Genera of Subgroup Intersection Graphs

Bronson Tunstall, Gwen McKinley, and Joe Dillstrom

Missouri State University

Research Experiences for Undergraduates, Summer 2014
Contents

1 Background
 - Group Theory
 - Graph Theory
 - Genus and Graphs of Interest

2 Techniques and Approaches Used
 - General Strategy
 - A Simple Example
 - More Group Theory Tools

3 The Big Picture
 - Basic Strategy
 - The Lattice Isomorphism Theorem
 - Solvable Groups
 - Nonsolvable Groups
 - The Future
A Recap on Groups

- **What is a Group again?**
 - The **order** of a group G is the number of elements in G, denoted $|G|$.
 - The **order** of an element $g \in G$ is the smallest positive integer n such that $g^n = 1$ in G.

- **Subgroups of G**

- **Proper Subgroups of G**: Subgroups that are not the entire group G.

Bronson Tunstall, Gwen McKinley, and Joe Dillstrom

Genera of Subgroup Intersection Graphs
A Recap on Groups

- What is a Group again?
- The order of a group G is the number of elements in G, denoted $|G|$.
- The order of an element $g \in G$ is the smallest positive integer n such that $g^n = 1$ in G.
- Subgroups of G
- Proper Subgroups of G: Subgroups that are not the entire group G.
A Recap on Groups

- What is a Group again?
- The **order** of a group G is the number of elements in G, denoted $|G|$.
- The **order of an element** $g \in G$ is the smallest positive integer n such that $g^n = 1$ in G.

Subgroups of G

Proper Subgroups of G: Subgroups that are not the entire group G.

Bronson Tunstall, Gwen McKinley, and Joe Dillstrom

Genera of Subgroup Intersection Graphs
A Recap on Groups

- What is a Group again?
- The **order** of a group G is the number of elements in G, denoted $|G|$.
- The **order of an element** $g \in G$ is the smallest positive integer n such that $g^n = 1$ in G.

Subgroups of G

- **Proper Subgroups** of G: Subgroups that are not the entire group G.
A Recap on Groups

- What is a Group again?
- The order of a group G is the number of elements in G, denoted $|G|$.
- The order of an element $g \in G$ is the smallest positive integer n such that $g^n = 1$ in G.
- Subgroups of G
- Proper Subgroups of G: Subgroups that are not the entire group G.
A Recap on Graphs

- **A graph** is a collection of vertices V and a collection of edges E which connect the vertices.
- Typically, vertices are represented as points and edges are represented as lines between those points.
- A **Complete Graph on n vertices** K_n is a graph where every vertex is uniquely connected by an edge.
- K_n has n vertices and $\binom{n}{2}$ edges.
A Recap on Graphs

- **A graph** is a collection of vertices V and a collection of edges E which connect the vertices.

- Typically, vertices are represented as points and edges are represented as lines between those points.

- A Complete Graph on n vertices K_n is a graph where every vertex is uniquely connected by an edge.

- K_n has n vertices and $\binom{n}{2}$ edges.
A Recap on Graphs

- A **graph** is a collection of vertices \(V \) and a collection of edges \(E \) which connect the vertices.

- Typically, vertices are represented as points and edges are represented as lines between those points.

- A **Complete Graph on \(n \) vertices** \(K_n \) is a graph where every vertex is uniquely connected by an edge.

- \(K_n \) has \(n \) vertices and \(\binom{n}{2} \) edges.
A Recap on Graphs

- A **graph** is a collection of vertices V and a collection of edges E which connect the vertices.

- Typically, vertices are represented as points and edges are represented as lines between those points.

- A **Complete Graph on n vertices** K_n is a graph where every vertex is uniquely connected by an edge.

- K_n has n vertices and $\binom{n}{2}$ edges.
The Genus of a Graph

- Orientable Genus
- Nonorientable Genus
The Genus of a Graph

- Orientable Genus
- Nonorientable Genus
Genus Formulas

- For an arbitrary graph Γ:
 \[\gamma(\Gamma) \geq \lceil \frac{E}{6} - \frac{V}{2} + 1 \rceil \]
 \[\tilde{\gamma}(\Gamma) \geq \lceil \frac{E}{3} - V + 2 \rceil \]

- For a complete graph K_n:
 \[\gamma(K_n) = \lceil \frac{(n-3)(n-4)}{12} \rceil \]
 \[\tilde{\gamma}(K_n) = \lceil \frac{(n-3)(n-4)}{6} \rceil \], $n \neq 7$
For an arbitrary graph Γ:
$$\gamma(\Gamma) \geq \lceil \frac{E}{6} - \frac{V}{2} + 1 \rceil$$
$$\tilde{\gamma}(\Gamma) \geq \lceil \frac{E}{3} - V + 2 \rceil$$

For a complete graph K_n:
$$\gamma(K_n) = \lceil \frac{(n-3)(n-4)}{12} \rceil$$
$$\tilde{\gamma}(K_n) = \lceil \frac{(n-3)(n-4)}{6} \rceil, \; n \neq 7$$
The Hasse Diagram of a given group G is the graph whose vertices are the subgroups of G and whose edges are determined by “Immediate Inclusion”.

Given $H_1, H_2 \leq G$, we connect H_1 and H_2 with an edge if $H_1 \leq H_2$ and there does not exist a subgroup H such that $H_1 < H < H_2$.

The Hasse Diagram is just a “stepping stone” to the graph we are interested in.
The Hasse Diagram of a given group G is the graph whose vertices are the subgroups of G and whose edges are determined by “Immediate Inclusion”.

Given $H_1, H_2 \leq G$, we connect H_1 and H_2 with an edge if $H_1 \leq H_2$ and there does not exist a subgroup H such that $H_1 < H < H_2$.

The Hasse Diagram is just a “stepping stone” to the graph we are interested in.
The Hasse Diagram of a given group G is the graph whose vertices are the subgroups of G and whose edges are determined by “Immediate Inclusion”.

Given $H_1, H_2 \leq G$, we connect H_1 and H_2 with an edge if $H_1 \leq H_2$ and there does not exist a subgroup H such that $H_1 < H < H_2$.

The Hasse Diagram is just a “stepping stone” to the graph we are interested in.
The Subgroup Intersection Graph (or Intersection Graph) of G

- Its vertices are the proper subgroups of G, excluding the trivial subgroup $\langle 1 \rangle$.
- Two vertices are connected by an edge iff $H_1 \cap H_2 \neq 1$.
The Subgroup Intersection Graph

- The Subgroup Intersection Graph (or Intersection Graph) of G
- Its vertices are the proper subgroups of G, excluding the trivial subgroup $\langle 1 \rangle$.
- Two vertices are connected by an edge iff $H_1 \cap H_2 \neq 1$
The Subgroup Intersection Graph

- The Subgroup Intersection Graph (or Intersection Graph) of G
- Its vertices are the proper subgroups of G, excluding the trivial subgroup $\langle 1 \rangle$.
- Two vertices are connected by an edge iff $H_1 \cap H_2 \neq 1$
Since the lower bound for the genus of a complete graph is exact, we look for complete graphs in the subgroup intersection graph of a given group.

If we can find one that is larger than genus 1, then we are done!

If the intersection graph is a union of complete subgraphs, we can use the Inclusion-Exclusion principle.

Inclusion-Exclusion Principle: For two sets A and B, $|A \cup B| = |A| + |B| - |A \cap B|$.

If we cannot find a subgraph greater than genus 1 we can also explicitly embed the subgroup intersection graph onto a torus or projective plane.

We have stronger tools which will be seen later.
General Strategy

- Since the lower bound for the genus of a complete graph is exact, we look for complete graphs in the subgroup intersection graph of a given group.
- If we can find one that is larger than genus 1, then we are done!
- If the intersection graph is a union of complete subgraphs, we can use the Inclusion-Exclusion principle.
- Inclusion-Exclusion Principle: For two sets A and B, $|A \cup B| = |A| + |B| - |A \cap B|$.
- If we cannot find a subgraph greater than genus 1 we can also explicitly embed the subgroup intersection graph onto a torus or projective plane.
- We have stronger tools which will be seen later.
Since the lower bound for the genus of a complete graph is exact, we look for complete graphs in the subgroup intersection graph of a given group.

If we can find one that is larger than genus 1, then we are done!

If the intersection graph is a union of complete subgraphs, we can use the Inclusion-Exclusion principle.

Inclusion-Exclusion Principle: For two sets A and B, \[|A \cup B| = |A| + |B| - |A \cap B|. \]

If we cannot find a subgraph greater than genus 1 we can also explicitly embed the subgroup intersection graph onto a torus or projective plane.

We have stronger tools which will be seen later.
Since the lower bound for the genus of a complete graph is exact, we look for complete graphs in the subgroup intersection graph of a given group.

If we can find one that is larger than genus 1, then we are done!

If the intersection graph is a union of complete subgraphs, we can use the Inclusion-Exclusion principle.

Inclusion-Exclusion Principle: For two sets A and B, $|A \cup B| = |A| + |B| - |A \cap B|$.

If we cannot find a subgraph greater than genus 1 we can also explicitly embed the subgroup intersection graph onto a torus or projective plane.

We have stronger tools which will be seen later.
General Strategy

- Since the lower bound for the genus of a complete graph is exact, we look for complete graphs in the subgroup intersection graph of a given group.
- If we can find one that is larger than genus 1, then we are done!
- If the intersection graph is a union of complete subgraphs, we can use the Inclusion-Exclusion principle.
- Inclusion-Exclusion Principle: For two sets A and B, $|A \cup B| = |A| + |B| - |A \cap B|$.
- If we cannot find a subgraph greater than genus 1 we can also explicitly embed the subgroup intersection graph onto a torus or projective plane.
- We have stronger tools which will be seen later.
General Strategy

- Since the lower bound for the genus of a complete graph is exact, we look for complete graphs in the subgroup intersection graph of a given group.
- If we can find one that is larger than genus 1, then we are done!
- If the intersection graph is a union of complete subgraphs, we can use the Inclusion-Exclusion principle.
- Inclusion-Exclusion Principle: For two sets A and B, $|A \cup B| = |A| + |B| - |A \cap B|$.
- If we cannot find a subgraph greater than genus 1 we can also explicitly embed the subgroup intersection graph onto a torus or projective plane.
- We have stronger tools which will be seen later.
An Example

- Recall that a **Cyclic Group** is a group that can be generated by a single element.
- We denote a (finite) Cyclic Group of order n by C_n.
- The **Fundamental Theorem of Cyclic Groups** states that:
 1. Every subgroup of a cyclic group is cyclic, and
 2. There is a one-to-one correspondence between subgroups of C_n and the divisors of n.
Recall that a **Cyclic Group** is a group that can be generated by a single element.

We denote a (finite) Cyclic Group of order \(n \) by \(C_n \).

The **Fundamental Theorem of Cyclic Groups** states that:

1.) Every subgroup of a cyclic group is cyclic, and
2.) There is a one-to-one correspondence between subgroups of \(C_n \) and the divisors of \(n \).
Recall that a **Cyclic Group** is a group that can be generated by a single element.

We denote a (finite) Cyclic Group of order n by C_n.

The **Fundamental Theorem of Cyclic Groups** states that:

1.) Every subgroup of a cyclic group is cyclic, and
2.) There is a one-to-one correspondence between subgroups of C_n and the divisors of n.
An Example: $C_{p^3 q}$
A subgroup H of a group G is called a **normal subgroup** of G if $aH = Ha$ for all a in G.
Quotient Groups

- Given a subgroup H of G, we consider sets of the form $\{aH \mid a \in G\}$. These sets partition G into $|G|/|H|$ disjoint classes.

- These sets form a group $G/H = \{aH \mid a \in G\}$ under the operation $(aH)(bH) = (ab)H$, which is well-defined when H is normal in G.

- The **index** of a subgroup, the number of disjoint sets in the partition, is equal to the order of the G divided by the order of H. Intuitively, the index is the “relative size” of H in G.
Given a subgroup H of G, we consider sets of the form \(\{aH \mid a \in G\} \). These sets partition G into $|G|/|H|$ disjoint classes.

These sets form a group $G/H = \{aH \mid a \in G\}$ under the operation $(aH)(bH) = (ab)H$, which is well-defined when H is normal in G.

The index of a subgroup, the number of disjoint sets in the partition, is equal to the order of the G divided by the order of H. Intuitively, the index is the “relative size” of H in G.
Given a subgroup H of G, we consider sets of the form $\{aH \mid a \in G\}$. These sets partition G into $|G|/|H|$ disjoint classes.

These sets form a group $G/H = \{aH \mid a \in G\}$ under the operation $(aH)(bH) = (ab)H$, which is well-defined when H is normal in G.

The index of a subgroup, the number of disjoint sets in the partition, is equal to the order of the G divided by the order of H. Intuitively, the index is the “relative size” of H in G.
Let G be a group and let p be a prime. If p^k divides $|G|$ and p^{k+1} does not divide $|G|$, then any subgroup of G of order p^k is called a **Sylow p-subgroup** of G.

Sylow’s First Theorem states that there must exist at least one subgroup of order p^k if p^k divides $|G|$.
Let G be a group and let p be a prime. If p^k divides $|G|$ and p^{k+1} does not divide $|G|$, then any subgroup of G of order p^k is called a Sylow p-subgroup of G.

Sylow’s First Theorem states that there must exist at least one subgroup of order p^k if p^k divides $|G|$.
Direct and Semi-Direct Products

- Let G and H be groups. We define the direct product of G and H as $H \times G = \{(h, g) | h \in H, g \in G\}$, with the operation of $H \times G$ defined coordinate-wise.

- A semi-direct product is a generalization of the direct product. We say a group G is a semi-direct product of a normal subgroup H and subgroup K denoted $H \rtimes K$ if H and K intersect trivially and $G = HK$. If H and K are both normal, then G is the direct product of H and K.
Direct and Semi-Direct Products

- Let G and H be groups. We define the direct product of G and H as $H \times G = \{(h, g) \mid h \in H, g \in G\}$, with the operation of $H \times G$ defined coordinate-wise.

- A semi-direct product is a generalization of the direct product. We say a group G is a semi-direct product of a normal subgroup H and subgroup K denoted $H \rtimes K$ if H and K intersect trivially and $G = HK$. If H and K are both normal, then G is the direct product of H and K.
An Example: \textit{Fred}_0

\[(C_p \rtimes C_p) \times C_q = \langle a, b, c \mid a^p = b^p = c^q, cac^{-1} = a^i, cb = bc, ab = ba, \text{ord}_p(i) = q \rangle \text{ and } p > q.\]

- Subgroups of order \(p^2\): \langle a, b \rangle
- Subgroups of order \(pq\): \langle a, c \rangle, \langle bc \rangle, \langle b(ac) \rangle, \ldots, \langle b(a^{p-1}c) \rangle
- Subgroups of order \(p\): \langle b \rangle, \langle a \rangle, \langle ab \rangle, \ldots, \langle a^{p-1}b \rangle
- Subgroups of order \(q\): \langle ac \rangle, \ldots, \langle a^{p-1}c \rangle
An Example: $Fred_0$

1. $(C_p \times C_p) \times C_q = \langle a, b, c \mid a^p = b^p = c^q, cac^{-1} = a^i, cb = bc, ab = ba, \text{ord}_p(i) = q \rangle$ and $p > q$.

2. Subgroups of order p^2: $\langle a, b \rangle$
 - Subgroups of order pq: $\langle a, c \rangle, \langle bc \rangle, \langle b(ac) \rangle, \ldots, \langle b(a^{p-1}c) \rangle$
 - Subgroups of order p: $\langle b \rangle, \langle a \rangle, \langle ab \rangle, \ldots, \langle a^{p-1}b \rangle$
 - Subgroups of order q: $\langle ac \rangle, \ldots, \langle a^{p-1}c \rangle$
An Example: *Fred*$_0$

- \((C_p \rtimes C_p) \times C_q = \langle a, b, c \mid a^p = b^p = c^q, cac^{-1} = a^i, cb = bc, ab = ba, \text{ord}_p(i) = q \rangle\) and \(p > q\).

- Subgroups of order \(p^2\): \(\langle a, b \rangle\)

- Subgroups of order \(pq\): \(\langle a, c \rangle, \langle bc \rangle, \langle b(ac) \rangle, ..., \langle b(a^{p-1}c) \rangle\)

- Subgroups of order \(p\): \(\langle b \rangle, \langle a \rangle, \langle ab \rangle, ..., \langle a^{p-1}b \rangle\)

- Subgroups of order \(q\): \(\langle ac \rangle, ..., \langle a^{p-1}c \rangle\)
An Example: \textit{Fred}_0

\[(C_p \rtimes C_p) \times C_q = \langle a, b, c \mid a^p = b^p = c^q, cac^{-1} = a^i, cb = bc, ab = ba, \text{ord}_p(i) = q \rangle \text{ and } p > q.\]

- Subgroups of order \(p^2\): \(\langle a, b \rangle\)
- Subgroups of order \(pq\): \(\langle a, c \rangle, \langle bc \rangle, \langle b(ac) \rangle, ..., \langle b(a^{p-1}c) \rangle\)
- Subgroups of order \(p\): \(\langle b \rangle, \langle a \rangle, \langle ab \rangle, ..., \langle a^{p-1}b \rangle\)
- Subgroups of order \(q\): \(\langle ac \rangle, ..., \langle a^{p-1}c \rangle\)
An Example: *Fred*$_0$

\[(C_p \rtimes C_p) \times C_q = \langle a, b, c \mid a^p = b^p = c^q, cac^{-1} = a^i, cb = bc, ab = ba, \text{ord}_p(i) = q \rangle \text{ and } p > q.\]

- Subgroups of order p^2: $\langle a, b \rangle$
- Subgroups of order pq: $\langle a, c \rangle, \langle bc \rangle, \langle b(ac) \rangle, \ldots, \langle b(a^{p-1}c) \rangle$
- Subgroups of order p: $\langle b \rangle, \langle a \rangle, \langle ab \rangle, \ldots, \langle a^{p-1}b \rangle$
- Subgroups of order q: $\langle ac \rangle, \ldots, \langle a^{p-1}c \rangle$
Basic Strategy

- We look at groups whose orders have more and more prime factors until, hopefully, they all have genus greater than 1.
The Three Essential Techniques

If we are trying to show that the genus of the intersection graph of a group G is larger than 1, we can:
1.) Find a subgroup of G whose intersection graph has genus greater than 1.
2.) Find a quotient group G/N with genus greater than 1.
3.) When all else fails, actually find the subgroups of G, and draw out all or part of the Hasse diagram!
Our Favorite Tool

- **The Lattice Isomorphism Theorem**: If N is a normal subgroup of a group G, then there exists a bijection from the set of all subgroups H of G such that H contains N, onto the set of all subgroups of the quotient group G/N. The structure of the subgroups of G/N is exactly the same as the structure of the subgroups of G containing N, with N collapsed to the identity element.
So what does this mean? It means that the intersection graph of G/N will look exactly the same as the part of the graph of G that’s above the vertex labeled N.

Bronson Tunstall, Gwen McKinley, and Joe Dillstrom
Example

- \(C_p^3 \times C_p / N \cong C_p^2 \times C_p\) for \(N \cong C_p\), i.e. \(C_p^3 \times C_p\) has \(C_p^2 \times C_p\) as a quotient group.
A Nice Consequence of This Theorem

- Notice that if G/N has n proper subgroups, then the Lattice Isomorphism Theorem gives us a K_n subgraph in the intersection graph of G.

- In particular, if G/N has 8 or more proper subgroups, then there will be at least a K_8 in the intersection graph of G, making its genus greater than 1.
A Nice Consequence of This Theorem

- Notice that if G/N has n proper subgroups, then the Lattice Isomorphism Theorem gives us a K_n subgraph in the intersection graph of G.

- In particular, if G/N has 8 or more proper subgroups, then there will be at least a K_8 in the intersection graph of G, making its genus greater than 1.
We start by dividing finite groups into two categories: **solvable** and **nonsolvable**.
A group G is said to be **solvable** if we can write
\[\langle 1 \rangle = H_0 \triangleleft H_1 \triangleleft H_2 \triangleleft \cdots \triangleleft H_{n-1} \triangleleft H_n = G \]
where the order $|H_{i+1}/H_i|$ is prime for all i.

A group G is said to be **nonsolvable** if it is not solvable.
A group G is said to be **solvable** if we can write
$\langle 1 \rangle = H_0 \triangleleft H_1 \triangleleft H_2 \triangleleft \cdots \triangleleft H_{n-1} \triangleleft H_n = G$ where the order $|H_{i+1}/H_i|$ is prime for all i.

A group G is said to be **nonsolvable** if it is not solvable.
Fun Facts About Solvable Groups!

- The chain of normal subgroups tells us that the order of G/H_{n-1} is prime. So the order of H_{n-1} has one prime factor less than the order of G.
- This gives us a way to induct on the order of G.

Fun Facts About Solvable Groups!

- The chain of normal subgroups tells us that the order of G/H_{n-1} is prime. So the order of H_{n-1} has one prime factor less than the order of G.
- This gives us a way to induct on the order of G.
Strategy For Solvable Groups

- For example if $|G| = p^4 q^2 r$, then G has a subgroup of order $p^3 q^2 r$, $p^4 qr$, or $p^4 q^2$.

- If we have shown that all such groups have genus greater than 1, then G is automatically eliminated.
For example if $|G| = p^4 q^2 r$, then G has a subgroup of order $p^3 q^2 r$, $p^4 qr$, or $p^4 q^2$. If we have shown that all such groups have genus greater than 1, then G is automatically eliminated.
Fun Facts About Solvable Groups!

- Every finite solvable group has a normal subgroup \(N \) of the form \(C_p \times C_p \times \cdots \times C_p \).
- The “minimal” normal subgroups of a solvable group must be elementary abelian.
Fun Facts About Solvable Groups!

- Every finite solvable group has a normal subgroup N of the form $C_p \times C_p \times \cdots \times C_p$.
- The “minimal” normal subgroups of a solvable group must be elementary abelian.
We can use this fact to find large quotient groups of a given group G.

For example, if $|G| = p^2 q^2 r$, then $|N| = p, p^2, q, q^2, r$ or r^2.

So $|G/N| = |G|/|N| = p^2 q^2, pq^2 r, q^2 r, p^2 qr, or p^2 r$.

Very few of these groups have fewer than 7 proper subgroups, so we have narrowed down the possibilities substantially.
Strategy For Solvable Groups

- We can use this fact to find large quotient groups of a given group G.
- For example, if $|G| = p^2 q^2 r$, then $|N| = p, p^2, q, q^2, r$ or r^2.
- So $|G/N| = |G|/|N| = p^2 q^2, pq^2 r, q^2 r, p^2 qr$, or $p^2 r$.
- Very few of these groups have fewer than 7 proper subgroups, so we have narrowed down the possibilities substantially.
We can use this fact to find large quotient groups of a given group G.

For example, if $|G| = p^2 q^2 r$, then $|N| = p, p^2, q, q^2, r$ or r^2.

So $|G/N| = |G|/|N| = p^2 q^2, pq^2 r, q^2 r, p^2 qr, \text{ or } p^2 r$.

Very few of these groups have fewer than 7 proper subgroups, so we have narrowed down the possibilities substantially.
Strategy For Solvable Groups

- We can use this fact to find large quotient groups of a given group G.
- For example, if $|G| = p^2 q^2 r$, then $|N| = p, p^2, q, q^2, r$ or r^2.
- So $|G/N| = |G|/|N| = p^2 q^2, pq^2 r, q^2 r, p^2 qr$, or $p^2 r$.
- Very few of these groups have fewer than 7 proper subgroups, so we have narrowed down the possibilities substantially.
Table of Subgroups

<table>
<thead>
<tr>
<th>Number of Proper Subgroups</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C_p</td>
</tr>
<tr>
<td>2</td>
<td>C_{p^2}</td>
</tr>
<tr>
<td>3</td>
<td>C_{pq}, C_{p^3}</td>
</tr>
<tr>
<td>4</td>
<td>$C_2 \times C_2, C_{p^4}$</td>
</tr>
<tr>
<td>5</td>
<td>$S_3, Q_8, C_3 \times C_3, C_{p^2q}, C_p^5$</td>
</tr>
<tr>
<td>6</td>
<td>C_{p^6}</td>
</tr>
<tr>
<td>7</td>
<td>$C_4 \times C_2, D_{10}, C_3 \times C_4, C_5 \times C_5, C_{pqr}, C_{p^3q}, C_{p^7}$</td>
</tr>
</tbody>
</table>
Fun Facts About Solvable Groups!

- And the very best fun fact: Any solvable group whose order has more than 3 distinct prime factors is automatically eliminated; its intersection graph will always have genus greater than 1.
Proof

- Let G be a solvable group of order $p^\alpha q^\beta r^\delta s^\gamma \cdots$. The Sylow Theorems guarantee that G has subgroups P, Q, R, S, of orders $p^\alpha, q^\beta, r^\gamma, s^\delta$, respectively.

- Since G is solvable, these form a Sylow Basis; the product of any set of these subgroups is itself a subgroup. For example, PQ and PQS are subgroups of G.

Bronson Tunstall, Gwen McKinley, and Joe Dillstrom

Genera of Subgroup Intersection Graphs
Proof

- Let G be a solvable group of order $p^\alpha q^\beta r^\delta s^\gamma \cdots$. The Sylow Theorems guarantee that G has subgroups P, Q, R, S, of orders $p^\alpha, q^\beta, r^\gamma, s^\delta$, respectively.

- Since G is solvable, these form a Sylow Basis; the product of any set of these subgroups is itself a subgroup. For example, PQ and PQS are subgroups of G.
Proof

- This gives us the following portion of the Hasse diagram of G:
Proof

- We see that Q is contained in six other proper subgroups:
Proof

- As is S:
Proof

- This will produce two copies of \(K_7 \) meeting at three vertices in the intersection graph of \(G \). We write \(K_7 \vee K_3 K_7 \subseteq \Gamma(G) \).
- This subgraph has \(\binom{7}{2} + \binom{7}{2} - 3 = 39 \) edges and 11 vertices by inclusion-exclusion.
- It has genus at least \(\gamma(K_7 \vee K_3 K_7) \geq \lceil \frac{39}{6} - \frac{11}{2} + 1 \rceil = \lceil \frac{12}{6} \rceil = 2 \). So \(G \) is too big!
Proof

- This will produce two copies of K_7 meeting at three vertices in the intersection graph of G. We write $K_7 \vee K_3 \cap K_7 \subseteq \Gamma(G)$.
- This subgraph has $\binom{7}{2} + \binom{7}{2} - 3 = 39$ edges and 11 vertices by Inclusion-exclusion.
- It has genus at least $\gamma(K_7 \vee K_3 \cap K_7) \geq \lceil \frac{39}{6} - \frac{11}{2} + 1 \rceil = \lceil \frac{12}{6} \rceil = 2$. So G is too big!
Proof

- This will produce two copies of \(K_7 \) meeting at three vertices in the intersection graph of \(G \). We write \(K_7 \lor K_3 K_7 \subseteq \Gamma(G) \).
- This subgraph has \(\binom{7}{2} + \binom{7}{2} - 3 = 39 \) edges and 11 vertices by inclusion-exclusion.
- It has genus at least \(\gamma(K_7 \lor K_3 K_7) \geq \lceil \frac{39}{6} - \frac{11}{2} + 1 \rceil = \lceil \frac{12}{6} \rceil = 2 \). So \(G \) is too big!
Strategy for Solvable Groups

- Abelian Groups
 - p-groups
 - Groups of order $p^2 q$
 - Groups of order $p^\alpha q$
 - Groups of order $p^2 q^2$
 - Groups of order $p^\alpha q^\beta$
 - Groups of order pqr
 - Groups of order $p^2 qr$
 - Groups of order $p^\alpha q^\beta r^\gamma$
Strategy for Solvable Groups

- Abelian Groups
- p−groups
 - Groups of order p^2q
 - Groups of order $p^\alpha q$
 - Groups of order p^2q^2
 - Groups of order $p^\alpha q^\beta$
 - Groups of order $p^\alpha q^\beta r^\gamma$
 - Groups of order pqr
 - Groups of order p^2qr
 - Groups of order $p^\alpha qr$
Strategy for Solvable Groups

- Abelian Groups
- p–groups
- Groups of order p^2q
 - Groups of order $p^\alpha q$
 - Groups of order $p^2 q^2$
 - Groups of order $p^\alpha q^\beta$
 - Groups of order pqr
 - Groups of order $p^2 qr$
 - Groups of order $p^\alpha q^\beta r^\gamma$
Strategy for Solvable Groups

- Abelian Groups
- p–groups
- Groups of order p^2q
- Groups of order $p^\alpha q$
 - Groups of order p^2q^2
 - Groups of order $p^\alpha q^\beta$
- Groups of order pqr
- Groups of order p^2qr
- Groups of order $p^\alpha q^\beta r\gamma$
Strategy for Solvable Groups

- Abelian Groups
- p–groups
- Groups of order $p^2 q$
- Groups of order $p^\alpha q$
- Groups of order $p^2 q^2$
- Groups of order $p^\alpha q^\beta$
- Groups of order pqr
- Groups of order $p^2 qr$
- Groups of order $p^\alpha q^\beta r^\gamma$
Strategy for Solvable Groups

- Abelian Groups
- p-groups
- Groups of order p^2q
- Groups of order $p^\alpha q$
- Groups of order $p^2 q^2$
- Groups of order $p^\alpha q^\beta$
- Groups of order $p^{\alpha} q^\beta r^\gamma$
Strategy for Solvable Groups

- Abelian Groups
- p–groups
- Groups of order p^2q
- Groups of order $p^\alpha q$
- Groups of order p^2q^2
- Groups of order $p^\alpha q^\beta$
- Groups of order pqr
- Groups of order p^2qr
- Groups of order $p^\alpha q^\beta r^\gamma$
Strategy for Solvable Groups

- Abelian Groups
- \(p \)-groups
- Groups of order \(p^2 q \)
- Groups of order \(p^\alpha q \)
- Groups of order \(p^2 q^2 \)
- Groups of order \(p^\alpha q^\beta \)
- Groups of order \(pqr \)
- Groups of order \(p^2 qr \)
- Groups of order \(p^\alpha q^\beta r^\gamma \)
Strategy for Solvable Groups

- Abelian Groups
- p-groups
- Groups of order p^2q
- Groups of order $p^\alpha q$
- Groups of order p^2q^2
- Groups of order $p^\alpha q^\beta$
- Groups of order pqr
- Groups of order p^2qr
- Groups of order $p^\alpha q^\beta r^\gamma$
What We Are Working On Now

- We are currently working on solvable groups of order p^2q^2 and order p^2qr; so far they all have genus greater than 1, so it looks like we have almost reached the end!
Nonsolvable Groups

- Every nonsolvable group contains a minimal simple group as a subquotient.
- In other words, the Hasse diagram of a non-solvable group contains that of a minimal simple group as a sub-lattice.
- There are essentially five possible minimal simple groups: $L_2(2^p)$, $L_2(3^p)$, $L_3(3)$, $L_2(p)$, and $Sz(2^q)$.
- Each of these has a solvable subgroup with genus greater than 1.
Nonsolvable Groups

- Every nonsolvable group contains a minimal simple group as a subquotient.
- In other words, the Hasse diagram of a non-solvable group contains that of a minimal simple group as a sub-lattice.
- There are essentially five possible minimal simple groups:
 - $L_2(2^p)$, $L_2(3^p)$, $L_3(3)$, $L_2(p)$, and $Sz(2^q)$.
 - Each of these has a solvable subgroup with genus greater than 1.
Every nonsolvable group contains a minimal simple group as a subquotient.

In other words, the Hasse diagram of a non-solvable group contains that of a minimal simple group as a sub-lattice.

There are essentially five possible minimal simple groups:

- $L_2(2^p)$, $L_2(3^p)$, $L_3(3)$, $L_2(p)$, and $Sz(2^q)$.

Each of these has a solvable subgroup with genus greater than 1.
Every nonsolvable group contains a minimal simple group as a subquotient.

In other words, the Hasse diagram of a non-solvable group contains that of a minimal simple group as a sub-lattice.

There are essentially five possible minimal simple groups: $L_2(2^p), L_2(3^p), L_3(3), L_2(p)$, and $Sz(2^q)$.

Each of these has a solvable subgroup with genus greater than 1.
Nonsolvable Groups

- Every nonsolvable group contains a minimal simple group as a subquotient.
- In other words, the Hasse diagram of a non-solvable group contains that of a minimal simple group as a sub-lattice.
- There are essentially five possible minimal simple groups: $L_2(2^p)$, $L_2(3^p)$, $L_3(3)$, $L_2(p)$, and $Sz(2^q)$.
- Each of these has a solvable subgroup with genus greater than 1.
We hope to finish up the remaining solvable groups; in addition, there are a number of other properties of subgroup intersection graphs that could be explored, including:

- Nonorientable Genus
- Hamiltonian Cycles
- Chromatic Number
- Higher genera
- And much, much more!
The Future

We hope to finish up the remaining solvable groups; in addition, there are a number of other properties of subgroup intersection graphs that could be explored, including:

- Nonorientable Genus
- Hamiltonian Cycles
- Chromatic Number
- Higher genera
- And much, much more!
We hope to finish up the remaining solvable groups; in addition, there are a number of other properties of subgroup intersection graphs that could be explored, including:

- Nonorientable Genus
- Hamiltonian Cycles
- Chromatic Number
- Higher genera
- And much, much more!
The Future

We hope to finish up the remaining solvable groups; in addition, there are a number of other properties of subgroup intersection graphs that could be explored, including:

- Nonorientable Genus
- Hamiltonian Cycles
- Chromatic Number
- Higher genera
- And much, much more!
We hope to finish up the remaining solvable groups; in addition, there are a number of other properties of subgroup intersection graphs that could be explored, including:

- Nonorientable Genus
- Hamiltonian Cycles
- Chromatic Number
- Higher genera
- *And much, much more!*