Department of Mathematics
Missouri State University
bray
William O. Bray

Professor of Mathematics
& Department Head

8M Cheek Hall

417-836-5112

EMAIL

 Teaching Activities
Spring  2014 MTH 596/696 Intro to Differential Geometry
Syllabus    Mathematica Files  Projects-Notes
MTH 497 Topics
Class Files
Scholarly Activities

journey
    Textbook: A Journey into Partial Differential Equations published by Jones & Bartlett Learning in early 2011. Click the picture for more information.

Selected Publications
  • Growth & integrability of Fourier transforms on Euclidean space, preprint (2013, submitted).
  • Growth properties of Fourier transforms, Filomat 26:4 (2012) University of Nis, p755-760, coauthor: M.A. Pinsky.
  • Periodic Heat Kernel, published on the Wolfram Research Demonstration Project (2009).
  • Growth properties of Fourier transfroms via moduli of continuity, Jour. Func. Anal. 255 (2008), p2265-2285, coauthor: M.A. Pinsky.
  • Transplantation formulas & Hadamard's method of descent, Proc. Edin. Math. Soc. 50 (2007), p277-292.
  • Eigenfunction expansions on geodesic balls and rank one symmetric spaces of compact type, Annals of Global Geometry and Analysis 18 (2000) p347-369, coauthor: M.A. Pinsky.
  • Inversion of the horocycle transform on real hyperbolic spaces via a wavelet-type transform, Chapter 7 in Analysis of Divergence: Control and Management of Divergent Processes, Birkhauser (1998), editors W.O. Bray and C.V.Stanojevic.
  • Pointwise inversion on rank one symmetric spaces and related topics, Jour. Funct. Anal. 151 (1997) p306-333, coauthor: M.A. Pinsky.
  • Generalized spectral projections on symmetric spaces of non-compact type: Paley-Wiener theorems, Jour. Funct. Anal. 135 (1996) p202-232.
  • Summability of trigonometric series and Calderon reproducing formulas, Publ. Inst. Math. (Beograd) 58 (1995) p21-34.
  • Aspects of harmonic analysis on real hyperbolic spaces, Chapter 5 in Fourier Analysis: Analytic and Geometric Aspects, Marcel Dekker (1994), editors W.O. Bray, P.S. Milojevic, and C.V. Stanojevic.
  • A spectral Paley-Wiener theorem, Monat. Math. 116 (1993) p1-11.


Last Modified: 7/30/2013