
4 Interpolation

Many of these arguments follow Loukas Grafakos’ wonderful exposition in
his Fourier Analysis books.

4.1 Marcinkiewicz

Definition 4.1. Given measure spaces (X,µ) and (Y, ν), an operator, T :
X → Y , is said to be linear if for all f, g ∈ X,λ ∈ C,

T (f + g) = T (f) + T (g) and T (λf) = λT (f).

The operator is called quasi-linear if for some K > 0, we have that for all
f, g ∈ X,λ ∈ C,

|T (f + g)| ≤ K(|T (f)|+ |T (g)|) and |T (λf)| = |λ||T (f)|.

The operator is called sublinear if it is quasi-linear with K = 1.

If ‖T (f)‖q . ‖f‖p, we say that T maps Lp to Lq.

Exercise 4.1. Show that for x, y > 0, xy ≤ n implies that min{x, y} ≤ n
1
2 .

Theorem 4.2 (Marcinkiewicz). Let (X,µ) and (Y, ν) be two measure spaces,
and let 0 < p0 < p1 ≤ ∞. Let a sublinear operator T take functions from
Lp0(X) +Lp1(X) to measurable functions on Y. Suppose that there exist con-
stants A0, A1 > 0 such that

‖T (f)‖p0,∞ ≤ A0‖f‖p0 , for every f ∈ Lp0 , and

‖T (f)‖p1,∞ ≤ A1‖f‖p1 , for every f ∈ Lp1 .
Then for all p ∈ (p0, p1), we have an explicit constant A for which

‖T (f)‖p ≤ A‖f‖p.

Proof. Suppose that p1 < ∞. Fix f ∈ Lp(X) and α > 0. Now, we will
decompose f into two parts, f = fα0 + fα1 , where fαj ∈ Lpj . This is done
by letting fα0 coincide with f wherever |f | > δα, (for some δ > 0, to be
chosen later) and setting it zero everywhere else. The same is done for fα1 ,
but taking the rest of the support of f . Now, we notice that the big part
of f , which lives in fα0 , will be in Lp0 , and the little part, fα1 will be in Lp1 .
Don’t believe me?

‖fα0 ‖p0p0 =

∫
{|f |>δα}

|f |p|f |p0−pdµ(x) ≤ (δα)p0−p‖f‖pp.
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Exercise 4.2. Do this for fα1 .

Now, since T is sublinear, we have that |T (f)| ≤ |T (fα0 )| + |T (fα1 )|. So
we have that

{x : |T (f)(x)| > α} ⊂
{
x : |T (fα0 )(x)| > α

2

}
∪
{
x : |T (fα0 )(x)| > α

2

}
,

which implies the estimate of the distribution functions

dT (f)(α) ≤ dT (fα0 )

(α
2

)
+ dT (fα1 )

(α
2

)
. (4.1)

Now, take a moment to see that

dT (fα0 )

(α
2

)
=

(
α/2

α/2

)p0
dT (fα0 )

(α
2

)
≤ (α/2)−p0 sup

α/2>0

{
(α/2)p0dT (fα0 (α/2)

}
= (α/2)−p0‖T (fα0 )‖p0,∞ ≤ (α/2)−p0‖T (f)‖p0,∞.

Now we combine this (and a similar calculation for fα1 ) with the assumption
that ‖T (f)‖p0,∞ ≤ A0‖f‖p0 and (4.1) to get

dT (f)(α) ≤ Ap00
(α/2)p0

∫
{|f |>δα}

|f(x)|p0dµ(x) +
Ap11

(α/2)p1

∫
{|f |≤δα}

|f(x)|p1dµ(x).

Now, using Proposition 3.9 from before, we get

‖T (f)‖pp ≤ p(2A0)
p0

∫ ∞
0

αp−1α−p0
∫
{|f |>δα}

|f(x)|p0dµ(x)dα+

+ p(2A1)
p1

∫ ∞
0

αp−1α−p1
∫
{|f |≤δα}

|f(x)|p1dµ(x)dα

≤ p(2A0)
p0

∫
X

|f(x)|p0
∫ δ−1|f(x)|

0

αp−1−p0dαdµ(x)+

+ p(2A1)
p1

∫
X

|f(x)|p1
∫ ∞
δ−1|f(x)|

αp−1−p1dαdµ(x)

=
p(2A0)

p0

(p− p0)δp−p0

∫
X

|f(x)|p0|f(x)|p−p0dµ(x)+

+
p(2A1)

p1

(p1 − p)δp−p1

∫
X

|f(x)|p1|f(x)|p−p1dµ(x)

= p

(
p(2A0)

p0

(p− p0)δp−p0
+

p(2A1)
p1

(p1 − p)δp−p1

)
‖f‖pp.
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Now, pick δ such that

p(2A0)
p0

(p− p0)δp−p0
=

p(2A1)
p1

(p1 − p)δp−p1
.

The case p1 =∞ is left to the interested reader.

4.2 Riesz-Thorin

Lemma 4.3 (Hadamard’s three lines lemma). Let F be analytic in the open
strip, S = {z ∈ C : 0 < Re z < 1}, continuous and bounded on its closure,
S, such that |F (z)| ≤ B0 < ∞ when Re z = 0, and |F (z)| ≤ B1 < ∞ when
Re z = 1. Then for any θ ∈ [0, 1], for any z with Re z = θ,

|F (z)| ≤ B1−θ
0 Bθ

1 .

Proof. Define analytic functions

G(z) = F (z)(B1−z
0 Bz

1)−1 and Gn(z) = G(z)e(z
2−1)/n.

Since F is bounded on the closed unit strip, and B1−z
0 Bz

1 is bounded from
below, we know that G is bounded by some constant M <∞ on the closed
strip. Also, G ≤ 1 the boundary. Now,

|Gn(x+ iy)| ≤Me−y
2/nex

2−1/n ≤Me−y
2/n,

so we know that Gn converges to zero uniformly in the closed strip as y
approaches ±∞. Now, pick some y0 such that for all |y| ≥ |y0|, we can
bound |Gn| ≤ 1, uniformly in x in the closed strip. By the maximum modulus
principle, we get that |Gn| ≤ 1 in the rectangle [0, 1] × [−|y0|, |y0|]. So, we
get that |Gn| ≤ 1 everywhere in the closed strip. Now, if we let n→∞, we
get |G| ≤ 1 also in the closed strip.

Theorem 4.4 (Riesz-Thorin). Let (X,µ) and (Y, ν) be two measure spaces,
and let 0 < p0, p1, q0, q1 ≤ ∞. Let T be a linear operator mapping sim-
ple functions on X to measurable functions on Y . Suppose that there exist
constants A0, A1 > 0 such that

‖T (f)‖q0 ≤M0‖f‖p0 , and

‖T (f)‖p1 ≤M1‖f‖p1 , for every simple f ∈ X.

Then for all θ ∈ (0, 1), we have

‖T (f)‖q ≤M1−θ
0 M θ

1‖f‖p
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for all simple functions F on X, where

1

p
=

1− θ
p0

+
θ

p1
, and

1

q
=

1− θ
q0

+
θ

q1
.

By density, T has a unique extension as a bounded operator from Lp(X,µ)
to Lq(Y, ν) for all suitable p and q.

Proof. Define f to be a simple function on X,

f =
m∑
k=1

ake
iαkχAk ,

where ak > 0, αk ∈ R, and Ak are disjoint subsets of X of finite measure.
Now, we’d like to get a handle on ‖T (f)‖Lq(Y ).

‖T (f)‖Lq(Y ) = sup

∣∣∣∣∫
Y

T (f)(x)g(x)dν(x)

∣∣∣∣ ,
where the supremum is taken over simple functions g on Y such that

‖g‖Lq′ (Y ) ≤ 1.

To continue, we can write g as

g =
n∑
j=1

bje
iβjχBj ,

where bj > 0, βj ∈ R, and Bk are disjoint subsets of Y of finite measure.
Now, we define two functions on S = {z ∈ C : 0 ≤ z ≤ 1},

P (z) =
p

p0
(1− z) +

p

p1
z and Q(z) =

q′

q′0
(1− z) +

q′

q′1
z.

Now, we define a two functions like f and g above,

fz =
m∑
k=1

a
P (z)
k eiαkχAk and gz =

n∑
j=1

b
Q(z)
j eiβjχBj .

Finally, we can define a function F on S,

F (z) =

∫
Y

T (fz)(x)gz(x)dν(x).
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Now, by linearity, we get that

F (z) =
m∑
k=1

n∑
j=1

a
P (z)
k b

Q(z)
j ei(αk+βj)

∫
Y

T (χAk)(x)χBj(x)dν(x).

From this, we get that F is analytic in z because the coefficients, ak, bj > 0.
Now, consider some z whose real part is zero. Recall that∣∣∣aP (z)

k

∣∣∣ = a
p
p0
k .

Now, as the Ak are disjoint, we get that

‖fz‖p0p0 = ‖f‖pp.
Similarly, we get that

‖gz‖
q′0
q′0

= ‖g‖q
′

q′ .

Now, we apply Hölder to get

|F (z)| = |
∫
Y

T (fz)(x)gz(x)dν(x)| ≤ ‖T (fz)‖q0‖gz‖q′0 ,

which, by assumption is bounded above by

≤M0‖fz‖p0‖gz‖q′0 = M0‖fz‖
p
p0
p ‖gz‖

q′
q′0
q′ .

If we now consider a z whose real part is 1, we will get

‖fz‖p1p1 = ‖f‖pp, and ‖gz‖
q′1
q′1

= ‖g‖q
′

q′ ,

by the definition of fz and the fact that the magnitude of a purely imaginary
exponential is 1. This will yield

|F (z)| ≤M1‖fz‖
p
p1
p ‖gz‖

q′
q′1
q′ .

Now, F is analytic in the open strip, S, and continuous on its closure. We
also know that F is bounded on the closure of the strip. So, by Hadamard’s
three lines lemma, we get that, when the real part of z is θ,

|F (z)| ≤

(
M0‖fz‖

p
p0
p ‖gz‖

q′
q′0
q′

)1−θ(
M1‖fz‖

p
p1
p ‖gz‖

q′
q′1
q′

)θ

= M1−θ
0 M θ

1‖f‖p‖g‖q′ .

We can see that P (θ) = Q(θ) = 1, so we get that

F (θ) =

∫
Y

T (f)gdν.

We finish by taking the supremum over all simple functions on Y with Lq
′

norm ≤ 1, and using density to extend T .
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