
2 Measure Theory

2.1 Measures

A lot of this exposition is motivated by Folland’s wonderful text, “Real Anal-
ysis: Modern Techniques and Their Applications.” Perhaps the most ubiq-
uitous measure in our lives is the so-called counting measure, which, roughly
speaking, gives every distinct object a value of 1. If I have ten distinct
objects, then the measure of the union of these objects is precisely 10.

Now, this wonderful, but it is a very coarse measure. Suppose I want to
take size or volume into account. For simplicity’s sake, restrict yourself to
subsets of R. Probably the most natural definition of size in R is length. So,
we define the measure of a subset E ⊂ R to be the length of the subset.

One very obvious problem with this is made clear in the following ex-
ample: Let A = [−100,−99] ∪ [99, 100], and let B = [−10, 10]. Which set
should have a greater measure? Intuition will probably lead you to say that
B should have a greater measure. There really isn’t much of a difficulty here,
right? Well, which of the following sets should have a greater measure, [0, 1]
or (0, 1]? Things can get pretty complicated . . .

Given a space, such as Rd, we would love for there to be a type of function,
µ : P(Rd) → R, which would give us the “sizes” of sets in some meaningful
way. That is, it would be grand if µ([0, 1]d) was 1, µ was unaffected by
rigid motions, and that disjoint union and addition played nicely together.
Unfortunately, no such µ can exist.

Exercise 2.1. Find an example of a non-measurable subset of R. (Hint:
Consider the equivalence relation ∼, where x ∼ y iff x − y ∈ Q. Use the
Axiom of Choice to show the existence of the set N , a set consisting of one
member from each equivalence class in [0, 1). Now, consider all of the shifts,
N + r (mod 1), where r ranges through the rationals between zero and 1.)

Definition 2.1. A measure on is a non-negative function, on a subsetM⊂
P(X), µ :M→ [0,∞], such that

• i) µ(∅) = 0,

• ii) For a sequence of sets {Ej}, µ(
⋃

j Uj) ≤
∑

j µ(Ej).

Since such nasty sets are out there, we probably don’t want to let M be
all of P(X) just yet.

Definition 2.2. Suppose X is a set, and M⊂ P(X) which contains ∅ and
X, and is closed under complements and countable unions. Such an M is
called a σ-algebra.
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Now, suppose we restrict the domain of our measure to some suitable σ-
algebra,M⊂ P(X). For this measure we will get the desired good behavior
from rigid motions. In fact, if the Ej from ii) in Definition 2.1 are disjoint,
we will get equality. There is more good news– we can, for most of what we
want to do, extend a measure as in the definition above to include otherwise
troublesome sets by defining the measure of such a set, N /∈ M, to be
completed

µ(N) = inf {µ(M) : N ⊂M ∈M}. (2.1)

Definition 2.3. One particularly useful σ-algebra called the Borel sets of R.
This is the smallest σ-algebra containing the open intervals. The Borel sets
of Rd can be defined similarly.

Definition 2.4. The Lebesgue measure is the measure on the Borel sets of
R, which has been completed as in (2.1), which assigns a Borel set E the sum
of the lengths of the intervals whose union is E. Here we use the convention
that a singleton is an interval of length zero, and hence Lebesgue measure
zero.

Exercise 2.2. Let m denote the Lebesgue measure, and let µc denote the
counting measure. Compute the following:

• a) m((a, b)), a < b,

• b) m
(⋃∞

j=0Ej

)
, Ej =

[
j, j + 1

j!

)
,

• c) µc{5, 6, π, a box of twelve apples, −1}.

Definition 2.5. We will call a subset A ⊂ X µ-measurable for a measure µ
if, for every E ⊂ X,

µ(E) = µ(E ∩ A) + µ(E \ A).

Definition 2.6. We will often say that some condition holds almost every-
where. This means that within whatever space we are working, this condition
holds everywhere except for possibly a set of measure zero. This is often ab-
breviated as a.e. in text.

2.2 Integration

While we have just scratched the surface of measure theory, hopefully this
will suffice for what follows. One of the main tools for which measure theory
is used is that of integration. Often times, we don’t need anything fancier
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than Riemann integration. However, sometimes, we need a little bit more
power. For example, suppose that we wanted to integrate the constantly 1
function over all of the rational numbers between 0 and 1. What should the
integral be? Well, by the hitherto tried-and-true Riemann sums, we will get
a lower sum of 0, and an upper sum of 1. This is a problem, but Lebesgue
integration will give us an answer. Before we can get to that, here are some
useful concepts for what follows.

Definition 2.7.

lim inf xn = lim
n→∞

(
inf
m≥n

xm

)
, and lim sup xn = lim

n→∞

(
sup
m≥n

xm

)
.

Definition 2.8. Given a set X, and a subset E ⊂ X, the characteristic or
indicator function of the set E is defined to be χE : X → {0, 1},

χe(x) =

{
0, x /∈ E
1, x ∈ E

Definition 2.9. Given a set X, a simple function is a function f : X → R
of the form

f(x) =
N∑
j=1

ajχEj
(x),

where the Ej are subsets of X and the aj are real numbers.

Now, we can compute the Lebesgue integral of a simple function over a
set E as follows: ∫

E

f =
N∑
j=1

ajm(E ∩ Ej).

This is great, but what about functions which are NOT simple? Well,
it just so happens that we can still do something like this if we have a nice
enough function.

Definition 2.10. A function f : X → R is measurable if the pre-image of
every element in its image is a measurable set. In other words, for every
y ∈ f(X), we have that f−1((−∞, y)) is a measurable set. Note, this is not
the standard definition, but it will get the idea across.

Theorem 2.11. If f : X → C is measurable, then there is a sequence, {φn},
of simple functions such that 0 ≤ |φ1| ≤ |φ2| ≤ · · · ≤ |f |, φn → f pointwise,
and φn → f uniformly on any set on which f is bounded.
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Proof. First, write f = g + ih, where i =
√
−1. Now, without loss of

generality, we can assume that f is real and non-negative. Now, let n =
0, 1, 2, . . . and 0 ≤ k ≤ 22n − 1. Define two families of sets,

Ek
n = f−1

((
k2−n, (k + 1)2−n

])
, and Fn = f−1 ((2n,∞]) .

Now, set

φn =
n2n−1∑
k=0

k2−nχEk
n

+ 2nχFn .

The rest follows pretty quickly.

Theorem 2.12. [Monotone Convergence Theorem] If {fn} is a sequence of
non-negative measurable functions such that fj ≤ fj+1 for all j, and fn → f ,
then ∫

f = lim
n→∞

∫
fn.

Proof. This is merely a sketch. First, note that {
∫
fn} is an increasing se-

quence of numbers, so its limit exists, even though it may be infinite. Now,
we know that

∫
fn ≤

∫
f for every n, so this must hold in the limit as well.

Thus, we have that LHS ≤ RHS.
To see the other inequality, let φ be a simple function between 0 and

f , inclusively, and consider an α ∈ (0, 1). Now, define En to be the subset
where fn(x) ≥ αφ(x). We can see that

∫
fn ≥

∫
En
fn ≥ α

∫
En
φ. If we check

carefully (i.e. skipping some details here), we will see that
∫
En
φ →

∫
φ, so

limn→∞
∫
fn ≥ α

∫
φ for every α < 1. This means we can get it for α = 1 as

well, and we have RHS ≤ LHS.

Lemma 2.13 (Fatou’s Lemma). Suppose {fn} is a sequence of measurable,
non-negative functions, then∫

(lim inf fn) ≤ lim inf

∫
fn.

Proof. Notice first that when j ≤ k,

inf
n≥k

fn ≤ fj∫
inf
n≥k

fn ≤
∫
fj ≤ inf

j≥k

∫
fj.

Now, by the monotone convergence theorem, I get∫
(lim inf fn) = lim

k→∞

∫
inf
n≥k

fn ≤
∫

lim inf

∫
fn.
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Definition 2.14. We say that a function, f , is integrable iff
∫
|f | ≤ ∞.

Theorem 2.15 (Dominated Convergence Theorem). Let {fn} be a sequence
of integrable functions with fn → f a.e., and suppose that there exists a non-
negative, integrable function g such that fn ≤ g a. e., then f is integrable
and ∫

f = lim
n→∞

∫
fn.

Proof. We know that f will be measurable (read the details elsewhere. . . ),
and since |f | ≤ g a.e., we get that f will be integrable. Without loss of
generality, suppose that fn and f are real (why is this okay?) and get that
g + fn ≥ 0 a.e. and g − fn ≥ 0 a.e. Now, we use Fatou . . .∫

g +

∫
f ≤ lim inf

∫
(g + fn) =

∫
g + lim inf

∫
fn, and∫

g −
∫
f ≤ lim sup

∫
(g − fn) =

∫
g − lim sup

∫
fn.

This gives us that lim inf
∫
fn ≥

∫
f ≥ lim sup

∫
fn, so we are done.

Definition 2.16. We say that (X,M, µ) is σ-finite if it can be written as a
countable union of measurable, finite-measure subsets.

Notice that this depends on the associated measure. The real numbers
equipped with the Lebesgue measure is σ-finite, where the real numbers
equipped with the counting measure is not.

Theorem 2.17 (Fubini). Suppose that (X,M, µ) and (Y,N , ν) are σ-finite
measure spaces. If f is a non-negative, integrable function on X × Y , then∫

f d(µ× ν) =

∫ (∫
f(x, y)dν(y)

)
dµ(x) =

∫ (∫
f(x, y)dµ(x)

)
dν(y).

Definition 2.18. Given a set X, two positive measures, µ and ν are said to
be absolutely singular if for every set, E, on which µ is positive, ν is zero,
and vice versa. We write µ ⊥ ν. We say that ν is absolutely continuous with
respect to µ if for every set, E, on which µ is zero, ν is also zero. We write
ν � µ.

Theorem 2.19 (Radon-Nikodym Derivative). If µ and ν are two positive,
σ-finite measures, with ν � µ, then there exists a measurable function f ,
called the Radon-Nikodym Derivative, such that

ν(E) =

∫
E

fdµ.
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