Evolutionary Design and Experimental Validation of a Flexible Caudal Fin for Robotic Fish

Anthony J. Clark, Jared M. Moore, Jianxun Wang, Xiaobo Tan and Philip K. McKinley

BEACON Center for the Study of Evolution in Action
Michigan State University
East Lansing, Michigan, USA 48823
ajc@msu.edu
Biomutualism

Bio-inspiration

Material properties
 - Passive
 - Flexibility

Robotic Fish
 - Evolutionary robotics
Design Process

- Mathematical Models
- Physics-Based Simulation
- Fabrication and Evaluation
- Material Properties
- Optimization
- Rapid Prototyping

Feedback
Study Overview

- Optimize Caudal Fin
 - Dimensions
 - Flexibility

- Physically Validate
 - Stable velocity
 - Improve simulation
Applications

Ecological Monitoring

Harbor Surveillance
Biological Studies

Elicit a response

- ex. robot as predator
 - Predator inspection
- ex. robot as leader
 - Schooling
Outline

- Introduction
- Evolution Park
- This Study
 - Only Flexibility
 - Flexibility + Dimensions
- Conclusion
Evolution Park

- NSP-Sponsored testbed
- Cross department collaboration
- Facilities
 - Robot grab-bag
 - Compute cluster
 - 4,500 gallon test tank
 - Rapid prototyping 3D printer
3D Printer

Objet Connex350

Prints multiple material
Young’s Modulus

- (Modulus of elasticity)
- Material property
- Higher value \Rightarrow higher stiffness
- Lower value \Rightarrow higher flexibility

~ 0.01 GPa
~ 10 GPa
~ 100 GPa
Printed Robotic Fish
Printed Robotic Fish

- Printed parts
 - body
 - gears
 - fins

- Electronics
 - Arduino
 - Servo
 - LiPo battery
Outline

- Introduction
- Evolution Park
- **This Study**
 - Only Flexibility
 - Flexibility + Dimensions
- Conclusion
Study Parameters

- Fixed control
 - 30° amplitude
 - 0.9 Hz frequency
- Flexible, rectangular caudal fin
- Swims on the surface
Mathematical Model

Hydrodynamics

Net Hydro Force

Net Drag Force

Instantaneous Hydro Force

Flexibility

Wang et. al. 2011, 2012
Caudal Fin Example
Outline

- Introduction
- Evolution Park
- This Study
 - Only Flexibility
 - Flexibility + Dimensions
- Conclusion
Optimize Only Flexibility

Optimization target
- Maximal average velocity

Hill-climber
- 30 runs
- 100 candidates tested

Evolution
- 30 runs
- 100 individuals
- 100 generations
Physical Validation

- Stable velocity
- Seven trials
 - Remove best
 - Remove worst
 - Compute average
Experimental Comparison

Model Prediction

Simulation Results

3D Printed Materials

Improved Model
Outline

- Introduction
- Evolution Park
- This Study
 - Only Flexibility
 - Flexibility + Dimensions
- Conclusion
Optimization
Dimensions and Flexibility

- Evolve
 - flexibility
 - fin dimensions
- Maximal average velocity
Optimization
Dimensions and Flexibility

- Maximal flexibility for every set of dimensions

- Constraints
 - $\text{Length}_{\text{max}} = 14 \text{ cm}$
 - $\text{Length}_{\text{min}} = 4 \text{ cm}$
 - $\text{Modulus}_{\text{max}} = 50 \text{ GPa}$
Conclusion

- For Evolutionary Computation
 - Models can approximate flexible materials
 - Models can approximate hydrodynamics
 - Multi-material 3D printers can fabricate evolved flexible solutions

- EC results can help improve the modeling process

- Design process can be repeated for other environments
Future Directions

- Energy consumption
- Morphology
 - Expand models
 - Non-rectangular fins
- Complex tasks
 - Speed, maneuverability
 - Higher level → waypoint following
Acknowledgements

- Professor Janette Boughman
 - Dr. Jason Keagy
 - Dr. Liliana Lettieri
- Members of
 - The SENS Laboratory
 - The Smart Microsystems Laboratory
 - The DevoLab
 - The BEACON Center

National Science Foundation grants CNS-1059373, CNS-0915855, DBI-0939454, CCF-0820220, IIS-0916720, ECCS-1050236, ECCS-1029683, CNS-0751155. U.S. Army Grant W911NF-08-1-0495.
thank you
Big Picture

- Robotics
 - Underwater Vehicle
 - System
 - Optimization
 - Us
 - Industrial
 - Search and Rescue
 - Sensor Node
 - Propeller
 - Paired Fin
 - Caudal Fin
 - Strategy
 - Control
 - Morphology
 - Guess and Check
 - Gradient Climbing
 - Evolutionary Computation
Mathematical Model

- Aquatic environment
- Reality gap
- Model accuracy
- Elongated-body theory

\[
\vec{f}(\tau) = \begin{pmatrix} f_X(\tau) \\ f_Y(\tau) \end{pmatrix} = -m \frac{d}{dt}(v_{\perp} \hat{n}), \quad (1)
\]

\[
\vec{F}_L = \begin{pmatrix} F_{L_X} \\ F_{L_Y} \end{pmatrix} = \left[-\frac{1}{2} m v_{\perp}^2 \hat{m} + m v_{\parallel} v_{\perp} \hat{n} \right]_{\tau=L}, \quad (2)
\]

\[
K_s = \frac{Edh^3}{12l}, \quad (3)
\]
Outline

- **Introduction**
- Evolution Park
- This Study
- Only Flexibility
- Flexibility + Dimensions
- Conclusion
Future Directions

Efficiency
- Power usage
- Mechanical work
- Performance

Coevolution
- Control
- Morphology
- Complex tasks

Multi-Objective