_{1}^{\theta} .
$$

Proof. Define analytic functions

$$
G(z)=F(z)\left(B_{0}^{1-z} B_{1}^{z}\right)^{-1} \quad \text { and } \quad G_{n}(z)=G(z) e^{\left(z^{2}-1\right) / n} .
$$

Since F is bounded on the closed unit strip, and $B_{0}^{1-z} B_{1}^{z}$ is bounded from below, we know that G is bounded by some constant $M<\infty$ on the closed strip. Also, $G \leq 1$ the boundary. Now,

$$
\left|G_{n}(x+i y)\right| \leq M e^{-y^{2} / n} e^{x^{2}-1 / n} \leq M e^{-y^{2} / n}
$$

so we know that G_{n} converges to zero uniformly in the closed strip as y approaches $\pm \infty$. Now, pick some y_{0} such that for all $|y| \geq\left|y_{0}\right|$, we can bound $\left|G_{n}\right| \leq 1$, uniformly in x in the closed strip. By the maximum modulus principle, we get that $\left|G_{n}\right| \leq 1$ in the rectangle $[0,1] \times\left[-\left|y_{0}\right|,\left|y_{0}\right|\right]$. So, we get that $\left|G_{n}\right| \leq 1$ everywhere in the closed strip. Now, if we let $n \rightarrow \infty$, we get $|G| \leq 1$ also in the closed strip.

Theorem 4.4 (Riesz-Thorin). Let (X, μ) and (Y, ν) be two measure spaces, and let $0<p_{0}, p_{1}, q_{0}, q_{1} \leq \infty$. Let T be a linear operator mapping simple functions on X to measurable functions on Y. Suppose that there exist constants $A_{0}, A_{1}>0$ such that

$$
\begin{gathered}
\|T(f)\|_{q_{0}} \leq M_{0}\|f\|_{p_{0}}, \text { and } \\
\|T(f)\|_{p_{1}} \leq M_{1}\|f\|_{p_{1}}, \text { for every simple } f \in X .
\end{gathered}
$$

Then for all $\theta \in(0,1)$, we have

$$
\|T(f)\|_{q} \leq M_{0}^{1-\theta} M_{1}^{\theta}\|f\|_{p}
$$

for all simple functions F on X, where

$$
\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}, \text { and } \frac{1}{q}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}} .
$$

By density, T has a unique extension as a bounded operator from $L^{p}(X, \mu)$ to $L^{q}(Y, \nu)$ for all suitable p and q.

Proof. Define f to be a simple function on X,

$$
f=\sum_{k=1}^{m} a_{k} e^{i \alpha_{k}} \chi_{A_{k}},
$$

where $a_{k}>0, \alpha_{k} \in \mathbb{R}$, and A_{k} are disjoint subsets of X of finite measure. Now, we'd like to get a handle on $\|T(f)\|_{L^{q}(Y)}$.

$$
\|T(f)\|_{L^{q}(Y)}=\sup \left|\int_{Y} T(f)(x) g(x) d \nu(x)\right|
$$

where the supremum is taken over simple functions g on Y such that

$$
\|g\|_{L_{q^{\prime}}(Y)} \leq 1
$$

To continue, we can write g as

$$
g=\sum_{j=1}^{n} b_{j} e^{i \beta_{j}} \chi_{B_{j}},
$$

where $b_{j}>0, \beta_{j} \in \mathbb{R}$, and B_{k} are disjoint subsets of Y of finite measure. Now, we define two functions on $\bar{S}=\{z \in \mathbb{C}: 0 \leq z \leq 1\}$,

$$
P(z)=\frac{p}{p_{0}}(1-z)+\frac{p}{p_{1}} z \quad \text { and } \quad Q(z)=\frac{q^{\prime}}{q_{0}^{\prime}}(1-z)+\frac{q^{\prime}}{q_{1}^{\prime}} z .
$$

Now, we define a two functions like f and g above,

$$
f_{z}=\sum_{k=1}^{m} a_{k}^{P(z)} e^{i \alpha_{k}} \chi_{A_{k}} \quad \text { and } \quad g_{z}=\sum_{j=1}^{n} b_{j}^{Q(z)} e^{i \beta_{j}} \chi_{B_{j}} .
$$

Finally, we can define a function F on \bar{S},

$$
F(z)=\int_{Y} T\left(f_{z}\right)(x) g_{z}(x) d \nu(x)
$$

Now, by linearity, we get that

$$
F(z)=\sum_{k=1}^{m} \sum_{j=1}^{n} a_{k}^{P(z)} b_{j}^{Q(z)} e^{i\left(\alpha_{k}+\beta_{j}\right)} \int_{Y} T\left(\chi_{A_{k}}\right)(x) \chi_{B_{j}}(x) d \nu(x)
$$

From this, we get that F is analytic in z because the coefficients, $a_{k}, b_{j}>0$.
Now, consider some z whose real part is zero. Recall that

$$
\left|a_{k}^{P(z)}\right|=a_{k}^{\frac{p}{p_{0}}} .
$$

Now, as the A_{k} are disjoint, we get that

$$
\left\|f_{z}\right\|_{p_{0}}^{p_{0}}=\|f\|_{p}^{p}
$$

Similarly, we get that

$$
\left\|g_{z}\right\|_{q_{0}^{\prime}}^{\|_{0}^{\prime}}=\|g\|_{q^{\prime}}^{q^{\prime}} .
$$

Now, we apply Hölder to get

$$
|F(z)|=\left|\int_{Y} T\left(f_{z}\right)(x) g_{z}(x) d \nu(x)\right| \leq\left\|T\left(f_{z}\right)\right\|_{q_{0}}\left\|g_{z}\right\|_{q_{0}^{\prime}}
$$

which, by assumption is bounded above by

$$
\leq M_{0}\left\|f_{z}\right\|_{p_{0}}\left\|g_{z}\right\|_{q_{0}^{\prime}}=M_{0}\left\|f_{z}\right\|_{p}^{\frac{p}{p_{0}}}\left\|g_{z}\right\|_{q^{\prime}}^{\frac{q^{\prime}}{q_{0}}} .
$$

If we now consider a z whose real part is 1 , we will get

$$
\left\|f_{z}\right\|_{p_{1}}^{p_{1}}=\|f\|_{p}^{p}, \quad \text { and } \quad\left\|g_{z}\right\|_{q_{1}^{\prime}}^{q_{1}^{\prime}}=\|g\|_{q^{\prime}}^{q^{\prime}},
$$

by the definition of f_{z} and the fact that the magnitude of a purely imaginary exponential is 1 . This will yield

$$
|F(z)| \leq M_{1}\left\|f_{z}\right\|_{p}^{\frac{p}{p_{1}}}\left\|g_{z}\right\|_{q^{\prime}}^{\frac{q^{\prime}}{q_{1}^{\prime}}}
$$

Now, F is analytic in the open strip, S, and continuous on its closure. We also know that F is bounded on the closure of the strip. So, by Hadamard's three lines lemma, we get that, when the real part of z is θ,

$$
|F(z)| \leq\left(M_{0}\left\|f_{z}\right\|_{p}^{\frac{p}{p_{0}}}\left\|g_{z}\right\|_{q^{\prime}}^{\frac{q^{\prime}}{q_{0}^{\prime}}}\right)^{1-\theta}\left(M_{1}\left\|f_{z}\right\|_{p}^{\frac{p}{p_{1}}}\left\|g_{z}\right\|_{q^{\prime}}^{\frac{q^{\prime}}{q_{1}^{\prime}}}\right)^{\theta}=M_{0}^{1-\theta} M_{1}^{\theta}\|f\|_{p}\|g\|_{q^{\prime}}
$$

We can see that $P(\theta)=Q(\theta)=1$, so we get that

$$
F(\theta)=\int_{Y} T(f) g d \nu
$$

We finish by taking the supremum over all simple functions on Y with $L^{q^{\prime}}$ norm ≤ 1, and using density to extend T.

